2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/phy/phy-miphy28lp.c
Lee Jones 8293c8a3bb phy: miphy28lp: Inform the reset framework that our reset line may be shared
On the STiH410 B2120 development board the MiPHY28lp shares its reset
line with the Synopsys DWC3 SuperSpeed (SS) USB 3.0 Dual-Role-Device
(DRD).  New functionality in the reset subsystems forces consumers to
be explicit when requesting shared/exclusive reset lines.

Acked-by: Kishon Vijay Abraham I <kishon@ti.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
2016-07-01 10:51:30 +01:00

1287 lines
33 KiB
C

/*
* Copyright (C) 2014 STMicroelectronics
*
* STMicroelectronics PHY driver MiPHY28lp (for SoC STiH407).
*
* Author: Alexandre Torgue <alexandre.torgue@st.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/clk.h>
#include <linux/phy/phy.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <dt-bindings/phy/phy.h>
/* MiPHY registers */
#define MIPHY_CONF_RESET 0x00
#define RST_APPLI_SW BIT(0)
#define RST_CONF_SW BIT(1)
#define RST_MACRO_SW BIT(2)
#define MIPHY_RESET 0x01
#define RST_PLL_SW BIT(0)
#define RST_COMP_SW BIT(2)
#define MIPHY_STATUS_1 0x02
#define PHY_RDY BIT(0)
#define HFC_RDY BIT(1)
#define HFC_PLL BIT(2)
#define MIPHY_CONTROL 0x04
#define TERM_EN_SW BIT(2)
#define DIS_LINK_RST BIT(3)
#define AUTO_RST_RX BIT(4)
#define PX_RX_POL BIT(5)
#define MIPHY_BOUNDARY_SEL 0x0a
#define TX_SEL BIT(6)
#define SSC_SEL BIT(4)
#define GENSEL_SEL BIT(0)
#define MIPHY_BOUNDARY_1 0x0b
#define MIPHY_BOUNDARY_2 0x0c
#define SSC_EN_SW BIT(2)
#define MIPHY_PLL_CLKREF_FREQ 0x0d
#define MIPHY_SPEED 0x0e
#define TX_SPDSEL_80DEC 0
#define TX_SPDSEL_40DEC 1
#define TX_SPDSEL_20DEC 2
#define RX_SPDSEL_80DEC 0
#define RX_SPDSEL_40DEC (1 << 2)
#define RX_SPDSEL_20DEC (2 << 2)
#define MIPHY_CONF 0x0f
#define MIPHY_CTRL_TEST_SEL 0x20
#define MIPHY_CTRL_TEST_1 0x21
#define MIPHY_CTRL_TEST_2 0x22
#define MIPHY_CTRL_TEST_3 0x23
#define MIPHY_CTRL_TEST_4 0x24
#define MIPHY_FEEDBACK_TEST 0x25
#define MIPHY_DEBUG_BUS 0x26
#define MIPHY_DEBUG_STATUS_MSB 0x27
#define MIPHY_DEBUG_STATUS_LSB 0x28
#define MIPHY_PWR_RAIL_1 0x29
#define MIPHY_PWR_RAIL_2 0x2a
#define MIPHY_SYNCHAR_CONTROL 0x30
#define MIPHY_COMP_FSM_1 0x3a
#define COMP_START BIT(6)
#define MIPHY_COMP_FSM_6 0x3f
#define COMP_DONE BIT(7)
#define MIPHY_COMP_POSTP 0x42
#define MIPHY_TX_CTRL_1 0x49
#define TX_REG_STEP_0V 0
#define TX_REG_STEP_P_25MV 1
#define TX_REG_STEP_P_50MV 2
#define TX_REG_STEP_N_25MV 7
#define TX_REG_STEP_N_50MV 6
#define TX_REG_STEP_N_75MV 5
#define MIPHY_TX_CTRL_2 0x4a
#define TX_SLEW_SW_40_PS 0
#define TX_SLEW_SW_80_PS 1
#define TX_SLEW_SW_120_PS 2
#define MIPHY_TX_CTRL_3 0x4b
#define MIPHY_TX_CAL_MAN 0x4e
#define TX_SLEW_CAL_MAN_EN BIT(0)
#define MIPHY_TST_BIAS_BOOST_2 0x62
#define MIPHY_BIAS_BOOST_1 0x63
#define MIPHY_BIAS_BOOST_2 0x64
#define MIPHY_RX_DESBUFF_FDB_2 0x67
#define MIPHY_RX_DESBUFF_FDB_3 0x68
#define MIPHY_SIGDET_COMPENS1 0x69
#define MIPHY_SIGDET_COMPENS2 0x6a
#define MIPHY_JITTER_PERIOD 0x6b
#define MIPHY_JITTER_AMPLITUDE_1 0x6c
#define MIPHY_JITTER_AMPLITUDE_2 0x6d
#define MIPHY_JITTER_AMPLITUDE_3 0x6e
#define MIPHY_RX_K_GAIN 0x78
#define MIPHY_RX_BUFFER_CTRL 0x7a
#define VGA_GAIN BIT(0)
#define EQ_DC_GAIN BIT(2)
#define EQ_BOOST_GAIN BIT(3)
#define MIPHY_RX_VGA_GAIN 0x7b
#define MIPHY_RX_EQU_GAIN_1 0x7f
#define MIPHY_RX_EQU_GAIN_2 0x80
#define MIPHY_RX_EQU_GAIN_3 0x81
#define MIPHY_RX_CAL_CTRL_1 0x97
#define MIPHY_RX_CAL_CTRL_2 0x98
#define MIPHY_RX_CAL_OFFSET_CTRL 0x99
#define CAL_OFFSET_VGA_64 (0x03 << 0)
#define CAL_OFFSET_THRESHOLD_64 (0x03 << 2)
#define VGA_OFFSET_POLARITY BIT(4)
#define OFFSET_COMPENSATION_EN BIT(6)
#define MIPHY_RX_CAL_VGA_STEP 0x9a
#define MIPHY_RX_CAL_EYE_MIN 0x9d
#define MIPHY_RX_CAL_OPT_LENGTH 0x9f
#define MIPHY_RX_LOCK_CTRL_1 0xc1
#define MIPHY_RX_LOCK_SETTINGS_OPT 0xc2
#define MIPHY_RX_LOCK_STEP 0xc4
#define MIPHY_RX_SIGDET_SLEEP_OA 0xc9
#define MIPHY_RX_SIGDET_SLEEP_SEL 0xca
#define MIPHY_RX_SIGDET_WAIT_SEL 0xcb
#define MIPHY_RX_SIGDET_DATA_SEL 0xcc
#define EN_ULTRA_LOW_POWER BIT(0)
#define EN_FIRST_HALF BIT(1)
#define EN_SECOND_HALF BIT(2)
#define EN_DIGIT_SIGNAL_CHECK BIT(3)
#define MIPHY_RX_POWER_CTRL_1 0xcd
#define MIPHY_RX_POWER_CTRL_2 0xce
#define MIPHY_PLL_CALSET_CTRL 0xd3
#define MIPHY_PLL_CALSET_1 0xd4
#define MIPHY_PLL_CALSET_2 0xd5
#define MIPHY_PLL_CALSET_3 0xd6
#define MIPHY_PLL_CALSET_4 0xd7
#define MIPHY_PLL_SBR_1 0xe3
#define SET_NEW_CHANGE BIT(1)
#define MIPHY_PLL_SBR_2 0xe4
#define MIPHY_PLL_SBR_3 0xe5
#define MIPHY_PLL_SBR_4 0xe6
#define MIPHY_PLL_COMMON_MISC_2 0xe9
#define START_ACT_FILT BIT(6)
#define MIPHY_PLL_SPAREIN 0xeb
/*
* On STiH407 the glue logic can be different among MiPHY devices; for example:
* MiPHY0: OSC_FORCE_EXT means:
* 0: 30MHz crystal clk - 1: 100MHz ext clk routed through MiPHY1
* MiPHY1: OSC_FORCE_EXT means:
* 1: 30MHz crystal clk - 0: 100MHz ext clk routed through MiPHY1
* Some devices have not the possibility to check if the osc is ready.
*/
#define MIPHY_OSC_FORCE_EXT BIT(3)
#define MIPHY_OSC_RDY BIT(5)
#define MIPHY_CTRL_MASK 0x0f
#define MIPHY_CTRL_DEFAULT 0
#define MIPHY_CTRL_SYNC_D_EN BIT(2)
/* SATA / PCIe defines */
#define SATA_CTRL_MASK 0x07
#define PCIE_CTRL_MASK 0xff
#define SATA_CTRL_SELECT_SATA 1
#define SATA_CTRL_SELECT_PCIE 0
#define SYSCFG_PCIE_PCIE_VAL 0x80
#define SATA_SPDMODE 1
#define MIPHY_SATA_BANK_NB 3
#define MIPHY_PCIE_BANK_NB 2
enum {
SYSCFG_CTRL,
SYSCFG_STATUS,
SYSCFG_PCI,
SYSCFG_SATA,
SYSCFG_REG_MAX,
};
struct miphy28lp_phy {
struct phy *phy;
struct miphy28lp_dev *phydev;
void __iomem *base;
void __iomem *pipebase;
bool osc_force_ext;
bool osc_rdy;
bool px_rx_pol_inv;
bool ssc;
bool tx_impedance;
struct reset_control *miphy_rst;
u32 sata_gen;
/* Sysconfig registers offsets needed to configure the device */
u32 syscfg_reg[SYSCFG_REG_MAX];
u8 type;
};
struct miphy28lp_dev {
struct device *dev;
struct regmap *regmap;
struct mutex miphy_mutex;
struct miphy28lp_phy **phys;
int nphys;
};
struct miphy_initval {
u16 reg;
u16 val;
};
enum miphy_sata_gen { SATA_GEN1, SATA_GEN2, SATA_GEN3 };
static char *PHY_TYPE_name[] = { "sata-up", "pcie-up", "", "usb3-up" };
struct pll_ratio {
int clk_ref;
int calset_1;
int calset_2;
int calset_3;
int calset_4;
int cal_ctrl;
};
static struct pll_ratio sata_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xc8,
.calset_2 = 0x00,
.calset_3 = 0x00,
.calset_4 = 0x00,
.cal_ctrl = 0x00,
};
static struct pll_ratio pcie_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xa6,
.calset_2 = 0xaa,
.calset_3 = 0xaa,
.calset_4 = 0x00,
.cal_ctrl = 0x00,
};
static struct pll_ratio usb3_pll_ratio = {
.clk_ref = 0x1e,
.calset_1 = 0xa6,
.calset_2 = 0xaa,
.calset_3 = 0xaa,
.calset_4 = 0x04,
.cal_ctrl = 0x00,
};
struct miphy28lp_pll_gen {
int bank;
int speed;
int bias_boost_1;
int bias_boost_2;
int tx_ctrl_1;
int tx_ctrl_2;
int tx_ctrl_3;
int rx_k_gain;
int rx_vga_gain;
int rx_equ_gain_1;
int rx_equ_gain_2;
int rx_equ_gain_3;
int rx_buff_ctrl;
};
static struct miphy28lp_pll_gen sata_pll_gen[] = {
{
.bank = 0x00,
.speed = TX_SPDSEL_80DEC | RX_SPDSEL_80DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0x53,
.tx_ctrl_3 = 0x00,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
{
.bank = 0x01,
.speed = TX_SPDSEL_40DEC | RX_SPDSEL_40DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0x72,
.tx_ctrl_3 = 0x20,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
{
.bank = 0x02,
.speed = TX_SPDSEL_20DEC | RX_SPDSEL_20DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xae,
.tx_ctrl_2 = 0xc0,
.tx_ctrl_3 = 0x20,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x7d,
.rx_equ_gain_2 = 0x56,
.rx_equ_gain_3 = 0x00,
},
};
static struct miphy28lp_pll_gen pcie_pll_gen[] = {
{
.bank = 0x00,
.speed = TX_SPDSEL_40DEC | RX_SPDSEL_40DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xa5,
.tx_ctrl_1 = TX_REG_STEP_N_25MV,
.tx_ctrl_2 = 0x71,
.tx_ctrl_3 = 0x60,
.rx_k_gain = 0x98,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x79,
.rx_equ_gain_2 = 0x56,
},
{
.bank = 0x01,
.speed = TX_SPDSEL_20DEC | RX_SPDSEL_20DEC,
.bias_boost_1 = 0x00,
.bias_boost_2 = 0xa5,
.tx_ctrl_1 = TX_REG_STEP_N_25MV,
.tx_ctrl_2 = 0x70,
.tx_ctrl_3 = 0x60,
.rx_k_gain = 0xcc,
.rx_buff_ctrl = EQ_BOOST_GAIN | EQ_DC_GAIN | VGA_GAIN,
.rx_vga_gain = 0x00,
.rx_equ_gain_1 = 0x78,
.rx_equ_gain_2 = 0x07,
},
};
static inline void miphy28lp_set_reset(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Putting Macro in reset */
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
val = RST_APPLI_SW | RST_CONF_SW;
writeb_relaxed(val, base + MIPHY_CONF_RESET);
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
/* Bringing the MIPHY-CPU registers out of reset */
if (miphy_phy->type == PHY_TYPE_PCIE) {
val = AUTO_RST_RX | TERM_EN_SW;
writeb_relaxed(val, base + MIPHY_CONTROL);
} else {
val = AUTO_RST_RX | TERM_EN_SW | DIS_LINK_RST;
writeb_relaxed(val, base + MIPHY_CONTROL);
}
}
static inline void miphy28lp_pll_calibration(struct miphy28lp_phy *miphy_phy,
struct pll_ratio *pll_ratio)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Applying PLL Settings */
writeb_relaxed(0x1d, base + MIPHY_PLL_SPAREIN);
writeb_relaxed(pll_ratio->clk_ref, base + MIPHY_PLL_CLKREF_FREQ);
/* PLL Ratio */
writeb_relaxed(pll_ratio->calset_1, base + MIPHY_PLL_CALSET_1);
writeb_relaxed(pll_ratio->calset_2, base + MIPHY_PLL_CALSET_2);
writeb_relaxed(pll_ratio->calset_3, base + MIPHY_PLL_CALSET_3);
writeb_relaxed(pll_ratio->calset_4, base + MIPHY_PLL_CALSET_4);
writeb_relaxed(pll_ratio->cal_ctrl, base + MIPHY_PLL_CALSET_CTRL);
writeb_relaxed(TX_SEL, base + MIPHY_BOUNDARY_SEL);
val = (0x68 << 1) | TX_SLEW_CAL_MAN_EN;
writeb_relaxed(val, base + MIPHY_TX_CAL_MAN);
val = VGA_OFFSET_POLARITY | CAL_OFFSET_THRESHOLD_64 | CAL_OFFSET_VGA_64;
if (miphy_phy->type != PHY_TYPE_SATA)
val |= OFFSET_COMPENSATION_EN;
writeb_relaxed(val, base + MIPHY_RX_CAL_OFFSET_CTRL);
if (miphy_phy->type == PHY_TYPE_USB3) {
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(0x70, base + MIPHY_RX_LOCK_STEP);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_SLEEP_OA);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_SLEEP_SEL);
writeb_relaxed(EN_FIRST_HALF, base + MIPHY_RX_SIGDET_WAIT_SEL);
val = EN_DIGIT_SIGNAL_CHECK | EN_FIRST_HALF;
writeb_relaxed(val, base + MIPHY_RX_SIGDET_DATA_SEL);
}
}
static inline void miphy28lp_sata_config_gen(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int i;
for (i = 0; i < ARRAY_SIZE(sata_pll_gen); i++) {
struct miphy28lp_pll_gen *gen = &sata_pll_gen[i];
/* Banked settings */
writeb_relaxed(gen->bank, base + MIPHY_CONF);
writeb_relaxed(gen->speed, base + MIPHY_SPEED);
writeb_relaxed(gen->bias_boost_1, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(gen->bias_boost_2, base + MIPHY_BIAS_BOOST_2);
/* TX buffer Settings */
writeb_relaxed(gen->tx_ctrl_2, base + MIPHY_TX_CTRL_2);
writeb_relaxed(gen->tx_ctrl_3, base + MIPHY_TX_CTRL_3);
/* RX Buffer Settings */
writeb_relaxed(gen->rx_buff_ctrl, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(gen->rx_vga_gain, base + MIPHY_RX_VGA_GAIN);
writeb_relaxed(gen->rx_equ_gain_1, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(gen->rx_equ_gain_2, base + MIPHY_RX_EQU_GAIN_2);
writeb_relaxed(gen->rx_equ_gain_3, base + MIPHY_RX_EQU_GAIN_3);
}
}
static inline void miphy28lp_pcie_config_gen(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int i;
for (i = 0; i < ARRAY_SIZE(pcie_pll_gen); i++) {
struct miphy28lp_pll_gen *gen = &pcie_pll_gen[i];
/* Banked settings */
writeb_relaxed(gen->bank, base + MIPHY_CONF);
writeb_relaxed(gen->speed, base + MIPHY_SPEED);
writeb_relaxed(gen->bias_boost_1, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(gen->bias_boost_2, base + MIPHY_BIAS_BOOST_2);
/* TX buffer Settings */
writeb_relaxed(gen->tx_ctrl_1, base + MIPHY_TX_CTRL_1);
writeb_relaxed(gen->tx_ctrl_2, base + MIPHY_TX_CTRL_2);
writeb_relaxed(gen->tx_ctrl_3, base + MIPHY_TX_CTRL_3);
writeb_relaxed(gen->rx_k_gain, base + MIPHY_RX_K_GAIN);
/* RX Buffer Settings */
writeb_relaxed(gen->rx_buff_ctrl, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(gen->rx_vga_gain, base + MIPHY_RX_VGA_GAIN);
writeb_relaxed(gen->rx_equ_gain_1, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(gen->rx_equ_gain_2, base + MIPHY_RX_EQU_GAIN_2);
}
}
static inline int miphy28lp_wait_compensation(struct miphy28lp_phy *miphy_phy)
{
unsigned long finish = jiffies + 5 * HZ;
u8 val;
/* Waiting for Compensation to complete */
do {
val = readb_relaxed(miphy_phy->base + MIPHY_COMP_FSM_6);
if (time_after_eq(jiffies, finish))
return -EBUSY;
cpu_relax();
} while (!(val & COMP_DONE));
return 0;
}
static inline int miphy28lp_compensation(struct miphy28lp_phy *miphy_phy,
struct pll_ratio *pll_ratio)
{
void __iomem *base = miphy_phy->base;
/* Poll for HFC ready after reset release */
/* Compensation measurement */
writeb_relaxed(RST_PLL_SW | RST_COMP_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(pll_ratio->clk_ref, base + MIPHY_PLL_CLKREF_FREQ);
writeb_relaxed(COMP_START, base + MIPHY_COMP_FSM_1);
if (miphy_phy->type == PHY_TYPE_PCIE)
writeb_relaxed(RST_PLL_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_RESET);
writeb_relaxed(START_ACT_FILT, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* TX compensation offset to re-center TX impedance */
writeb_relaxed(0x00, base + MIPHY_COMP_POSTP);
if (miphy_phy->type == PHY_TYPE_PCIE)
return miphy28lp_wait_compensation(miphy_phy);
return 0;
}
static inline void miphy28_usb3_miphy_reset(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* MIPHY Reset */
writeb_relaxed(RST_APPLI_SW, base + MIPHY_CONF_RESET);
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
writeb_relaxed(RST_COMP_SW, base + MIPHY_RESET);
val = RST_COMP_SW | RST_PLL_SW;
writeb_relaxed(val, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(0x1e, base + MIPHY_PLL_CLKREF_FREQ);
writeb_relaxed(COMP_START, base + MIPHY_COMP_FSM_1);
writeb_relaxed(RST_PLL_SW, base + MIPHY_RESET);
writeb_relaxed(0x00, base + MIPHY_RESET);
writeb_relaxed(START_ACT_FILT, base + MIPHY_PLL_COMMON_MISC_2);
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(0x00, base + MIPHY_BOUNDARY_1);
writeb_relaxed(0x00, base + MIPHY_TST_BIAS_BOOST_2);
writeb_relaxed(0x00, base + MIPHY_CONF);
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
writeb_relaxed(0xa5, base + MIPHY_DEBUG_BUS);
writeb_relaxed(0x00, base + MIPHY_CONF);
}
static void miphy_sata_tune_ssc(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Compensate Tx impedance to avoid out of range values */
/*
* Enable the SSC on PLL for all banks
* SSC Modulation @ 31 KHz and 4000 ppm modulation amp
*/
val = readb_relaxed(base + MIPHY_BOUNDARY_2);
val |= SSC_EN_SW;
writeb_relaxed(val, base + MIPHY_BOUNDARY_2);
val = readb_relaxed(base + MIPHY_BOUNDARY_SEL);
val |= SSC_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
for (val = 0; val < MIPHY_SATA_BANK_NB; val++) {
writeb_relaxed(val, base + MIPHY_CONF);
/* Add value to each reference clock cycle */
/* and define the period length of the SSC */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0x6c, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0x81, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
}
}
static void miphy_pcie_tune_ssc(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Compensate Tx impedance to avoid out of range values */
/*
* Enable the SSC on PLL for all banks
* SSC Modulation @ 31 KHz and 4000 ppm modulation amp
*/
val = readb_relaxed(base + MIPHY_BOUNDARY_2);
val |= SSC_EN_SW;
writeb_relaxed(val, base + MIPHY_BOUNDARY_2);
val = readb_relaxed(base + MIPHY_BOUNDARY_SEL);
val |= SSC_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
for (val = 0; val < MIPHY_PCIE_BANK_NB; val++) {
writeb_relaxed(val, base + MIPHY_CONF);
/* Validate Step component */
writeb_relaxed(0x69, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0x21, base + MIPHY_PLL_SBR_4);
/* Validate Period component */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0x21, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(SET_NEW_CHANGE, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
}
}
static inline void miphy_tune_tx_impedance(struct miphy28lp_phy *miphy_phy)
{
/* Compensate Tx impedance to avoid out of range values */
writeb_relaxed(0x02, miphy_phy->base + MIPHY_COMP_POSTP);
}
static inline int miphy28lp_configure_sata(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int err;
u8 val;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &sata_pll_ratio);
/* Banked settings Gen1/Gen2/Gen3 */
miphy28lp_sata_config_gen(miphy_phy);
/* Power control */
/* Input bridge enable, manual input bridge control */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
/* Macro out of reset */
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
/* Poll for HFC ready after reset release */
/* Compensation measurement */
err = miphy28lp_compensation(miphy_phy, &sata_pll_ratio);
if (err)
return err;
if (miphy_phy->px_rx_pol_inv) {
/* Invert Rx polarity */
val = readb_relaxed(miphy_phy->base + MIPHY_CONTROL);
val |= PX_RX_POL;
writeb_relaxed(val, miphy_phy->base + MIPHY_CONTROL);
}
if (miphy_phy->ssc)
miphy_sata_tune_ssc(miphy_phy);
if (miphy_phy->tx_impedance)
miphy_tune_tx_impedance(miphy_phy);
return 0;
}
static inline int miphy28lp_configure_pcie(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
int err;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &pcie_pll_ratio);
/* Banked settings Gen1/Gen2 */
miphy28lp_pcie_config_gen(miphy_phy);
/* Power control */
/* Input bridge enable, manual input bridge control */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
/* Macro out of reset */
writeb_relaxed(0x00, base + MIPHY_CONF_RESET);
/* Poll for HFC ready after reset release */
/* Compensation measurement */
err = miphy28lp_compensation(miphy_phy, &pcie_pll_ratio);
if (err)
return err;
if (miphy_phy->ssc)
miphy_pcie_tune_ssc(miphy_phy);
if (miphy_phy->tx_impedance)
miphy_tune_tx_impedance(miphy_phy);
return 0;
}
static inline void miphy28lp_configure_usb3(struct miphy28lp_phy *miphy_phy)
{
void __iomem *base = miphy_phy->base;
u8 val;
/* Putting Macro in reset */
miphy28lp_set_reset(miphy_phy);
/* PLL calibration */
miphy28lp_pll_calibration(miphy_phy, &usb3_pll_ratio);
/* Writing The Speed Rate */
writeb_relaxed(0x00, base + MIPHY_CONF);
val = RX_SPDSEL_20DEC | TX_SPDSEL_20DEC;
writeb_relaxed(val, base + MIPHY_SPEED);
/* RX Channel compensation and calibration */
writeb_relaxed(0x1c, base + MIPHY_RX_LOCK_SETTINGS_OPT);
writeb_relaxed(0x51, base + MIPHY_RX_CAL_CTRL_1);
writeb_relaxed(0x70, base + MIPHY_RX_CAL_CTRL_2);
val = OFFSET_COMPENSATION_EN | VGA_OFFSET_POLARITY |
CAL_OFFSET_THRESHOLD_64 | CAL_OFFSET_VGA_64;
writeb_relaxed(val, base + MIPHY_RX_CAL_OFFSET_CTRL);
writeb_relaxed(0x22, base + MIPHY_RX_CAL_VGA_STEP);
writeb_relaxed(0x0e, base + MIPHY_RX_CAL_OPT_LENGTH);
val = EQ_DC_GAIN | VGA_GAIN;
writeb_relaxed(val, base + MIPHY_RX_BUFFER_CTRL);
writeb_relaxed(0x78, base + MIPHY_RX_EQU_GAIN_1);
writeb_relaxed(0x1b, base + MIPHY_SYNCHAR_CONTROL);
/* TX compensation offset to re-center TX impedance */
writeb_relaxed(0x02, base + MIPHY_COMP_POSTP);
/* Enable GENSEL_SEL and SSC */
/* TX_SEL=0 swing preemp forced by pipe registres */
val = SSC_SEL | GENSEL_SEL;
writeb_relaxed(val, base + MIPHY_BOUNDARY_SEL);
/* MIPHY Bias boost */
writeb_relaxed(0x00, base + MIPHY_BIAS_BOOST_1);
writeb_relaxed(0xa7, base + MIPHY_BIAS_BOOST_2);
/* SSC modulation */
writeb_relaxed(SSC_EN_SW, base + MIPHY_BOUNDARY_2);
/* MIPHY TX control */
writeb_relaxed(0x00, base + MIPHY_CONF);
/* Validate Step component */
writeb_relaxed(0x5a, base + MIPHY_PLL_SBR_3);
writeb_relaxed(0xa0, base + MIPHY_PLL_SBR_4);
/* Validate Period component */
writeb_relaxed(0x3c, base + MIPHY_PLL_SBR_2);
writeb_relaxed(0xa1, base + MIPHY_PLL_SBR_4);
/* Clear any previous request */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* requests the PLL to take in account new parameters */
writeb_relaxed(0x02, base + MIPHY_PLL_SBR_1);
/* To be sure there is no other pending requests */
writeb_relaxed(0x00, base + MIPHY_PLL_SBR_1);
/* Rx PI controller settings */
writeb_relaxed(0xca, base + MIPHY_RX_K_GAIN);
/* MIPHY RX input bridge control */
/* INPUT_BRIDGE_EN_SW=1, manual input bridge control[0]=1 */
writeb_relaxed(0x21, base + MIPHY_RX_POWER_CTRL_1);
writeb_relaxed(0x29, base + MIPHY_RX_POWER_CTRL_1);
writeb_relaxed(0x1a, base + MIPHY_RX_POWER_CTRL_2);
/* MIPHY Reset for usb3 */
miphy28_usb3_miphy_reset(miphy_phy);
}
static inline int miphy_is_ready(struct miphy28lp_phy *miphy_phy)
{
unsigned long finish = jiffies + 5 * HZ;
u8 mask = HFC_PLL | HFC_RDY;
u8 val;
/*
* For PCIe and USB3 check only that PLL and HFC are ready
* For SATA check also that phy is ready!
*/
if (miphy_phy->type == PHY_TYPE_SATA)
mask |= PHY_RDY;
do {
val = readb_relaxed(miphy_phy->base + MIPHY_STATUS_1);
if ((val & mask) != mask)
cpu_relax();
else
return 0;
} while (!time_after_eq(jiffies, finish));
return -EBUSY;
}
static int miphy_osc_is_ready(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
unsigned long finish = jiffies + 5 * HZ;
u32 val;
if (!miphy_phy->osc_rdy)
return 0;
if (!miphy_phy->syscfg_reg[SYSCFG_STATUS])
return -EINVAL;
do {
regmap_read(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_STATUS], &val);
if ((val & MIPHY_OSC_RDY) != MIPHY_OSC_RDY)
cpu_relax();
else
return 0;
} while (!time_after_eq(jiffies, finish));
return -EBUSY;
}
static int miphy28lp_get_resource_byname(struct device_node *child,
char *rname, struct resource *res)
{
int index;
index = of_property_match_string(child, "reg-names", rname);
if (index < 0)
return -ENODEV;
return of_address_to_resource(child, index, res);
}
static int miphy28lp_get_one_addr(struct device *dev,
struct device_node *child, char *rname,
void __iomem **base)
{
struct resource res;
int ret;
ret = miphy28lp_get_resource_byname(child, rname, &res);
if (!ret) {
*base = devm_ioremap(dev, res.start, resource_size(&res));
if (!*base) {
dev_err(dev, "failed to ioremap %s address region\n"
, rname);
return -ENOENT;
}
}
return 0;
}
/* MiPHY reset and sysconf setup */
static int miphy28lp_setup(struct miphy28lp_phy *miphy_phy, u32 miphy_val)
{
int err;
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
if (!miphy_phy->syscfg_reg[SYSCFG_CTRL])
return -EINVAL;
err = reset_control_assert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
if (miphy_phy->osc_force_ext)
miphy_val |= MIPHY_OSC_FORCE_EXT;
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_CTRL],
MIPHY_CTRL_MASK, miphy_val);
err = reset_control_deassert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
return miphy_osc_is_ready(miphy_phy);
}
static int miphy28lp_init_sata(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err, sata_conf = SATA_CTRL_SELECT_SATA;
if ((!miphy_phy->syscfg_reg[SYSCFG_SATA]) ||
(!miphy_phy->syscfg_reg[SYSCFG_PCI]) ||
(!miphy_phy->base))
return -EINVAL;
dev_info(miphy_dev->dev, "sata-up mode, addr 0x%p\n", miphy_phy->base);
/* Configure the glue-logic */
sata_conf |= ((miphy_phy->sata_gen - SATA_GEN1) << SATA_SPDMODE);
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_SATA],
SATA_CTRL_MASK, sata_conf);
regmap_update_bits(miphy_dev->regmap, miphy_phy->syscfg_reg[SYSCFG_PCI],
PCIE_CTRL_MASK, SATA_CTRL_SELECT_PCIE);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_DEFAULT);
if (err) {
dev_err(miphy_dev->dev, "SATA phy setup failed\n");
return err;
}
/* initialize miphy */
miphy28lp_configure_sata(miphy_phy);
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init_pcie(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
if ((!miphy_phy->syscfg_reg[SYSCFG_SATA]) ||
(!miphy_phy->syscfg_reg[SYSCFG_PCI])
|| (!miphy_phy->base) || (!miphy_phy->pipebase))
return -EINVAL;
dev_info(miphy_dev->dev, "pcie-up mode, addr 0x%p\n", miphy_phy->base);
/* Configure the glue-logic */
regmap_update_bits(miphy_dev->regmap,
miphy_phy->syscfg_reg[SYSCFG_SATA],
SATA_CTRL_MASK, SATA_CTRL_SELECT_PCIE);
regmap_update_bits(miphy_dev->regmap, miphy_phy->syscfg_reg[SYSCFG_PCI],
PCIE_CTRL_MASK, SYSCFG_PCIE_PCIE_VAL);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_DEFAULT);
if (err) {
dev_err(miphy_dev->dev, "PCIe phy setup failed\n");
return err;
}
/* initialize miphy */
err = miphy28lp_configure_pcie(miphy_phy);
if (err)
return err;
/* PIPE Wrapper Configuration */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x104); /* Rise_0 */
writeb_relaxed(0x61, miphy_phy->pipebase + 0x105); /* Rise_1 */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x108); /* Fall_0 */
writeb_relaxed(0x61, miphy_phy->pipebase + 0x109); /* Fall-1 */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x10c); /* Threshold_0 */
writeb_relaxed(0x60, miphy_phy->pipebase + 0x10d); /* Threshold_1 */
/* Wait for phy_ready */
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init_usb3(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
if ((!miphy_phy->base) || (!miphy_phy->pipebase))
return -EINVAL;
dev_info(miphy_dev->dev, "usb3-up mode, addr 0x%p\n", miphy_phy->base);
/* MiPHY path and clocking init */
err = miphy28lp_setup(miphy_phy, MIPHY_CTRL_SYNC_D_EN);
if (err) {
dev_err(miphy_dev->dev, "USB3 phy setup failed\n");
return err;
}
/* initialize miphy */
miphy28lp_configure_usb3(miphy_phy);
/* PIPE Wrapper Configuration */
writeb_relaxed(0x68, miphy_phy->pipebase + 0x23);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x24);
writeb_relaxed(0x68, miphy_phy->pipebase + 0x26);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x27);
writeb_relaxed(0x18, miphy_phy->pipebase + 0x29);
writeb_relaxed(0x61, miphy_phy->pipebase + 0x2a);
/* pipe Wrapper usb3 TX swing de-emph margin PREEMPH[7:4], SWING[3:0] */
writeb_relaxed(0X67, miphy_phy->pipebase + 0x68);
writeb_relaxed(0x0d, miphy_phy->pipebase + 0x69);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6a);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6b);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6c);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6d);
writeb_relaxed(0X67, miphy_phy->pipebase + 0x6e);
writeb_relaxed(0X0d, miphy_phy->pipebase + 0x6f);
return miphy_is_ready(miphy_phy);
}
static int miphy28lp_init(struct phy *phy)
{
struct miphy28lp_phy *miphy_phy = phy_get_drvdata(phy);
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int ret;
mutex_lock(&miphy_dev->miphy_mutex);
switch (miphy_phy->type) {
case PHY_TYPE_SATA:
ret = miphy28lp_init_sata(miphy_phy);
break;
case PHY_TYPE_PCIE:
ret = miphy28lp_init_pcie(miphy_phy);
break;
case PHY_TYPE_USB3:
ret = miphy28lp_init_usb3(miphy_phy);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&miphy_dev->miphy_mutex);
return ret;
}
static int miphy28lp_get_addr(struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
struct device_node *phynode = miphy_phy->phy->dev.of_node;
int err;
if ((miphy_phy->type != PHY_TYPE_SATA) &&
(miphy_phy->type != PHY_TYPE_PCIE) &&
(miphy_phy->type != PHY_TYPE_USB3)) {
return -EINVAL;
}
err = miphy28lp_get_one_addr(miphy_dev->dev, phynode,
PHY_TYPE_name[miphy_phy->type - PHY_TYPE_SATA],
&miphy_phy->base);
if (err)
return err;
if ((miphy_phy->type == PHY_TYPE_PCIE) ||
(miphy_phy->type == PHY_TYPE_USB3)) {
err = miphy28lp_get_one_addr(miphy_dev->dev, phynode, "pipew",
&miphy_phy->pipebase);
if (err)
return err;
}
return 0;
}
static struct phy *miphy28lp_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct miphy28lp_dev *miphy_dev = dev_get_drvdata(dev);
struct miphy28lp_phy *miphy_phy = NULL;
struct device_node *phynode = args->np;
int ret, index = 0;
if (args->args_count != 1) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return ERR_PTR(-EINVAL);
}
for (index = 0; index < miphy_dev->nphys; index++)
if (phynode == miphy_dev->phys[index]->phy->dev.of_node) {
miphy_phy = miphy_dev->phys[index];
break;
}
if (!miphy_phy) {
dev_err(dev, "Failed to find appropriate phy\n");
return ERR_PTR(-EINVAL);
}
miphy_phy->type = args->args[0];
ret = miphy28lp_get_addr(miphy_phy);
if (ret < 0)
return ERR_PTR(ret);
return miphy_phy->phy;
}
static const struct phy_ops miphy28lp_ops = {
.init = miphy28lp_init,
.owner = THIS_MODULE,
};
static int miphy28lp_probe_resets(struct device_node *node,
struct miphy28lp_phy *miphy_phy)
{
struct miphy28lp_dev *miphy_dev = miphy_phy->phydev;
int err;
miphy_phy->miphy_rst =
of_reset_control_get_shared(node, "miphy-sw-rst");
if (IS_ERR(miphy_phy->miphy_rst)) {
dev_err(miphy_dev->dev,
"miphy soft reset control not defined\n");
return PTR_ERR(miphy_phy->miphy_rst);
}
err = reset_control_deassert(miphy_phy->miphy_rst);
if (err) {
dev_err(miphy_dev->dev, "unable to bring out of miphy reset\n");
return err;
}
return 0;
}
static int miphy28lp_of_probe(struct device_node *np,
struct miphy28lp_phy *miphy_phy)
{
int i;
u32 ctrlreg;
miphy_phy->osc_force_ext =
of_property_read_bool(np, "st,osc-force-ext");
miphy_phy->osc_rdy = of_property_read_bool(np, "st,osc-rdy");
miphy_phy->px_rx_pol_inv =
of_property_read_bool(np, "st,px_rx_pol_inv");
miphy_phy->ssc = of_property_read_bool(np, "st,ssc-on");
miphy_phy->tx_impedance =
of_property_read_bool(np, "st,tx-impedance-comp");
of_property_read_u32(np, "st,sata-gen", &miphy_phy->sata_gen);
if (!miphy_phy->sata_gen)
miphy_phy->sata_gen = SATA_GEN1;
for (i = 0; i < SYSCFG_REG_MAX; i++) {
if (!of_property_read_u32_index(np, "st,syscfg", i, &ctrlreg))
miphy_phy->syscfg_reg[i] = ctrlreg;
}
return 0;
}
static int miphy28lp_probe(struct platform_device *pdev)
{
struct device_node *child, *np = pdev->dev.of_node;
struct miphy28lp_dev *miphy_dev;
struct phy_provider *provider;
struct phy *phy;
int ret, port = 0;
miphy_dev = devm_kzalloc(&pdev->dev, sizeof(*miphy_dev), GFP_KERNEL);
if (!miphy_dev)
return -ENOMEM;
miphy_dev->nphys = of_get_child_count(np);
miphy_dev->phys = devm_kcalloc(&pdev->dev, miphy_dev->nphys,
sizeof(*miphy_dev->phys), GFP_KERNEL);
if (!miphy_dev->phys)
return -ENOMEM;
miphy_dev->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(miphy_dev->regmap)) {
dev_err(miphy_dev->dev, "No syscfg phandle specified\n");
return PTR_ERR(miphy_dev->regmap);
}
miphy_dev->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, miphy_dev);
mutex_init(&miphy_dev->miphy_mutex);
for_each_child_of_node(np, child) {
struct miphy28lp_phy *miphy_phy;
miphy_phy = devm_kzalloc(&pdev->dev, sizeof(*miphy_phy),
GFP_KERNEL);
if (!miphy_phy) {
ret = -ENOMEM;
goto put_child;
}
miphy_dev->phys[port] = miphy_phy;
phy = devm_phy_create(&pdev->dev, child, &miphy28lp_ops);
if (IS_ERR(phy)) {
dev_err(&pdev->dev, "failed to create PHY\n");
ret = PTR_ERR(phy);
goto put_child;
}
miphy_dev->phys[port]->phy = phy;
miphy_dev->phys[port]->phydev = miphy_dev;
ret = miphy28lp_of_probe(child, miphy_phy);
if (ret)
goto put_child;
ret = miphy28lp_probe_resets(child, miphy_dev->phys[port]);
if (ret)
goto put_child;
phy_set_drvdata(phy, miphy_dev->phys[port]);
port++;
}
provider = devm_of_phy_provider_register(&pdev->dev, miphy28lp_xlate);
return PTR_ERR_OR_ZERO(provider);
put_child:
of_node_put(child);
return ret;
}
static const struct of_device_id miphy28lp_of_match[] = {
{.compatible = "st,miphy28lp-phy", },
{},
};
MODULE_DEVICE_TABLE(of, miphy28lp_of_match);
static struct platform_driver miphy28lp_driver = {
.probe = miphy28lp_probe,
.driver = {
.name = "miphy28lp-phy",
.of_match_table = miphy28lp_of_match,
}
};
module_platform_driver(miphy28lp_driver);
MODULE_AUTHOR("Alexandre Torgue <alexandre.torgue@st.com>");
MODULE_DESCRIPTION("STMicroelectronics miphy28lp driver");
MODULE_LICENSE("GPL v2");