2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/lib/genalloc.c
Daniel Mentz 62e931fac4 lib/genalloc.c: start search from start of chunk
gen_pool_alloc_algo() iterates over the chunks of a pool trying to find
a contiguous block of memory that satisfies the allocation request.

The shortcut

	if (size > atomic_read(&chunk->avail))
		continue;

makes the loop skip over chunks that do not have enough bytes left to
fulfill the request.  There are two situations, though, where an
allocation might still fail:

(1) The available memory is not contiguous, i.e.  the request cannot
    be fulfilled due to external fragmentation.

(2) A race condition.  Another thread runs the same code concurrently
    and is quicker to grab the available memory.

In those situations, the loop calls pool->algo() to search the entire
chunk, and pool->algo() returns some value that is >= end_bit to
indicate that the search failed.  This return value is then assigned to
start_bit.  The variables start_bit and end_bit describe the range that
should be searched, and this range should be reset for every chunk that
is searched.  Today, the code fails to reset start_bit to 0.  As a
result, prefixes of subsequent chunks are ignored.  Memory allocations
might fail even though there is plenty of room left in these prefixes of
those other chunks.

Fixes: 7f184275aa ("lib, Make gen_pool memory allocator lockless")
Link: http://lkml.kernel.org/r/1477420604-28918-1-git-send-email-danielmentz@google.com
Signed-off-by: Daniel Mentz <danielmentz@google.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 18:43:43 -07:00

781 lines
22 KiB
C

/*
* Basic general purpose allocator for managing special purpose
* memory, for example, memory that is not managed by the regular
* kmalloc/kfree interface. Uses for this includes on-device special
* memory, uncached memory etc.
*
* It is safe to use the allocator in NMI handlers and other special
* unblockable contexts that could otherwise deadlock on locks. This
* is implemented by using atomic operations and retries on any
* conflicts. The disadvantage is that there may be livelocks in
* extreme cases. For better scalability, one allocator can be used
* for each CPU.
*
* The lockless operation only works if there is enough memory
* available. If new memory is added to the pool a lock has to be
* still taken. So any user relying on locklessness has to ensure
* that sufficient memory is preallocated.
*
* The basic atomic operation of this allocator is cmpxchg on long.
* On architectures that don't have NMI-safe cmpxchg implementation,
* the allocator can NOT be used in NMI handler. So code uses the
* allocator in NMI handler should depend on
* CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
*
* Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/bitmap.h>
#include <linux/rculist.h>
#include <linux/interrupt.h>
#include <linux/genalloc.h>
#include <linux/of_device.h>
static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
{
return chunk->end_addr - chunk->start_addr + 1;
}
static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if (val & mask_to_set)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
return 0;
}
static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
{
unsigned long val, nval;
nval = *addr;
do {
val = nval;
if ((val & mask_to_clear) != mask_to_clear)
return -EBUSY;
cpu_relax();
} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
return 0;
}
/*
* bitmap_set_ll - set the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Set @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users set the same bit, one user will return remain bits, otherwise
* return 0.
*/
static int bitmap_set_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_set >= 0) {
if (set_bits_ll(p, mask_to_set))
return nr;
nr -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (nr) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
if (set_bits_ll(p, mask_to_set))
return nr;
}
return 0;
}
/*
* bitmap_clear_ll - clear the specified number of bits at the specified position
* @map: pointer to a bitmap
* @start: a bit position in @map
* @nr: number of bits to set
*
* Clear @nr bits start from @start in @map lock-lessly. Several users
* can set/clear the same bitmap simultaneously without lock. If two
* users clear the same bit, one user will return remain bits,
* otherwise return 0.
*/
static int bitmap_clear_ll(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_clear >= 0) {
if (clear_bits_ll(p, mask_to_clear))
return nr;
nr -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (nr) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
if (clear_bits_ll(p, mask_to_clear))
return nr;
}
return 0;
}
/**
* gen_pool_create - create a new special memory pool
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
* @nid: node id of the node the pool structure should be allocated on, or -1
*
* Create a new special memory pool that can be used to manage special purpose
* memory not managed by the regular kmalloc/kfree interface.
*/
struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
{
struct gen_pool *pool;
pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
if (pool != NULL) {
spin_lock_init(&pool->lock);
INIT_LIST_HEAD(&pool->chunks);
pool->min_alloc_order = min_alloc_order;
pool->algo = gen_pool_first_fit;
pool->data = NULL;
pool->name = NULL;
}
return pool;
}
EXPORT_SYMBOL(gen_pool_create);
/**
* gen_pool_add_virt - add a new chunk of special memory to the pool
* @pool: pool to add new memory chunk to
* @virt: virtual starting address of memory chunk to add to pool
* @phys: physical starting address of memory chunk to add to pool
* @size: size in bytes of the memory chunk to add to pool
* @nid: node id of the node the chunk structure and bitmap should be
* allocated on, or -1
*
* Add a new chunk of special memory to the specified pool.
*
* Returns 0 on success or a -ve errno on failure.
*/
int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
size_t size, int nid)
{
struct gen_pool_chunk *chunk;
int nbits = size >> pool->min_alloc_order;
int nbytes = sizeof(struct gen_pool_chunk) +
BITS_TO_LONGS(nbits) * sizeof(long);
chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
if (unlikely(chunk == NULL))
return -ENOMEM;
chunk->phys_addr = phys;
chunk->start_addr = virt;
chunk->end_addr = virt + size - 1;
atomic_set(&chunk->avail, size);
spin_lock(&pool->lock);
list_add_rcu(&chunk->next_chunk, &pool->chunks);
spin_unlock(&pool->lock);
return 0;
}
EXPORT_SYMBOL(gen_pool_add_virt);
/**
* gen_pool_virt_to_phys - return the physical address of memory
* @pool: pool to allocate from
* @addr: starting address of memory
*
* Returns the physical address on success, or -1 on error.
*/
phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
{
struct gen_pool_chunk *chunk;
phys_addr_t paddr = -1;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
paddr = chunk->phys_addr + (addr - chunk->start_addr);
break;
}
}
rcu_read_unlock();
return paddr;
}
EXPORT_SYMBOL(gen_pool_virt_to_phys);
/**
* gen_pool_destroy - destroy a special memory pool
* @pool: pool to destroy
*
* Destroy the specified special memory pool. Verifies that there are no
* outstanding allocations.
*/
void gen_pool_destroy(struct gen_pool *pool)
{
struct list_head *_chunk, *_next_chunk;
struct gen_pool_chunk *chunk;
int order = pool->min_alloc_order;
int bit, end_bit;
list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
list_del(&chunk->next_chunk);
end_bit = chunk_size(chunk) >> order;
bit = find_next_bit(chunk->bits, end_bit, 0);
BUG_ON(bit < end_bit);
kfree(chunk);
}
kfree_const(pool->name);
kfree(pool);
}
EXPORT_SYMBOL(gen_pool_destroy);
/**
* gen_pool_alloc - allocate special memory from the pool
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
*
* Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
{
return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
}
EXPORT_SYMBOL(gen_pool_alloc);
/**
* gen_pool_alloc_algo - allocate special memory from the pool
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @algo: algorithm passed from caller
* @data: data passed to algorithm
*
* Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
genpool_algo_t algo, void *data)
{
struct gen_pool_chunk *chunk;
unsigned long addr = 0;
int order = pool->min_alloc_order;
int nbits, start_bit, end_bit, remain;
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
#endif
if (size == 0)
return 0;
nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (size > atomic_read(&chunk->avail))
continue;
start_bit = 0;
end_bit = chunk_size(chunk) >> order;
retry:
start_bit = algo(chunk->bits, end_bit, start_bit,
nbits, data, pool);
if (start_bit >= end_bit)
continue;
remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
if (remain) {
remain = bitmap_clear_ll(chunk->bits, start_bit,
nbits - remain);
BUG_ON(remain);
goto retry;
}
addr = chunk->start_addr + ((unsigned long)start_bit << order);
size = nbits << order;
atomic_sub(size, &chunk->avail);
break;
}
rcu_read_unlock();
return addr;
}
EXPORT_SYMBOL(gen_pool_alloc_algo);
/**
* gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: dma-view physical address return value. Use NULL if unneeded.
*
* Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
{
unsigned long vaddr;
if (!pool)
return NULL;
vaddr = gen_pool_alloc(pool, size);
if (!vaddr)
return NULL;
if (dma)
*dma = gen_pool_virt_to_phys(pool, vaddr);
return (void *)vaddr;
}
EXPORT_SYMBOL(gen_pool_dma_alloc);
/**
* gen_pool_free - free allocated special memory back to the pool
* @pool: pool to free to
* @addr: starting address of memory to free back to pool
* @size: size in bytes of memory to free
*
* Free previously allocated special memory back to the specified
* pool. Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*/
void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
{
struct gen_pool_chunk *chunk;
int order = pool->min_alloc_order;
int start_bit, nbits, remain;
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
BUG_ON(in_nmi());
#endif
nbits = (size + (1UL << order) - 1) >> order;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
BUG_ON(addr + size - 1 > chunk->end_addr);
start_bit = (addr - chunk->start_addr) >> order;
remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
BUG_ON(remain);
size = nbits << order;
atomic_add(size, &chunk->avail);
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
BUG();
}
EXPORT_SYMBOL(gen_pool_free);
/**
* gen_pool_for_each_chunk - call func for every chunk of generic memory pool
* @pool: the generic memory pool
* @func: func to call
* @data: additional data used by @func
*
* Call @func for every chunk of generic memory pool. The @func is
* called with rcu_read_lock held.
*/
void gen_pool_for_each_chunk(struct gen_pool *pool,
void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
void *data)
{
struct gen_pool_chunk *chunk;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
func(pool, chunk, data);
rcu_read_unlock();
}
EXPORT_SYMBOL(gen_pool_for_each_chunk);
/**
* addr_in_gen_pool - checks if an address falls within the range of a pool
* @pool: the generic memory pool
* @start: start address
* @size: size of the region
*
* Check if the range of addresses falls within the specified pool. Returns
* true if the entire range is contained in the pool and false otherwise.
*/
bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
size_t size)
{
bool found = false;
unsigned long end = start + size - 1;
struct gen_pool_chunk *chunk;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
if (start >= chunk->start_addr && start <= chunk->end_addr) {
if (end <= chunk->end_addr) {
found = true;
break;
}
}
}
rcu_read_unlock();
return found;
}
/**
* gen_pool_avail - get available free space of the pool
* @pool: pool to get available free space
*
* Return available free space of the specified pool.
*/
size_t gen_pool_avail(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t avail = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
avail += atomic_read(&chunk->avail);
rcu_read_unlock();
return avail;
}
EXPORT_SYMBOL_GPL(gen_pool_avail);
/**
* gen_pool_size - get size in bytes of memory managed by the pool
* @pool: pool to get size
*
* Return size in bytes of memory managed by the pool.
*/
size_t gen_pool_size(struct gen_pool *pool)
{
struct gen_pool_chunk *chunk;
size_t size = 0;
rcu_read_lock();
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
size += chunk_size(chunk);
rcu_read_unlock();
return size;
}
EXPORT_SYMBOL_GPL(gen_pool_size);
/**
* gen_pool_set_algo - set the allocation algorithm
* @pool: pool to change allocation algorithm
* @algo: custom algorithm function
* @data: additional data used by @algo
*
* Call @algo for each memory allocation in the pool.
* If @algo is NULL use gen_pool_first_fit as default
* memory allocation function.
*/
void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
{
rcu_read_lock();
pool->algo = algo;
if (!pool->algo)
pool->algo = gen_pool_first_fit;
pool->data = data;
rcu_read_unlock();
}
EXPORT_SYMBOL(gen_pool_set_algo);
/**
* gen_pool_first_fit - find the first available region
* of memory matching the size requirement (no alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
*/
unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
struct gen_pool *pool)
{
return bitmap_find_next_zero_area(map, size, start, nr, 0);
}
EXPORT_SYMBOL(gen_pool_first_fit);
/**
* gen_pool_first_fit_align - find the first available region
* of memory matching the size requirement (alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: data for alignment
* @pool: pool to get order from
*/
unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
struct gen_pool *pool)
{
struct genpool_data_align *alignment;
unsigned long align_mask;
int order;
alignment = data;
order = pool->min_alloc_order;
align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
}
EXPORT_SYMBOL(gen_pool_first_fit_align);
/**
* gen_pool_fixed_alloc - reserve a specific region
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: data for alignment
* @pool: pool to get order from
*/
unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
struct gen_pool *pool)
{
struct genpool_data_fixed *fixed_data;
int order;
unsigned long offset_bit;
unsigned long start_bit;
fixed_data = data;
order = pool->min_alloc_order;
offset_bit = fixed_data->offset >> order;
if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
return size;
start_bit = bitmap_find_next_zero_area(map, size,
start + offset_bit, nr, 0);
if (start_bit != offset_bit)
start_bit = size;
return start_bit;
}
EXPORT_SYMBOL(gen_pool_fixed_alloc);
/**
* gen_pool_first_fit_order_align - find the first available region
* of memory matching the size requirement. The region will be aligned
* to the order of the size specified.
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
*/
unsigned long gen_pool_first_fit_order_align(unsigned long *map,
unsigned long size, unsigned long start,
unsigned int nr, void *data, struct gen_pool *pool)
{
unsigned long align_mask = roundup_pow_of_two(nr) - 1;
return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
}
EXPORT_SYMBOL(gen_pool_first_fit_order_align);
/**
* gen_pool_best_fit - find the best fitting region of memory
* macthing the size requirement (no alignment constraint)
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @data: additional data - unused
* @pool: pool to find the fit region memory from
*
* Iterate over the bitmap to find the smallest free region
* which we can allocate the memory.
*/
unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
unsigned long start, unsigned int nr, void *data,
struct gen_pool *pool)
{
unsigned long start_bit = size;
unsigned long len = size + 1;
unsigned long index;
index = bitmap_find_next_zero_area(map, size, start, nr, 0);
while (index < size) {
int next_bit = find_next_bit(map, size, index + nr);
if ((next_bit - index) < len) {
len = next_bit - index;
start_bit = index;
if (len == nr)
return start_bit;
}
index = bitmap_find_next_zero_area(map, size,
next_bit + 1, nr, 0);
}
return start_bit;
}
EXPORT_SYMBOL(gen_pool_best_fit);
static void devm_gen_pool_release(struct device *dev, void *res)
{
gen_pool_destroy(*(struct gen_pool **)res);
}
static int devm_gen_pool_match(struct device *dev, void *res, void *data)
{
struct gen_pool **p = res;
/* NULL data matches only a pool without an assigned name */
if (!data && !(*p)->name)
return 1;
if (!data || !(*p)->name)
return 0;
return !strcmp((*p)->name, data);
}
/**
* gen_pool_get - Obtain the gen_pool (if any) for a device
* @dev: device to retrieve the gen_pool from
* @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
*
* Returns the gen_pool for the device if one is present, or NULL.
*/
struct gen_pool *gen_pool_get(struct device *dev, const char *name)
{
struct gen_pool **p;
p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
(void *)name);
if (!p)
return NULL;
return *p;
}
EXPORT_SYMBOL_GPL(gen_pool_get);
/**
* devm_gen_pool_create - managed gen_pool_create
* @dev: device that provides the gen_pool
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
* @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
* @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
*
* Create a new special memory pool that can be used to manage special purpose
* memory not managed by the regular kmalloc/kfree interface. The pool will be
* automatically destroyed by the device management code.
*/
struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
int nid, const char *name)
{
struct gen_pool **ptr, *pool;
const char *pool_name = NULL;
/* Check that genpool to be created is uniquely addressed on device */
if (gen_pool_get(dev, name))
return ERR_PTR(-EINVAL);
if (name) {
pool_name = kstrdup_const(name, GFP_KERNEL);
if (!pool_name)
return ERR_PTR(-ENOMEM);
}
ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
goto free_pool_name;
pool = gen_pool_create(min_alloc_order, nid);
if (!pool)
goto free_devres;
*ptr = pool;
pool->name = pool_name;
devres_add(dev, ptr);
return pool;
free_devres:
devres_free(ptr);
free_pool_name:
kfree_const(pool_name);
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(devm_gen_pool_create);
#ifdef CONFIG_OF
/**
* of_gen_pool_get - find a pool by phandle property
* @np: device node
* @propname: property name containing phandle(s)
* @index: index into the phandle array
*
* Returns the pool that contains the chunk starting at the physical
* address of the device tree node pointed at by the phandle property,
* or NULL if not found.
*/
struct gen_pool *of_gen_pool_get(struct device_node *np,
const char *propname, int index)
{
struct platform_device *pdev;
struct device_node *np_pool, *parent;
const char *name = NULL;
struct gen_pool *pool = NULL;
np_pool = of_parse_phandle(np, propname, index);
if (!np_pool)
return NULL;
pdev = of_find_device_by_node(np_pool);
if (!pdev) {
/* Check if named gen_pool is created by parent node device */
parent = of_get_parent(np_pool);
pdev = of_find_device_by_node(parent);
of_node_put(parent);
of_property_read_string(np_pool, "label", &name);
if (!name)
name = np_pool->name;
}
if (pdev)
pool = gen_pool_get(&pdev->dev, name);
of_node_put(np_pool);
return pool;
}
EXPORT_SYMBOL_GPL(of_gen_pool_get);
#endif /* CONFIG_OF */