mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-05 04:04:01 +08:00
3d9e89bda9
Set WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION into WDT_CLEAR_TIMEOUT_STATUS to clear out boot code source and re-enable access to the primary SPI flash chip while booted via wdt2 from the alternate chip. AST2400 datasheet says: "In the 2nd flash booting mode, all the address mapping to CS0# would be re-directed to CS1#. And CS0# is not accessible under this mode. To access CS0#, firmware should clear the 2nd boot mode register in the WDT2 status register WDT30.bit[1]." Signed-off-by: Ivan Mikhaylov <i.mikhaylov@yadro.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20190828102402.13155-4-i.mikhaylov@yadro.com Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Wim Van Sebroeck <wim@linux-watchdog.org>
402 lines
11 KiB
C
402 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2016 IBM Corporation
|
|
*
|
|
* Joel Stanley <joel@jms.id.au>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/watchdog.h>
|
|
|
|
struct aspeed_wdt {
|
|
struct watchdog_device wdd;
|
|
void __iomem *base;
|
|
u32 ctrl;
|
|
};
|
|
|
|
struct aspeed_wdt_config {
|
|
u32 ext_pulse_width_mask;
|
|
};
|
|
|
|
static const struct aspeed_wdt_config ast2400_config = {
|
|
.ext_pulse_width_mask = 0xff,
|
|
};
|
|
|
|
static const struct aspeed_wdt_config ast2500_config = {
|
|
.ext_pulse_width_mask = 0xfffff,
|
|
};
|
|
|
|
static const struct of_device_id aspeed_wdt_of_table[] = {
|
|
{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
|
|
{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
|
|
{ .compatible = "aspeed,ast2600-wdt", .data = &ast2500_config },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
|
|
|
|
#define WDT_STATUS 0x00
|
|
#define WDT_RELOAD_VALUE 0x04
|
|
#define WDT_RESTART 0x08
|
|
#define WDT_CTRL 0x0C
|
|
#define WDT_CTRL_BOOT_SECONDARY BIT(7)
|
|
#define WDT_CTRL_RESET_MODE_SOC (0x00 << 5)
|
|
#define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
|
|
#define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5)
|
|
#define WDT_CTRL_1MHZ_CLK BIT(4)
|
|
#define WDT_CTRL_WDT_EXT BIT(3)
|
|
#define WDT_CTRL_WDT_INTR BIT(2)
|
|
#define WDT_CTRL_RESET_SYSTEM BIT(1)
|
|
#define WDT_CTRL_ENABLE BIT(0)
|
|
#define WDT_TIMEOUT_STATUS 0x10
|
|
#define WDT_TIMEOUT_STATUS_BOOT_SECONDARY BIT(1)
|
|
#define WDT_CLEAR_TIMEOUT_STATUS 0x14
|
|
#define WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION BIT(0)
|
|
|
|
/*
|
|
* WDT_RESET_WIDTH controls the characteristics of the external pulse (if
|
|
* enabled), specifically:
|
|
*
|
|
* * Pulse duration
|
|
* * Drive mode: push-pull vs open-drain
|
|
* * Polarity: Active high or active low
|
|
*
|
|
* Pulse duration configuration is available on both the AST2400 and AST2500,
|
|
* though the field changes between SoCs:
|
|
*
|
|
* AST2400: Bits 7:0
|
|
* AST2500: Bits 19:0
|
|
*
|
|
* This difference is captured in struct aspeed_wdt_config.
|
|
*
|
|
* The AST2500 exposes the drive mode and polarity options, but not in a
|
|
* regular fashion. For read purposes, bit 31 represents active high or low,
|
|
* and bit 30 represents push-pull or open-drain. With respect to write, magic
|
|
* values need to be written to the top byte to change the state of the drive
|
|
* mode and polarity bits. Any other value written to the top byte has no
|
|
* effect on the state of the drive mode or polarity bits. However, the pulse
|
|
* width value must be preserved (as desired) if written.
|
|
*/
|
|
#define WDT_RESET_WIDTH 0x18
|
|
#define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31)
|
|
#define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24)
|
|
#define WDT_ACTIVE_LOW_MAGIC (0x5A << 24)
|
|
#define WDT_RESET_WIDTH_PUSH_PULL BIT(30)
|
|
#define WDT_PUSH_PULL_MAGIC (0xA8 << 24)
|
|
#define WDT_OPEN_DRAIN_MAGIC (0x8A << 24)
|
|
|
|
#define WDT_RESTART_MAGIC 0x4755
|
|
|
|
/* 32 bits at 1MHz, in milliseconds */
|
|
#define WDT_MAX_TIMEOUT_MS 4294967
|
|
#define WDT_DEFAULT_TIMEOUT 30
|
|
#define WDT_RATE_1MHZ 1000000
|
|
|
|
static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
|
|
{
|
|
return container_of(wdd, struct aspeed_wdt, wdd);
|
|
}
|
|
|
|
static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
|
|
{
|
|
wdt->ctrl |= WDT_CTRL_ENABLE;
|
|
|
|
writel(0, wdt->base + WDT_CTRL);
|
|
writel(count, wdt->base + WDT_RELOAD_VALUE);
|
|
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
|
|
writel(wdt->ctrl, wdt->base + WDT_CTRL);
|
|
}
|
|
|
|
static int aspeed_wdt_start(struct watchdog_device *wdd)
|
|
{
|
|
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
|
|
|
|
aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aspeed_wdt_stop(struct watchdog_device *wdd)
|
|
{
|
|
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
|
|
|
|
wdt->ctrl &= ~WDT_CTRL_ENABLE;
|
|
writel(wdt->ctrl, wdt->base + WDT_CTRL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aspeed_wdt_ping(struct watchdog_device *wdd)
|
|
{
|
|
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
|
|
|
|
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
|
|
unsigned int timeout)
|
|
{
|
|
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
|
|
u32 actual;
|
|
|
|
wdd->timeout = timeout;
|
|
|
|
actual = min(timeout, wdd->max_hw_heartbeat_ms * 1000);
|
|
|
|
writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
|
|
writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aspeed_wdt_restart(struct watchdog_device *wdd,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
|
|
|
|
wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
|
|
aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
|
|
|
|
mdelay(1000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* access_cs0 shows if cs0 is accessible, hence the reverted bit */
|
|
static ssize_t access_cs0_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct aspeed_wdt *wdt = dev_get_drvdata(dev);
|
|
u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
|
|
|
|
return sprintf(buf, "%u\n",
|
|
!(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
|
|
}
|
|
|
|
static ssize_t access_cs0_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t size)
|
|
{
|
|
struct aspeed_wdt *wdt = dev_get_drvdata(dev);
|
|
unsigned long val;
|
|
|
|
if (kstrtoul(buf, 10, &val))
|
|
return -EINVAL;
|
|
|
|
if (val)
|
|
writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
|
|
wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* This attribute exists only if the system has booted from the alternate
|
|
* flash with 'alt-boot' option.
|
|
*
|
|
* At alternate flash the 'access_cs0' sysfs node provides:
|
|
* ast2400: a way to get access to the primary SPI flash chip at CS0
|
|
* after booting from the alternate chip at CS1.
|
|
* ast2500: a way to restore the normal address mapping from
|
|
* (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
|
|
*
|
|
* Clearing the boot code selection and timeout counter also resets to the
|
|
* initial state the chip select line mapping. When the SoC is in normal
|
|
* mapping state (i.e. booted from CS0), clearing those bits does nothing for
|
|
* both versions of the SoC. For alternate boot mode (booted from CS1 due to
|
|
* wdt2 expiration) the behavior differs as described above.
|
|
*
|
|
* This option can be used with wdt2 (watchdog1) only.
|
|
*/
|
|
static DEVICE_ATTR_RW(access_cs0);
|
|
|
|
static struct attribute *bswitch_attrs[] = {
|
|
&dev_attr_access_cs0.attr,
|
|
NULL
|
|
};
|
|
ATTRIBUTE_GROUPS(bswitch);
|
|
|
|
static const struct watchdog_ops aspeed_wdt_ops = {
|
|
.start = aspeed_wdt_start,
|
|
.stop = aspeed_wdt_stop,
|
|
.ping = aspeed_wdt_ping,
|
|
.set_timeout = aspeed_wdt_set_timeout,
|
|
.restart = aspeed_wdt_restart,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static const struct watchdog_info aspeed_wdt_info = {
|
|
.options = WDIOF_KEEPALIVEPING
|
|
| WDIOF_MAGICCLOSE
|
|
| WDIOF_SETTIMEOUT,
|
|
.identity = KBUILD_MODNAME,
|
|
};
|
|
|
|
static int aspeed_wdt_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
const struct aspeed_wdt_config *config;
|
|
const struct of_device_id *ofdid;
|
|
struct aspeed_wdt *wdt;
|
|
struct device_node *np;
|
|
const char *reset_type;
|
|
u32 duration;
|
|
u32 status;
|
|
int ret;
|
|
|
|
wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
|
|
if (!wdt)
|
|
return -ENOMEM;
|
|
|
|
wdt->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(wdt->base))
|
|
return PTR_ERR(wdt->base);
|
|
|
|
/*
|
|
* The ast2400 wdt can run at PCLK, or 1MHz. The ast2500 only
|
|
* runs at 1MHz. We chose to always run at 1MHz, as there's no
|
|
* good reason to have a faster watchdog counter.
|
|
*/
|
|
wdt->wdd.info = &aspeed_wdt_info;
|
|
wdt->wdd.ops = &aspeed_wdt_ops;
|
|
wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
|
|
wdt->wdd.parent = dev;
|
|
|
|
wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
|
|
watchdog_init_timeout(&wdt->wdd, 0, dev);
|
|
|
|
np = dev->of_node;
|
|
|
|
ofdid = of_match_node(aspeed_wdt_of_table, np);
|
|
if (!ofdid)
|
|
return -EINVAL;
|
|
config = ofdid->data;
|
|
|
|
wdt->ctrl = WDT_CTRL_1MHZ_CLK;
|
|
|
|
/*
|
|
* Control reset on a per-device basis to ensure the
|
|
* host is not affected by a BMC reboot
|
|
*/
|
|
ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
|
|
if (ret) {
|
|
wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
|
|
} else {
|
|
if (!strcmp(reset_type, "cpu"))
|
|
wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
|
|
WDT_CTRL_RESET_SYSTEM;
|
|
else if (!strcmp(reset_type, "soc"))
|
|
wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
|
|
WDT_CTRL_RESET_SYSTEM;
|
|
else if (!strcmp(reset_type, "system"))
|
|
wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
|
|
WDT_CTRL_RESET_SYSTEM;
|
|
else if (strcmp(reset_type, "none"))
|
|
return -EINVAL;
|
|
}
|
|
if (of_property_read_bool(np, "aspeed,external-signal"))
|
|
wdt->ctrl |= WDT_CTRL_WDT_EXT;
|
|
if (of_property_read_bool(np, "aspeed,alt-boot"))
|
|
wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
|
|
|
|
if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) {
|
|
/*
|
|
* The watchdog is running, but invoke aspeed_wdt_start() to
|
|
* write wdt->ctrl to WDT_CTRL to ensure the watchdog's
|
|
* configuration conforms to the driver's expectations.
|
|
* Primarily, ensure we're using the 1MHz clock source.
|
|
*/
|
|
aspeed_wdt_start(&wdt->wdd);
|
|
set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
|
|
}
|
|
|
|
if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
|
|
(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
|
|
u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
|
|
|
|
reg &= config->ext_pulse_width_mask;
|
|
if (of_property_read_bool(np, "aspeed,ext-push-pull"))
|
|
reg |= WDT_PUSH_PULL_MAGIC;
|
|
else
|
|
reg |= WDT_OPEN_DRAIN_MAGIC;
|
|
|
|
writel(reg, wdt->base + WDT_RESET_WIDTH);
|
|
|
|
reg &= config->ext_pulse_width_mask;
|
|
if (of_property_read_bool(np, "aspeed,ext-active-high"))
|
|
reg |= WDT_ACTIVE_HIGH_MAGIC;
|
|
else
|
|
reg |= WDT_ACTIVE_LOW_MAGIC;
|
|
|
|
writel(reg, wdt->base + WDT_RESET_WIDTH);
|
|
}
|
|
|
|
if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
|
|
u32 max_duration = config->ext_pulse_width_mask + 1;
|
|
|
|
if (duration == 0 || duration > max_duration) {
|
|
dev_err(dev, "Invalid pulse duration: %uus\n",
|
|
duration);
|
|
duration = max(1U, min(max_duration, duration));
|
|
dev_info(dev, "Pulse duration set to %uus\n",
|
|
duration);
|
|
}
|
|
|
|
/*
|
|
* The watchdog is always configured with a 1MHz source, so
|
|
* there is no need to scale the microsecond value. However we
|
|
* need to offset it - from the datasheet:
|
|
*
|
|
* "This register decides the asserting duration of wdt_ext and
|
|
* wdt_rstarm signal. The default value is 0xFF. It means the
|
|
* default asserting duration of wdt_ext and wdt_rstarm is
|
|
* 256us."
|
|
*
|
|
* This implies a value of 0 gives a 1us pulse.
|
|
*/
|
|
writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
|
|
}
|
|
|
|
status = readl(wdt->base + WDT_TIMEOUT_STATUS);
|
|
if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
|
|
wdt->wdd.bootstatus = WDIOF_CARDRESET;
|
|
|
|
if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
|
|
of_device_is_compatible(np, "aspeed,ast2500-wdt"))
|
|
wdt->wdd.groups = bswitch_groups;
|
|
}
|
|
|
|
dev_set_drvdata(dev, wdt);
|
|
|
|
return devm_watchdog_register_device(dev, &wdt->wdd);
|
|
}
|
|
|
|
static struct platform_driver aspeed_watchdog_driver = {
|
|
.probe = aspeed_wdt_probe,
|
|
.driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.of_match_table = of_match_ptr(aspeed_wdt_of_table),
|
|
},
|
|
};
|
|
|
|
static int __init aspeed_wdt_init(void)
|
|
{
|
|
return platform_driver_register(&aspeed_watchdog_driver);
|
|
}
|
|
arch_initcall(aspeed_wdt_init);
|
|
|
|
static void __exit aspeed_wdt_exit(void)
|
|
{
|
|
platform_driver_unregister(&aspeed_watchdog_driver);
|
|
}
|
|
module_exit(aspeed_wdt_exit);
|
|
|
|
MODULE_DESCRIPTION("Aspeed Watchdog Driver");
|
|
MODULE_LICENSE("GPL");
|