2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/drivers/misc/sgi-gru/grukservices.c
Jack Steiner 9ca8e40c13 GRU Driver V3: fixes to resolve code review comments
Fixes problems identified in a code review:
	- add comment with high level dscription of the GRU
	- prepend "gru_" to all global names
	- delete unused function
	- couple of trivial bug fixes

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-30 09:41:48 -07:00

680 lines
17 KiB
C

/*
* SN Platform GRU Driver
*
* KERNEL SERVICES THAT USE THE GRU
*
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/proc_fs.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include "gru.h"
#include "grulib.h"
#include "grutables.h"
#include "grukservices.h"
#include "gru_instructions.h"
#include <asm/uv/uv_hub.h>
/*
* Kernel GRU Usage
*
* The following is an interim algorithm for management of kernel GRU
* resources. This will likely be replaced when we better understand the
* kernel/user requirements.
*
* At boot time, the kernel permanently reserves a fixed number of
* CBRs/DSRs for each cpu to use. The resources are all taken from
* the GRU chiplet 1 on the blade. This leaves the full set of resources
* of chiplet 0 available to be allocated to a single user.
*/
/* Blade percpu resources PERMANENTLY reserved for kernel use */
#define GRU_NUM_KERNEL_CBR 1
#define GRU_NUM_KERNEL_DSR_BYTES 256
#define KERNEL_CTXNUM 15
/* GRU instruction attributes for all instructions */
#define IMA IMA_CB_DELAY
/* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
#define __gru_cacheline_aligned__ \
__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
#define MAGIC 0x1234567887654321UL
/* Default retry count for GRU errors on kernel instructions */
#define EXCEPTION_RETRY_LIMIT 3
/* Status of message queue sections */
#define MQS_EMPTY 0
#define MQS_FULL 1
#define MQS_NOOP 2
/*----------------- RESOURCE MANAGEMENT -------------------------------------*/
/* optimized for x86_64 */
struct message_queue {
union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
int qlines; /* DW 1 */
long hstatus[2];
void *next __gru_cacheline_aligned__;/* CL 1 */
void *limit;
void *start;
void *start2;
char data ____cacheline_aligned; /* CL 2 */
};
/* First word in every message - used by mesq interface */
struct message_header {
char present;
char present2;
char lines;
char fill;
};
#define QLINES(mq) ((mq) + offsetof(struct message_queue, qlines))
#define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
{
struct gru_blade_state *bs;
int lcpu;
BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
preempt_disable();
bs = gru_base[uv_numa_blade_id()];
lcpu = uv_blade_processor_id();
*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
return 0;
}
static void gru_free_cpu_resources(void *cb, void *dsr)
{
preempt_enable();
}
int gru_get_cb_exception_detail(void *cb,
struct control_block_extended_exc_detail *excdet)
{
struct gru_control_block_extended *cbe;
cbe = get_cbe(GRUBASE(cb), get_cb_number(cb));
excdet->opc = cbe->opccpy;
excdet->exopc = cbe->exopccpy;
excdet->ecause = cbe->ecause;
excdet->exceptdet0 = cbe->idef1upd;
excdet->exceptdet1 = cbe->idef3upd;
return 0;
}
char *gru_get_cb_exception_detail_str(int ret, void *cb,
char *buf, int size)
{
struct gru_control_block_status *gen = (void *)cb;
struct control_block_extended_exc_detail excdet;
if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
gru_get_cb_exception_detail(cb, &excdet);
snprintf(buf, size,
"GRU exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
"excdet0 0x%lx, excdet1 0x%x",
gen, excdet.opc, excdet.exopc, excdet.ecause,
excdet.exceptdet0, excdet.exceptdet1);
} else {
snprintf(buf, size, "No exception");
}
return buf;
}
static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
{
while (gen->istatus >= CBS_ACTIVE) {
cpu_relax();
barrier();
}
return gen->istatus;
}
static int gru_retry_exception(void *cb)
{
struct gru_control_block_status *gen = (void *)cb;
struct control_block_extended_exc_detail excdet;
int retry = EXCEPTION_RETRY_LIMIT;
while (1) {
if (gru_get_cb_message_queue_substatus(cb))
break;
if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
return CBS_IDLE;
gru_get_cb_exception_detail(cb, &excdet);
if (excdet.ecause & ~EXCEPTION_RETRY_BITS)
break;
if (retry-- == 0)
break;
gen->icmd = 1;
gru_flush_cache(gen);
}
return CBS_EXCEPTION;
}
int gru_check_status_proc(void *cb)
{
struct gru_control_block_status *gen = (void *)cb;
int ret;
ret = gen->istatus;
if (ret != CBS_EXCEPTION)
return ret;
return gru_retry_exception(cb);
}
int gru_wait_proc(void *cb)
{
struct gru_control_block_status *gen = (void *)cb;
int ret;
ret = gru_wait_idle_or_exception(gen);
if (ret == CBS_EXCEPTION)
ret = gru_retry_exception(cb);
return ret;
}
void gru_abort(int ret, void *cb, char *str)
{
char buf[GRU_EXC_STR_SIZE];
panic("GRU FATAL ERROR: %s - %s\n", str,
gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
}
void gru_wait_abort_proc(void *cb)
{
int ret;
ret = gru_wait_proc(cb);
if (ret)
gru_abort(ret, cb, "gru_wait_abort");
}
/*------------------------------ MESSAGE QUEUES -----------------------------*/
/* Internal status . These are NOT returned to the user. */
#define MQIE_AGAIN -1 /* try again */
/*
* Save/restore the "present" flag that is in the second line of 2-line
* messages
*/
static inline int get_present2(void *p)
{
struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
return mhdr->present;
}
static inline void restore_present2(void *p, int val)
{
struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
mhdr->present = val;
}
/*
* Create a message queue.
* qlines - message queue size in cache lines. Includes 2-line header.
*/
int gru_create_message_queue(void *p, unsigned int bytes)
{
struct message_queue *mq = p;
unsigned int qlines;
qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
memset(mq, 0, bytes);
mq->start = &mq->data;
mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
mq->next = &mq->data;
mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
mq->qlines = qlines;
mq->hstatus[0] = 0;
mq->hstatus[1] = 1;
mq->head = gru_mesq_head(2, qlines / 2 + 1);
return 0;
}
EXPORT_SYMBOL_GPL(gru_create_message_queue);
/*
* Send a NOOP message to a message queue
* Returns:
* 0 - if queue is full after the send. This is the normal case
* but various races can change this.
* -1 - if mesq sent successfully but queue not full
* >0 - unexpected error. MQE_xxx returned
*/
static int send_noop_message(void *cb,
unsigned long mq, void *mesg)
{
const struct message_header noop_header = {
.present = MQS_NOOP, .lines = 1};
unsigned long m;
int substatus, ret;
struct message_header save_mhdr, *mhdr = mesg;
STAT(mesq_noop);
save_mhdr = *mhdr;
*mhdr = noop_header;
gru_mesq(cb, mq, gru_get_tri(mhdr), 1, IMA);
ret = gru_wait(cb);
if (ret) {
substatus = gru_get_cb_message_queue_substatus(cb);
switch (substatus) {
case CBSS_NO_ERROR:
STAT(mesq_noop_unexpected_error);
ret = MQE_UNEXPECTED_CB_ERR;
break;
case CBSS_LB_OVERFLOWED:
STAT(mesq_noop_lb_overflow);
ret = MQE_CONGESTION;
break;
case CBSS_QLIMIT_REACHED:
STAT(mesq_noop_qlimit_reached);
ret = 0;
break;
case CBSS_AMO_NACKED:
STAT(mesq_noop_amo_nacked);
ret = MQE_CONGESTION;
break;
case CBSS_PUT_NACKED:
STAT(mesq_noop_put_nacked);
m = mq + (gru_get_amo_value_head(cb) << 6);
gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
IMA);
if (gru_wait(cb) == CBS_IDLE)
ret = MQIE_AGAIN;
else
ret = MQE_UNEXPECTED_CB_ERR;
break;
case CBSS_PAGE_OVERFLOW:
default:
BUG();
}
}
*mhdr = save_mhdr;
return ret;
}
/*
* Handle a gru_mesq full.
*/
static int send_message_queue_full(void *cb,
unsigned long mq, void *mesg, int lines)
{
union gru_mesqhead mqh;
unsigned int limit, head;
unsigned long avalue;
int half, qlines, save;
/* Determine if switching to first/second half of q */
avalue = gru_get_amo_value(cb);
head = gru_get_amo_value_head(cb);
limit = gru_get_amo_value_limit(cb);
/*
* Fetch "qlines" from the queue header. Since the queue may be
* in memory that can't be accessed using socket addresses, use
* the GRU to access the data. Use DSR space from the message.
*/
save = *(int *)mesg;
gru_vload(cb, QLINES(mq), gru_get_tri(mesg), XTYPE_W, 1, 1, IMA);
if (gru_wait(cb) != CBS_IDLE)
goto cberr;
qlines = *(int *)mesg;
*(int *)mesg = save;
half = (limit != qlines);
if (half)
mqh = gru_mesq_head(qlines / 2 + 1, qlines);
else
mqh = gru_mesq_head(2, qlines / 2 + 1);
/* Try to get lock for switching head pointer */
gru_gamir(cb, EOP_IR_CLR, HSTATUS(mq, half), XTYPE_DW, IMA);
if (gru_wait(cb) != CBS_IDLE)
goto cberr;
if (!gru_get_amo_value(cb)) {
STAT(mesq_qf_locked);
return MQE_QUEUE_FULL;
}
/* Got the lock. Send optional NOP if queue not full, */
if (head != limit) {
if (send_noop_message(cb, mq, mesg)) {
gru_gamir(cb, EOP_IR_INC, HSTATUS(mq, half),
XTYPE_DW, IMA);
if (gru_wait(cb) != CBS_IDLE)
goto cberr;
STAT(mesq_qf_noop_not_full);
return MQIE_AGAIN;
}
avalue++;
}
/* Then flip queuehead to other half of queue. */
gru_gamer(cb, EOP_ERR_CSWAP, mq, XTYPE_DW, mqh.val, avalue, IMA);
if (gru_wait(cb) != CBS_IDLE)
goto cberr;
/* If not successfully in swapping queue head, clear the hstatus lock */
if (gru_get_amo_value(cb) != avalue) {
STAT(mesq_qf_switch_head_failed);
gru_gamir(cb, EOP_IR_INC, HSTATUS(mq, half), XTYPE_DW, IMA);
if (gru_wait(cb) != CBS_IDLE)
goto cberr;
}
return MQIE_AGAIN;
cberr:
STAT(mesq_qf_unexpected_error);
return MQE_UNEXPECTED_CB_ERR;
}
/*
* Handle a gru_mesq failure. Some of these failures are software recoverable
* or retryable.
*/
static int send_message_failure(void *cb,
unsigned long mq,
void *mesg,
int lines)
{
int substatus, ret = 0;
unsigned long m;
substatus = gru_get_cb_message_queue_substatus(cb);
switch (substatus) {
case CBSS_NO_ERROR:
STAT(mesq_send_unexpected_error);
ret = MQE_UNEXPECTED_CB_ERR;
break;
case CBSS_LB_OVERFLOWED:
STAT(mesq_send_lb_overflow);
ret = MQE_CONGESTION;
break;
case CBSS_QLIMIT_REACHED:
STAT(mesq_send_qlimit_reached);
ret = send_message_queue_full(cb, mq, mesg, lines);
break;
case CBSS_AMO_NACKED:
STAT(mesq_send_amo_nacked);
ret = MQE_CONGESTION;
break;
case CBSS_PUT_NACKED:
STAT(mesq_send_put_nacked);
m =mq + (gru_get_amo_value_head(cb) << 6);
gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
if (gru_wait(cb) == CBS_IDLE)
ret = MQE_OK;
else
ret = MQE_UNEXPECTED_CB_ERR;
break;
default:
BUG();
}
return ret;
}
/*
* Send a message to a message queue
* cb GRU control block to use to send message
* mq message queue
* mesg message. ust be vaddr within a GSEG
* bytes message size (<= 2 CL)
*/
int gru_send_message_gpa(unsigned long mq, void *mesg, unsigned int bytes)
{
struct message_header *mhdr;
void *cb;
void *dsr;
int istatus, clines, ret;
STAT(mesq_send);
BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
clines = (bytes + GRU_CACHE_LINE_BYTES - 1) / GRU_CACHE_LINE_BYTES;
if (gru_get_cpu_resources(bytes, &cb, &dsr))
return MQE_BUG_NO_RESOURCES;
memcpy(dsr, mesg, bytes);
mhdr = dsr;
mhdr->present = MQS_FULL;
mhdr->lines = clines;
if (clines == 2) {
mhdr->present2 = get_present2(mhdr);
restore_present2(mhdr, MQS_FULL);
}
do {
ret = MQE_OK;
gru_mesq(cb, mq, gru_get_tri(mhdr), clines, IMA);
istatus = gru_wait(cb);
if (istatus != CBS_IDLE)
ret = send_message_failure(cb, mq, dsr, clines);
} while (ret == MQIE_AGAIN);
gru_free_cpu_resources(cb, dsr);
if (ret)
STAT(mesq_send_failed);
return ret;
}
EXPORT_SYMBOL_GPL(gru_send_message_gpa);
/*
* Advance the receive pointer for the queue to the next message.
*/
void gru_free_message(void *rmq, void *mesg)
{
struct message_queue *mq = rmq;
struct message_header *mhdr = mq->next;
void *next, *pnext;
int half = -1;
int lines = mhdr->lines;
if (lines == 2)
restore_present2(mhdr, MQS_EMPTY);
mhdr->present = MQS_EMPTY;
pnext = mq->next;
next = pnext + GRU_CACHE_LINE_BYTES * lines;
if (next == mq->limit) {
next = mq->start;
half = 1;
} else if (pnext < mq->start2 && next >= mq->start2) {
half = 0;
}
if (half >= 0)
mq->hstatus[half] = 1;
mq->next = next;
}
EXPORT_SYMBOL_GPL(gru_free_message);
/*
* Get next message from message queue. Return NULL if no message
* present. User must call next_message() to move to next message.
* rmq message queue
*/
void *gru_get_next_message(void *rmq)
{
struct message_queue *mq = rmq;
struct message_header *mhdr = mq->next;
int present = mhdr->present;
/* skip NOOP messages */
STAT(mesq_receive);
while (present == MQS_NOOP) {
gru_free_message(rmq, mhdr);
mhdr = mq->next;
present = mhdr->present;
}
/* Wait for both halves of 2 line messages */
if (present == MQS_FULL && mhdr->lines == 2 &&
get_present2(mhdr) == MQS_EMPTY)
present = MQS_EMPTY;
if (!present) {
STAT(mesq_receive_none);
return NULL;
}
if (mhdr->lines == 2)
restore_present2(mhdr, mhdr->present2);
return mhdr;
}
EXPORT_SYMBOL_GPL(gru_get_next_message);
/* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
/*
* Copy a block of data using the GRU resources
*/
int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
unsigned int bytes)
{
void *cb;
void *dsr;
int ret;
STAT(copy_gpa);
if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
return MQE_BUG_NO_RESOURCES;
gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_BYTES, IMA);
ret = gru_wait(cb);
gru_free_cpu_resources(cb, dsr);
return ret;
}
EXPORT_SYMBOL_GPL(gru_copy_gpa);
/* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
/* Temp - will delete after we gain confidence in the GRU */
static __cacheline_aligned unsigned long word0;
static __cacheline_aligned unsigned long word1;
static int quicktest(struct gru_state *gru)
{
void *cb;
void *ds;
unsigned long *p;
cb = get_gseg_base_address_cb(gru->gs_gru_base_vaddr, KERNEL_CTXNUM, 0);
ds = get_gseg_base_address_ds(gru->gs_gru_base_vaddr, KERNEL_CTXNUM, 0);
p = ds;
word0 = MAGIC;
gru_vload(cb, uv_gpa(&word0), 0, XTYPE_DW, 1, 1, IMA);
if (gru_wait(cb) != CBS_IDLE)
BUG();
if (*(unsigned long *)ds != MAGIC)
BUG();
gru_vstore(cb, uv_gpa(&word1), 0, XTYPE_DW, 1, 1, IMA);
if (gru_wait(cb) != CBS_IDLE)
BUG();
if (word0 != word1 || word0 != MAGIC) {
printk
("GRU quicktest err: gru %d, found 0x%lx, expected 0x%lx\n",
gru->gs_gid, word1, MAGIC);
BUG(); /* ZZZ should not be fatal */
}
return 0;
}
int gru_kservices_init(struct gru_state *gru)
{
struct gru_blade_state *bs;
struct gru_context_configuration_handle *cch;
unsigned long cbr_map, dsr_map;
int err, num, cpus_possible;
/*
* Currently, resources are reserved ONLY on the second chiplet
* on each blade. This leaves ALL resources on chiplet 0 available
* for user code.
*/
bs = gru->gs_blade;
if (gru != &bs->bs_grus[1])
return 0;
cpus_possible = uv_blade_nr_possible_cpus(gru->gs_blade_id);
num = GRU_NUM_KERNEL_CBR * cpus_possible;
cbr_map = gru_reserve_cb_resources(gru, GRU_CB_COUNT_TO_AU(num), NULL);
gru->gs_reserved_cbrs += num;
num = GRU_NUM_KERNEL_DSR_BYTES * cpus_possible;
dsr_map = gru_reserve_ds_resources(gru, GRU_DS_BYTES_TO_AU(num), NULL);
gru->gs_reserved_dsr_bytes += num;
gru->gs_active_contexts++;
__set_bit(KERNEL_CTXNUM, &gru->gs_context_map);
cch = get_cch(gru->gs_gru_base_vaddr, KERNEL_CTXNUM);
bs->kernel_cb = get_gseg_base_address_cb(gru->gs_gru_base_vaddr,
KERNEL_CTXNUM, 0);
bs->kernel_dsr = get_gseg_base_address_ds(gru->gs_gru_base_vaddr,
KERNEL_CTXNUM, 0);
lock_cch_handle(cch);
cch->tfm_fault_bit_enable = 0;
cch->tlb_int_enable = 0;
cch->tfm_done_bit_enable = 0;
cch->unmap_enable = 1;
err = cch_allocate(cch, 0, cbr_map, dsr_map);
if (err) {
gru_dbg(grudev,
"Unable to allocate kernel CCH: gru %d, err %d\n",
gru->gs_gid, err);
BUG();
}
if (cch_start(cch)) {
gru_dbg(grudev, "Unable to start kernel CCH: gru %d, err %d\n",
gru->gs_gid, err);
BUG();
}
unlock_cch_handle(cch);
if (gru_options & GRU_QUICKLOOK)
quicktest(gru);
return 0;
}