2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 04:24:02 +08:00
linux-next/fs/jfs/jfs_dtree.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

4568 lines
100 KiB
C

/*
* Copyright (C) International Business Machines Corp., 2000-2004
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* jfs_dtree.c: directory B+-tree manager
*
* B+-tree with variable length key directory:
*
* each directory page is structured as an array of 32-byte
* directory entry slots initialized as a freelist
* to avoid search/compaction of free space at insertion.
* when an entry is inserted, a number of slots are allocated
* from the freelist as required to store variable length data
* of the entry; when the entry is deleted, slots of the entry
* are returned to freelist.
*
* leaf entry stores full name as key and file serial number
* (aka inode number) as data.
* internal/router entry stores sufffix compressed name
* as key and simple extent descriptor as data.
*
* each directory page maintains a sorted entry index table
* which stores the start slot index of sorted entries
* to allow binary search on the table.
*
* directory starts as a root/leaf page in on-disk inode
* inline data area.
* when it becomes full, it starts a leaf of a external extent
* of length of 1 block. each time the first leaf becomes full,
* it is extended rather than split (its size is doubled),
* until its length becoms 4 KBytes, from then the extent is split
* with new 4 Kbyte extent when it becomes full
* to reduce external fragmentation of small directories.
*
* blah, blah, blah, for linear scan of directory in pieces by
* readdir().
*
*
* case-insensitive directory file system
*
* names are stored in case-sensitive way in leaf entry.
* but stored, searched and compared in case-insensitive (uppercase) order
* (i.e., both search key and entry key are folded for search/compare):
* (note that case-sensitive order is BROKEN in storage, e.g.,
* sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
*
* entries which folds to the same key makes up a equivalent class
* whose members are stored as contiguous cluster (may cross page boundary)
* but whose order is arbitrary and acts as duplicate, e.g.,
* abc, Abc, aBc, abC)
*
* once match is found at leaf, requires scan forward/backward
* either for, in case-insensitive search, duplicate
* or for, in case-sensitive search, for exact match
*
* router entry must be created/stored in case-insensitive way
* in internal entry:
* (right most key of left page and left most key of right page
* are folded, and its suffix compression is propagated as router
* key in parent)
* (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
* should be made the router key for the split)
*
* case-insensitive search:
*
* fold search key;
*
* case-insensitive search of B-tree:
* for internal entry, router key is already folded;
* for leaf entry, fold the entry key before comparison.
*
* if (leaf entry case-insensitive match found)
* if (next entry satisfies case-insensitive match)
* return EDUPLICATE;
* if (prev entry satisfies case-insensitive match)
* return EDUPLICATE;
* return match;
* else
* return no match;
*
* serialization:
* target directory inode lock is being held on entry/exit
* of all main directory service routines.
*
* log based recovery:
*/
#include <linux/fs.h>
#include <linux/quotaops.h>
#include <linux/slab.h>
#include "jfs_incore.h"
#include "jfs_superblock.h"
#include "jfs_filsys.h"
#include "jfs_metapage.h"
#include "jfs_dmap.h"
#include "jfs_unicode.h"
#include "jfs_debug.h"
/* dtree split parameter */
struct dtsplit {
struct metapage *mp;
s16 index;
s16 nslot;
struct component_name *key;
ddata_t *data;
struct pxdlist *pxdlist;
};
#define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
/* get page buffer for specified block address */
#define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
{\
BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
if (!(RC))\
{\
if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
{\
BT_PUTPAGE(MP);\
jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
MP = NULL;\
RC = -EIO;\
}\
}\
}
/* for consistency */
#define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
#define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
/*
* forward references
*/
static int dtSplitUp(tid_t tid, struct inode *ip,
struct dtsplit * split, struct btstack * btstack);
static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
static int dtExtendPage(tid_t tid, struct inode *ip,
struct dtsplit * split, struct btstack * btstack);
static int dtSplitRoot(tid_t tid, struct inode *ip,
struct dtsplit * split, struct metapage ** rmpp);
static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
dtpage_t * fp, struct btstack * btstack);
static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
static int dtReadFirst(struct inode *ip, struct btstack * btstack);
static int dtReadNext(struct inode *ip,
loff_t * offset, struct btstack * btstack);
static int dtCompare(struct component_name * key, dtpage_t * p, int si);
static int ciCompare(struct component_name * key, dtpage_t * p, int si,
int flag);
static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
int flag);
static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
int ri, struct component_name * key, int flag);
static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
ddata_t * data, struct dt_lock **);
static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
int do_index);
static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
#define ciToUpper(c) UniStrupr((c)->name)
/*
* read_index_page()
*
* Reads a page of a directory's index table.
* Having metadata mapped into the directory inode's address space
* presents a multitude of problems. We avoid this by mapping to
* the absolute address space outside of the *_metapage routines
*/
static struct metapage *read_index_page(struct inode *inode, s64 blkno)
{
int rc;
s64 xaddr;
int xflag;
s32 xlen;
rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
if (rc || (xaddr == 0))
return NULL;
return read_metapage(inode, xaddr, PSIZE, 1);
}
/*
* get_index_page()
*
* Same as get_index_page(), but get's a new page without reading
*/
static struct metapage *get_index_page(struct inode *inode, s64 blkno)
{
int rc;
s64 xaddr;
int xflag;
s32 xlen;
rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
if (rc || (xaddr == 0))
return NULL;
return get_metapage(inode, xaddr, PSIZE, 1);
}
/*
* find_index()
*
* Returns dtree page containing directory table entry for specified
* index and pointer to its entry.
*
* mp must be released by caller.
*/
static struct dir_table_slot *find_index(struct inode *ip, u32 index,
struct metapage ** mp, s64 *lblock)
{
struct jfs_inode_info *jfs_ip = JFS_IP(ip);
s64 blkno;
s64 offset;
int page_offset;
struct dir_table_slot *slot;
static int maxWarnings = 10;
if (index < 2) {
if (maxWarnings) {
jfs_warn("find_entry called with index = %d", index);
maxWarnings--;
}
return NULL;
}
if (index >= jfs_ip->next_index) {
jfs_warn("find_entry called with index >= next_index");
return NULL;
}
if (jfs_dirtable_inline(ip)) {
/*
* Inline directory table
*/
*mp = NULL;
slot = &jfs_ip->i_dirtable[index - 2];
} else {
offset = (index - 2) * sizeof(struct dir_table_slot);
page_offset = offset & (PSIZE - 1);
blkno = ((offset + 1) >> L2PSIZE) <<
JFS_SBI(ip->i_sb)->l2nbperpage;
if (*mp && (*lblock != blkno)) {
release_metapage(*mp);
*mp = NULL;
}
if (!(*mp)) {
*lblock = blkno;
*mp = read_index_page(ip, blkno);
}
if (!(*mp)) {
jfs_err("free_index: error reading directory table");
return NULL;
}
slot =
(struct dir_table_slot *) ((char *) (*mp)->data +
page_offset);
}
return slot;
}
static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
u32 index)
{
struct tlock *tlck;
struct linelock *llck;
struct lv *lv;
tlck = txLock(tid, ip, mp, tlckDATA);
llck = (struct linelock *) tlck->lock;
if (llck->index >= llck->maxcnt)
llck = txLinelock(llck);
lv = &llck->lv[llck->index];
/*
* Linelock slot size is twice the size of directory table
* slot size. 512 entries per page.
*/
lv->offset = ((index - 2) & 511) >> 1;
lv->length = 1;
llck->index++;
}
/*
* add_index()
*
* Adds an entry to the directory index table. This is used to provide
* each directory entry with a persistent index in which to resume
* directory traversals
*/
static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
{
struct super_block *sb = ip->i_sb;
struct jfs_sb_info *sbi = JFS_SBI(sb);
struct jfs_inode_info *jfs_ip = JFS_IP(ip);
u64 blkno;
struct dir_table_slot *dirtab_slot;
u32 index;
struct linelock *llck;
struct lv *lv;
struct metapage *mp;
s64 offset;
uint page_offset;
struct tlock *tlck;
s64 xaddr;
ASSERT(DO_INDEX(ip));
if (jfs_ip->next_index < 2) {
jfs_warn("add_index: next_index = %d. Resetting!",
jfs_ip->next_index);
jfs_ip->next_index = 2;
}
index = jfs_ip->next_index++;
if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
/*
* i_size reflects size of index table, or 8 bytes per entry.
*/
ip->i_size = (loff_t) (index - 1) << 3;
/*
* dir table fits inline within inode
*/
dirtab_slot = &jfs_ip->i_dirtable[index-2];
dirtab_slot->flag = DIR_INDEX_VALID;
dirtab_slot->slot = slot;
DTSaddress(dirtab_slot, bn);
set_cflag(COMMIT_Dirtable, ip);
return index;
}
if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
struct dir_table_slot temp_table[12];
/*
* It's time to move the inline table to an external
* page and begin to build the xtree
*/
if (dquot_alloc_block(ip, sbi->nbperpage))
goto clean_up;
if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
dquot_free_block(ip, sbi->nbperpage);
goto clean_up;
}
/*
* Save the table, we're going to overwrite it with the
* xtree root
*/
memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
/*
* Initialize empty x-tree
*/
xtInitRoot(tid, ip);
/*
* Add the first block to the xtree
*/
if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
/* This really shouldn't fail */
jfs_warn("add_index: xtInsert failed!");
memcpy(&jfs_ip->i_dirtable, temp_table,
sizeof (temp_table));
dbFree(ip, xaddr, sbi->nbperpage);
dquot_free_block(ip, sbi->nbperpage);
goto clean_up;
}
ip->i_size = PSIZE;
mp = get_index_page(ip, 0);
if (!mp) {
jfs_err("add_index: get_metapage failed!");
xtTruncate(tid, ip, 0, COMMIT_PWMAP);
memcpy(&jfs_ip->i_dirtable, temp_table,
sizeof (temp_table));
goto clean_up;
}
tlck = txLock(tid, ip, mp, tlckDATA);
llck = (struct linelock *) & tlck->lock;
ASSERT(llck->index == 0);
lv = &llck->lv[0];
lv->offset = 0;
lv->length = 6; /* tlckDATA slot size is 16 bytes */
llck->index++;
memcpy(mp->data, temp_table, sizeof(temp_table));
mark_metapage_dirty(mp);
release_metapage(mp);
/*
* Logging is now directed by xtree tlocks
*/
clear_cflag(COMMIT_Dirtable, ip);
}
offset = (index - 2) * sizeof(struct dir_table_slot);
page_offset = offset & (PSIZE - 1);
blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
if (page_offset == 0) {
/*
* This will be the beginning of a new page
*/
xaddr = 0;
if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
jfs_warn("add_index: xtInsert failed!");
goto clean_up;
}
ip->i_size += PSIZE;
if ((mp = get_index_page(ip, blkno)))
memset(mp->data, 0, PSIZE); /* Just looks better */
else
xtTruncate(tid, ip, offset, COMMIT_PWMAP);
} else
mp = read_index_page(ip, blkno);
if (!mp) {
jfs_err("add_index: get/read_metapage failed!");
goto clean_up;
}
lock_index(tid, ip, mp, index);
dirtab_slot =
(struct dir_table_slot *) ((char *) mp->data + page_offset);
dirtab_slot->flag = DIR_INDEX_VALID;
dirtab_slot->slot = slot;
DTSaddress(dirtab_slot, bn);
mark_metapage_dirty(mp);
release_metapage(mp);
return index;
clean_up:
jfs_ip->next_index--;
return 0;
}
/*
* free_index()
*
* Marks an entry to the directory index table as free.
*/
static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
{
struct dir_table_slot *dirtab_slot;
s64 lblock;
struct metapage *mp = NULL;
dirtab_slot = find_index(ip, index, &mp, &lblock);
if (!dirtab_slot)
return;
dirtab_slot->flag = DIR_INDEX_FREE;
dirtab_slot->slot = dirtab_slot->addr1 = 0;
dirtab_slot->addr2 = cpu_to_le32(next);
if (mp) {
lock_index(tid, ip, mp, index);
mark_metapage_dirty(mp);
release_metapage(mp);
} else
set_cflag(COMMIT_Dirtable, ip);
}
/*
* modify_index()
*
* Changes an entry in the directory index table
*/
static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
int slot, struct metapage ** mp, s64 *lblock)
{
struct dir_table_slot *dirtab_slot;
dirtab_slot = find_index(ip, index, mp, lblock);
if (!dirtab_slot)
return;
DTSaddress(dirtab_slot, bn);
dirtab_slot->slot = slot;
if (*mp) {
lock_index(tid, ip, *mp, index);
mark_metapage_dirty(*mp);
} else
set_cflag(COMMIT_Dirtable, ip);
}
/*
* read_index()
*
* reads a directory table slot
*/
static int read_index(struct inode *ip, u32 index,
struct dir_table_slot * dirtab_slot)
{
s64 lblock;
struct metapage *mp = NULL;
struct dir_table_slot *slot;
slot = find_index(ip, index, &mp, &lblock);
if (!slot) {
return -EIO;
}
memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
if (mp)
release_metapage(mp);
return 0;
}
/*
* dtSearch()
*
* function:
* Search for the entry with specified key
*
* parameter:
*
* return: 0 - search result on stack, leaf page pinned;
* errno - I/O error
*/
int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
struct btstack * btstack, int flag)
{
int rc = 0;
int cmp = 1; /* init for empty page */
s64 bn;
struct metapage *mp;
dtpage_t *p;
s8 *stbl;
int base, index, lim;
struct btframe *btsp;
pxd_t *pxd;
int psize = 288; /* initial in-line directory */
ino_t inumber;
struct component_name ciKey;
struct super_block *sb = ip->i_sb;
ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS);
if (!ciKey.name) {
rc = -ENOMEM;
goto dtSearch_Exit2;
}
/* uppercase search key for c-i directory */
UniStrcpy(ciKey.name, key->name);
ciKey.namlen = key->namlen;
/* only uppercase if case-insensitive support is on */
if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
ciToUpper(&ciKey);
}
BT_CLR(btstack); /* reset stack */
/* init level count for max pages to split */
btstack->nsplit = 1;
/*
* search down tree from root:
*
* between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
* internal page, child page Pi contains entry with k, Ki <= K < Kj.
*
* if entry with search key K is not found
* internal page search find the entry with largest key Ki
* less than K which point to the child page to search;
* leaf page search find the entry with smallest key Kj
* greater than K so that the returned index is the position of
* the entry to be shifted right for insertion of new entry.
* for empty tree, search key is greater than any key of the tree.
*
* by convention, root bn = 0.
*/
for (bn = 0;;) {
/* get/pin the page to search */
DT_GETPAGE(ip, bn, mp, psize, p, rc);
if (rc)
goto dtSearch_Exit1;
/* get sorted entry table of the page */
stbl = DT_GETSTBL(p);
/*
* binary search with search key K on the current page.
*/
for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
index = base + (lim >> 1);
if (p->header.flag & BT_LEAF) {
/* uppercase leaf name to compare */
cmp =
ciCompare(&ciKey, p, stbl[index],
JFS_SBI(sb)->mntflag);
} else {
/* router key is in uppercase */
cmp = dtCompare(&ciKey, p, stbl[index]);
}
if (cmp == 0) {
/*
* search hit
*/
/* search hit - leaf page:
* return the entry found
*/
if (p->header.flag & BT_LEAF) {
inumber = le32_to_cpu(
((struct ldtentry *) & p->slot[stbl[index]])->inumber);
/*
* search for JFS_LOOKUP
*/
if (flag == JFS_LOOKUP) {
*data = inumber;
rc = 0;
goto out;
}
/*
* search for JFS_CREATE
*/
if (flag == JFS_CREATE) {
*data = inumber;
rc = -EEXIST;
goto out;
}
/*
* search for JFS_REMOVE or JFS_RENAME
*/
if ((flag == JFS_REMOVE ||
flag == JFS_RENAME) &&
*data != inumber) {
rc = -ESTALE;
goto out;
}
/*
* JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
*/
/* save search result */
*data = inumber;
btsp = btstack->top;
btsp->bn = bn;
btsp->index = index;
btsp->mp = mp;
rc = 0;
goto dtSearch_Exit1;
}
/* search hit - internal page:
* descend/search its child page
*/
goto getChild;
}
if (cmp > 0) {
base = index + 1;
--lim;
}
}
/*
* search miss
*
* base is the smallest index with key (Kj) greater than
* search key (K) and may be zero or (maxindex + 1) index.
*/
/*
* search miss - leaf page
*
* return location of entry (base) where new entry with
* search key K is to be inserted.
*/
if (p->header.flag & BT_LEAF) {
/*
* search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
*/
if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
flag == JFS_RENAME) {
rc = -ENOENT;
goto out;
}
/*
* search for JFS_CREATE|JFS_FINDDIR:
*
* save search result
*/
*data = 0;
btsp = btstack->top;
btsp->bn = bn;
btsp->index = base;
btsp->mp = mp;
rc = 0;
goto dtSearch_Exit1;
}
/*
* search miss - internal page
*
* if base is non-zero, decrement base by one to get the parent
* entry of the child page to search.
*/
index = base ? base - 1 : base;
/*
* go down to child page
*/
getChild:
/* update max. number of pages to split */
if (BT_STACK_FULL(btstack)) {
/* Something's corrupted, mark filesystem dirty so
* chkdsk will fix it.
*/
jfs_error(sb, "stack overrun in dtSearch!");
BT_STACK_DUMP(btstack);
rc = -EIO;
goto out;
}
btstack->nsplit++;
/* push (bn, index) of the parent page/entry */
BT_PUSH(btstack, bn, index);
/* get the child page block number */
pxd = (pxd_t *) & p->slot[stbl[index]];
bn = addressPXD(pxd);
psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
/* unpin the parent page */
DT_PUTPAGE(mp);
}
out:
DT_PUTPAGE(mp);
dtSearch_Exit1:
kfree(ciKey.name);
dtSearch_Exit2:
return rc;
}
/*
* dtInsert()
*
* function: insert an entry to directory tree
*
* parameter:
*
* return: 0 - success;
* errno - failure;
*/
int dtInsert(tid_t tid, struct inode *ip,
struct component_name * name, ino_t * fsn, struct btstack * btstack)
{
int rc = 0;
struct metapage *mp; /* meta-page buffer */
dtpage_t *p; /* base B+-tree index page */
s64 bn;
int index;
struct dtsplit split; /* split information */
ddata_t data;
struct dt_lock *dtlck;
int n;
struct tlock *tlck;
struct lv *lv;
/*
* retrieve search result
*
* dtSearch() returns (leaf page pinned, index at which to insert).
* n.b. dtSearch() may return index of (maxindex + 1) of
* the full page.
*/
DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
/*
* insert entry for new key
*/
if (DO_INDEX(ip)) {
if (JFS_IP(ip)->next_index == DIREND) {
DT_PUTPAGE(mp);
return -EMLINK;
}
n = NDTLEAF(name->namlen);
data.leaf.tid = tid;
data.leaf.ip = ip;
} else {
n = NDTLEAF_LEGACY(name->namlen);
data.leaf.ip = NULL; /* signifies legacy directory format */
}
data.leaf.ino = *fsn;
/*
* leaf page does not have enough room for new entry:
*
* extend/split the leaf page;
*
* dtSplitUp() will insert the entry and unpin the leaf page.
*/
if (n > p->header.freecnt) {
split.mp = mp;
split.index = index;
split.nslot = n;
split.key = name;
split.data = &data;
rc = dtSplitUp(tid, ip, &split, btstack);
return rc;
}
/*
* leaf page does have enough room for new entry:
*
* insert the new data entry into the leaf page;
*/
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the leaf page
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
/* linelock header */
lv->offset = 0;
lv->length = 1;
dtlck->index++;
dtInsertEntry(p, index, name, &data, &dtlck);
/* linelock stbl of non-root leaf page */
if (!(p->header.flag & BT_ROOT)) {
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
n = index >> L2DTSLOTSIZE;
lv->offset = p->header.stblindex + n;
lv->length =
((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
dtlck->index++;
}
/* unpin the leaf page */
DT_PUTPAGE(mp);
return 0;
}
/*
* dtSplitUp()
*
* function: propagate insertion bottom up;
*
* parameter:
*
* return: 0 - success;
* errno - failure;
* leaf page unpinned;
*/
static int dtSplitUp(tid_t tid,
struct inode *ip, struct dtsplit * split, struct btstack * btstack)
{
struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
int rc = 0;
struct metapage *smp;
dtpage_t *sp; /* split page */
struct metapage *rmp;
dtpage_t *rp; /* new right page split from sp */
pxd_t rpxd; /* new right page extent descriptor */
struct metapage *lmp;
dtpage_t *lp; /* left child page */
int skip; /* index of entry of insertion */
struct btframe *parent; /* parent page entry on traverse stack */
s64 xaddr, nxaddr;
int xlen, xsize;
struct pxdlist pxdlist;
pxd_t *pxd;
struct component_name key = { 0, NULL };
ddata_t *data = split->data;
int n;
struct dt_lock *dtlck;
struct tlock *tlck;
struct lv *lv;
int quota_allocation = 0;
/* get split page */
smp = split->mp;
sp = DT_PAGE(ip, smp);
key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS);
if (!key.name) {
DT_PUTPAGE(smp);
rc = -ENOMEM;
goto dtSplitUp_Exit;
}
/*
* split leaf page
*
* The split routines insert the new entry, and
* acquire txLock as appropriate.
*/
/*
* split root leaf page:
*/
if (sp->header.flag & BT_ROOT) {
/*
* allocate a single extent child page
*/
xlen = 1;
n = sbi->bsize >> L2DTSLOTSIZE;
n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
if (n <= split->nslot)
xlen++;
if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
DT_PUTPAGE(smp);
goto freeKeyName;
}
pxdlist.maxnpxd = 1;
pxdlist.npxd = 0;
pxd = &pxdlist.pxd[0];
PXDaddress(pxd, xaddr);
PXDlength(pxd, xlen);
split->pxdlist = &pxdlist;
rc = dtSplitRoot(tid, ip, split, &rmp);
if (rc)
dbFree(ip, xaddr, xlen);
else
DT_PUTPAGE(rmp);
DT_PUTPAGE(smp);
if (!DO_INDEX(ip))
ip->i_size = xlen << sbi->l2bsize;
goto freeKeyName;
}
/*
* extend first leaf page
*
* extend the 1st extent if less than buffer page size
* (dtExtendPage() reurns leaf page unpinned)
*/
pxd = &sp->header.self;
xlen = lengthPXD(pxd);
xsize = xlen << sbi->l2bsize;
if (xsize < PSIZE) {
xaddr = addressPXD(pxd);
n = xsize >> L2DTSLOTSIZE;
n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
if ((n + sp->header.freecnt) <= split->nslot)
n = xlen + (xlen << 1);
else
n = xlen;
/* Allocate blocks to quota. */
rc = dquot_alloc_block(ip, n);
if (rc)
goto extendOut;
quota_allocation += n;
if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
(s64) n, &nxaddr)))
goto extendOut;
pxdlist.maxnpxd = 1;
pxdlist.npxd = 0;
pxd = &pxdlist.pxd[0];
PXDaddress(pxd, nxaddr)
PXDlength(pxd, xlen + n);
split->pxdlist = &pxdlist;
if ((rc = dtExtendPage(tid, ip, split, btstack))) {
nxaddr = addressPXD(pxd);
if (xaddr != nxaddr) {
/* free relocated extent */
xlen = lengthPXD(pxd);
dbFree(ip, nxaddr, (s64) xlen);
} else {
/* free extended delta */
xlen = lengthPXD(pxd) - n;
xaddr = addressPXD(pxd) + xlen;
dbFree(ip, xaddr, (s64) n);
}
} else if (!DO_INDEX(ip))
ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
extendOut:
DT_PUTPAGE(smp);
goto freeKeyName;
}
/*
* split leaf page <sp> into <sp> and a new right page <rp>.
*
* return <rp> pinned and its extent descriptor <rpxd>
*/
/*
* allocate new directory page extent and
* new index page(s) to cover page split(s)
*
* allocation hint: ?
*/
n = btstack->nsplit;
pxdlist.maxnpxd = pxdlist.npxd = 0;
xlen = sbi->nbperpage;
for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
PXDaddress(pxd, xaddr);
PXDlength(pxd, xlen);
pxdlist.maxnpxd++;
continue;
}
DT_PUTPAGE(smp);
/* undo allocation */
goto splitOut;
}
split->pxdlist = &pxdlist;
if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
DT_PUTPAGE(smp);
/* undo allocation */
goto splitOut;
}
if (!DO_INDEX(ip))
ip->i_size += PSIZE;
/*
* propagate up the router entry for the leaf page just split
*
* insert a router entry for the new page into the parent page,
* propagate the insert/split up the tree by walking back the stack
* of (bn of parent page, index of child page entry in parent page)
* that were traversed during the search for the page that split.
*
* the propagation of insert/split up the tree stops if the root
* splits or the page inserted into doesn't have to split to hold
* the new entry.
*
* the parent entry for the split page remains the same, and
* a new entry is inserted at its right with the first key and
* block number of the new right page.
*
* There are a maximum of 4 pages pinned at any time:
* two children, left parent and right parent (when the parent splits).
* keep the child pages pinned while working on the parent.
* make sure that all pins are released at exit.
*/
while ((parent = BT_POP(btstack)) != NULL) {
/* parent page specified by stack frame <parent> */
/* keep current child pages (<lp>, <rp>) pinned */
lmp = smp;
lp = sp;
/*
* insert router entry in parent for new right child page <rp>
*/
/* get the parent page <sp> */
DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
if (rc) {
DT_PUTPAGE(lmp);
DT_PUTPAGE(rmp);
goto splitOut;
}
/*
* The new key entry goes ONE AFTER the index of parent entry,
* because the split was to the right.
*/
skip = parent->index + 1;
/*
* compute the key for the router entry
*
* key suffix compression:
* for internal pages that have leaf pages as children,
* retain only what's needed to distinguish between
* the new entry and the entry on the page to its left.
* If the keys compare equal, retain the entire key.
*
* note that compression is performed only at computing
* router key at the lowest internal level.
* further compression of the key between pairs of higher
* level internal pages loses too much information and
* the search may fail.
* (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
* results in two adjacent parent entries (a)(xx).
* if split occurs between these two entries, and
* if compression is applied, the router key of parent entry
* of right page (x) will divert search for x into right
* subtree and miss x in the left subtree.)
*
* the entire key must be retained for the next-to-leftmost
* internal key at any level of the tree, or search may fail
* (e.g., ?)
*/
switch (rp->header.flag & BT_TYPE) {
case BT_LEAF:
/*
* compute the length of prefix for suffix compression
* between last entry of left page and first entry
* of right page
*/
if ((sp->header.flag & BT_ROOT && skip > 1) ||
sp->header.prev != 0 || skip > 1) {
/* compute uppercase router prefix key */
rc = ciGetLeafPrefixKey(lp,
lp->header.nextindex-1,
rp, 0, &key,
sbi->mntflag);
if (rc) {
DT_PUTPAGE(lmp);
DT_PUTPAGE(rmp);
DT_PUTPAGE(smp);
goto splitOut;
}
} else {
/* next to leftmost entry of
lowest internal level */
/* compute uppercase router key */
dtGetKey(rp, 0, &key, sbi->mntflag);
key.name[key.namlen] = 0;
if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
ciToUpper(&key);
}
n = NDTINTERNAL(key.namlen);
break;
case BT_INTERNAL:
dtGetKey(rp, 0, &key, sbi->mntflag);
n = NDTINTERNAL(key.namlen);
break;
default:
jfs_err("dtSplitUp(): UFO!");
break;
}
/* unpin left child page */
DT_PUTPAGE(lmp);
/*
* compute the data for the router entry
*/
data->xd = rpxd; /* child page xd */
/*
* parent page is full - split the parent page
*/
if (n > sp->header.freecnt) {
/* init for parent page split */
split->mp = smp;
split->index = skip; /* index at insert */
split->nslot = n;
split->key = &key;
/* split->data = data; */
/* unpin right child page */
DT_PUTPAGE(rmp);
/* The split routines insert the new entry,
* acquire txLock as appropriate.
* return <rp> pinned and its block number <rbn>.
*/
rc = (sp->header.flag & BT_ROOT) ?
dtSplitRoot(tid, ip, split, &rmp) :
dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
if (rc) {
DT_PUTPAGE(smp);
goto splitOut;
}
/* smp and rmp are pinned */
}
/*
* parent page is not full - insert router entry in parent page
*/
else {
BT_MARK_DIRTY(smp, ip);
/*
* acquire a transaction lock on the parent page
*/
tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
/* linelock header */
lv->offset = 0;
lv->length = 1;
dtlck->index++;
/* linelock stbl of non-root parent page */
if (!(sp->header.flag & BT_ROOT)) {
lv++;
n = skip >> L2DTSLOTSIZE;
lv->offset = sp->header.stblindex + n;
lv->length =
((sp->header.nextindex -
1) >> L2DTSLOTSIZE) - n + 1;
dtlck->index++;
}
dtInsertEntry(sp, skip, &key, data, &dtlck);
/* exit propagate up */
break;
}
}
/* unpin current split and its right page */
DT_PUTPAGE(smp);
DT_PUTPAGE(rmp);
/*
* free remaining extents allocated for split
*/
splitOut:
n = pxdlist.npxd;
pxd = &pxdlist.pxd[n];
for (; n < pxdlist.maxnpxd; n++, pxd++)
dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
freeKeyName:
kfree(key.name);
/* Rollback quota allocation */
if (rc && quota_allocation)
dquot_free_block(ip, quota_allocation);
dtSplitUp_Exit:
return rc;
}
/*
* dtSplitPage()
*
* function: Split a non-root page of a btree.
*
* parameter:
*
* return: 0 - success;
* errno - failure;
* return split and new page pinned;
*/
static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
{
int rc = 0;
struct metapage *smp;
dtpage_t *sp;
struct metapage *rmp;
dtpage_t *rp; /* new right page allocated */
s64 rbn; /* new right page block number */
struct metapage *mp;
dtpage_t *p;
s64 nextbn;
struct pxdlist *pxdlist;
pxd_t *pxd;
int skip, nextindex, half, left, nxt, off, si;
struct ldtentry *ldtentry;
struct idtentry *idtentry;
u8 *stbl;
struct dtslot *f;
int fsi, stblsize;
int n;
struct dt_lock *sdtlck, *rdtlck;
struct tlock *tlck;
struct dt_lock *dtlck;
struct lv *slv, *rlv, *lv;
/* get split page */
smp = split->mp;
sp = DT_PAGE(ip, smp);
/*
* allocate the new right page for the split
*/
pxdlist = split->pxdlist;
pxd = &pxdlist->pxd[pxdlist->npxd];
pxdlist->npxd++;
rbn = addressPXD(pxd);
rmp = get_metapage(ip, rbn, PSIZE, 1);
if (rmp == NULL)
return -EIO;
/* Allocate blocks to quota. */
rc = dquot_alloc_block(ip, lengthPXD(pxd));
if (rc) {
release_metapage(rmp);
return rc;
}
jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
BT_MARK_DIRTY(rmp, ip);
/*
* acquire a transaction lock on the new right page
*/
tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
rdtlck = (struct dt_lock *) & tlck->lock;
rp = (dtpage_t *) rmp->data;
*rpp = rp;
rp->header.self = *pxd;
BT_MARK_DIRTY(smp, ip);
/*
* acquire a transaction lock on the split page
*
* action:
*/
tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
sdtlck = (struct dt_lock *) & tlck->lock;
/* linelock header of split page */
ASSERT(sdtlck->index == 0);
slv = & sdtlck->lv[0];
slv->offset = 0;
slv->length = 1;
sdtlck->index++;
/*
* initialize/update sibling pointers between sp and rp
*/
nextbn = le64_to_cpu(sp->header.next);
rp->header.next = cpu_to_le64(nextbn);
rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
sp->header.next = cpu_to_le64(rbn);
/*
* initialize new right page
*/
rp->header.flag = sp->header.flag;
/* compute sorted entry table at start of extent data area */
rp->header.nextindex = 0;
rp->header.stblindex = 1;
n = PSIZE >> L2DTSLOTSIZE;
rp->header.maxslot = n;
stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
/* init freelist */
fsi = rp->header.stblindex + stblsize;
rp->header.freelist = fsi;
rp->header.freecnt = rp->header.maxslot - fsi;
/*
* sequential append at tail: append without split
*
* If splitting the last page on a level because of appending
* a entry to it (skip is maxentry), it's likely that the access is
* sequential. Adding an empty page on the side of the level is less
* work and can push the fill factor much higher than normal.
* If we're wrong it's no big deal, we'll just do the split the right
* way next time.
* (It may look like it's equally easy to do a similar hack for
* reverse sorted data, that is, split the tree left,
* but it's not. Be my guest.)
*/
if (nextbn == 0 && split->index == sp->header.nextindex) {
/* linelock header + stbl (first slot) of new page */
rlv = & rdtlck->lv[rdtlck->index];
rlv->offset = 0;
rlv->length = 2;
rdtlck->index++;
/*
* initialize freelist of new right page
*/
f = &rp->slot[fsi];
for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
f->next = fsi;
f->next = -1;
/* insert entry at the first entry of the new right page */
dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
goto out;
}
/*
* non-sequential insert (at possibly middle page)
*/
/*
* update prev pointer of previous right sibling page;
*/
if (nextbn != 0) {
DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
if (rc) {
discard_metapage(rmp);
return rc;
}
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the next page
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
tlck, ip, mp);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header of previous right sibling page */
lv = & dtlck->lv[dtlck->index];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
p->header.prev = cpu_to_le64(rbn);
DT_PUTPAGE(mp);
}
/*
* split the data between the split and right pages.
*/
skip = split->index;
half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
left = 0;
/*
* compute fill factor for split pages
*
* <nxt> traces the next entry to move to rp
* <off> traces the next entry to stay in sp
*/
stbl = (u8 *) & sp->slot[sp->header.stblindex];
nextindex = sp->header.nextindex;
for (nxt = off = 0; nxt < nextindex; ++off) {
if (off == skip)
/* check for fill factor with new entry size */
n = split->nslot;
else {
si = stbl[nxt];
switch (sp->header.flag & BT_TYPE) {
case BT_LEAF:
ldtentry = (struct ldtentry *) & sp->slot[si];
if (DO_INDEX(ip))
n = NDTLEAF(ldtentry->namlen);
else
n = NDTLEAF_LEGACY(ldtentry->
namlen);
break;
case BT_INTERNAL:
idtentry = (struct idtentry *) & sp->slot[si];
n = NDTINTERNAL(idtentry->namlen);
break;
default:
break;
}
++nxt; /* advance to next entry to move in sp */
}
left += n;
if (left >= half)
break;
}
/* <nxt> poins to the 1st entry to move */
/*
* move entries to right page
*
* dtMoveEntry() initializes rp and reserves entry for insertion
*
* split page moved out entries are linelocked;
* new/right page moved in entries are linelocked;
*/
/* linelock header + stbl of new right page */
rlv = & rdtlck->lv[rdtlck->index];
rlv->offset = 0;
rlv->length = 5;
rdtlck->index++;
dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
sp->header.nextindex = nxt;
/*
* finalize freelist of new right page
*/
fsi = rp->header.freelist;
f = &rp->slot[fsi];
for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
f->next = fsi;
f->next = -1;
/*
* Update directory index table for entries now in right page
*/
if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
s64 lblock;
mp = NULL;
stbl = DT_GETSTBL(rp);
for (n = 0; n < rp->header.nextindex; n++) {
ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
modify_index(tid, ip, le32_to_cpu(ldtentry->index),
rbn, n, &mp, &lblock);
}
if (mp)
release_metapage(mp);
}
/*
* the skipped index was on the left page,
*/
if (skip <= off) {
/* insert the new entry in the split page */
dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
/* linelock stbl of split page */
if (sdtlck->index >= sdtlck->maxcnt)
sdtlck = (struct dt_lock *) txLinelock(sdtlck);
slv = & sdtlck->lv[sdtlck->index];
n = skip >> L2DTSLOTSIZE;
slv->offset = sp->header.stblindex + n;
slv->length =
((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
sdtlck->index++;
}
/*
* the skipped index was on the right page,
*/
else {
/* adjust the skip index to reflect the new position */
skip -= nxt;
/* insert the new entry in the right page */
dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
}
out:
*rmpp = rmp;
*rpxdp = *pxd;
return rc;
}
/*
* dtExtendPage()
*
* function: extend 1st/only directory leaf page
*
* parameter:
*
* return: 0 - success;
* errno - failure;
* return extended page pinned;
*/
static int dtExtendPage(tid_t tid,
struct inode *ip, struct dtsplit * split, struct btstack * btstack)
{
struct super_block *sb = ip->i_sb;
int rc;
struct metapage *smp, *pmp, *mp;
dtpage_t *sp, *pp;
struct pxdlist *pxdlist;
pxd_t *pxd, *tpxd;
int xlen, xsize;
int newstblindex, newstblsize;
int oldstblindex, oldstblsize;
int fsi, last;
struct dtslot *f;
struct btframe *parent;
int n;
struct dt_lock *dtlck;
s64 xaddr, txaddr;
struct tlock *tlck;
struct pxd_lock *pxdlock;
struct lv *lv;
uint type;
struct ldtentry *ldtentry;
u8 *stbl;
/* get page to extend */
smp = split->mp;
sp = DT_PAGE(ip, smp);
/* get parent/root page */
parent = BT_POP(btstack);
DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
if (rc)
return (rc);
/*
* extend the extent
*/
pxdlist = split->pxdlist;
pxd = &pxdlist->pxd[pxdlist->npxd];
pxdlist->npxd++;
xaddr = addressPXD(pxd);
tpxd = &sp->header.self;
txaddr = addressPXD(tpxd);
/* in-place extension */
if (xaddr == txaddr) {
type = tlckEXTEND;
}
/* relocation */
else {
type = tlckNEW;
/* save moved extent descriptor for later free */
tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
pxdlock = (struct pxd_lock *) & tlck->lock;
pxdlock->flag = mlckFREEPXD;
pxdlock->pxd = sp->header.self;
pxdlock->index = 1;
/*
* Update directory index table to reflect new page address
*/
if (DO_INDEX(ip)) {
s64 lblock;
mp = NULL;
stbl = DT_GETSTBL(sp);
for (n = 0; n < sp->header.nextindex; n++) {
ldtentry =
(struct ldtentry *) & sp->slot[stbl[n]];
modify_index(tid, ip,
le32_to_cpu(ldtentry->index),
xaddr, n, &mp, &lblock);
}
if (mp)
release_metapage(mp);
}
}
/*
* extend the page
*/
sp->header.self = *pxd;
jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
BT_MARK_DIRTY(smp, ip);
/*
* acquire a transaction lock on the extended/leaf page
*/
tlck = txLock(tid, ip, smp, tlckDTREE | type);
dtlck = (struct dt_lock *) & tlck->lock;
lv = & dtlck->lv[0];
/* update buffer extent descriptor of extended page */
xlen = lengthPXD(pxd);
xsize = xlen << JFS_SBI(sb)->l2bsize;
/*
* copy old stbl to new stbl at start of extended area
*/
oldstblindex = sp->header.stblindex;
oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
newstblindex = sp->header.maxslot;
n = xsize >> L2DTSLOTSIZE;
newstblsize = (n + 31) >> L2DTSLOTSIZE;
memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
sp->header.nextindex);
/*
* in-line extension: linelock old area of extended page
*/
if (type == tlckEXTEND) {
/* linelock header */
lv->offset = 0;
lv->length = 1;
dtlck->index++;
lv++;
/* linelock new stbl of extended page */
lv->offset = newstblindex;
lv->length = newstblsize;
}
/*
* relocation: linelock whole relocated area
*/
else {
lv->offset = 0;
lv->length = sp->header.maxslot + newstblsize;
}
dtlck->index++;
sp->header.maxslot = n;
sp->header.stblindex = newstblindex;
/* sp->header.nextindex remains the same */
/*
* add old stbl region at head of freelist
*/
fsi = oldstblindex;
f = &sp->slot[fsi];
last = sp->header.freelist;
for (n = 0; n < oldstblsize; n++, fsi++, f++) {
f->next = last;
last = fsi;
}
sp->header.freelist = last;
sp->header.freecnt += oldstblsize;
/*
* append free region of newly extended area at tail of freelist
*/
/* init free region of newly extended area */
fsi = n = newstblindex + newstblsize;
f = &sp->slot[fsi];
for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
f->next = fsi;
f->next = -1;
/* append new free region at tail of old freelist */
fsi = sp->header.freelist;
if (fsi == -1)
sp->header.freelist = n;
else {
do {
f = &sp->slot[fsi];
fsi = f->next;
} while (fsi != -1);
f->next = n;
}
sp->header.freecnt += sp->header.maxslot - n;
/*
* insert the new entry
*/
dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
BT_MARK_DIRTY(pmp, ip);
/*
* linelock any freeslots residing in old extent
*/
if (type == tlckEXTEND) {
n = sp->header.maxslot >> 2;
if (sp->header.freelist < n)
dtLinelockFreelist(sp, n, &dtlck);
}
/*
* update parent entry on the parent/root page
*/
/*
* acquire a transaction lock on the parent/root page
*/
tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
lv = & dtlck->lv[dtlck->index];
/* linelock parent entry - 1st slot */
lv->offset = 1;
lv->length = 1;
dtlck->index++;
/* update the parent pxd for page extension */
tpxd = (pxd_t *) & pp->slot[1];
*tpxd = *pxd;
DT_PUTPAGE(pmp);
return 0;
}
/*
* dtSplitRoot()
*
* function:
* split the full root page into
* original/root/split page and new right page
* i.e., root remains fixed in tree anchor (inode) and
* the root is copied to a single new right child page
* since root page << non-root page, and
* the split root page contains a single entry for the
* new right child page.
*
* parameter:
*
* return: 0 - success;
* errno - failure;
* return new page pinned;
*/
static int dtSplitRoot(tid_t tid,
struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
{
struct super_block *sb = ip->i_sb;
struct metapage *smp;
dtroot_t *sp;
struct metapage *rmp;
dtpage_t *rp;
s64 rbn;
int xlen;
int xsize;
struct dtslot *f;
s8 *stbl;
int fsi, stblsize, n;
struct idtentry *s;
pxd_t *ppxd;
struct pxdlist *pxdlist;
pxd_t *pxd;
struct dt_lock *dtlck;
struct tlock *tlck;
struct lv *lv;
int rc;
/* get split root page */
smp = split->mp;
sp = &JFS_IP(ip)->i_dtroot;
/*
* allocate/initialize a single (right) child page
*
* N.B. at first split, a one (or two) block to fit new entry
* is allocated; at subsequent split, a full page is allocated;
*/
pxdlist = split->pxdlist;
pxd = &pxdlist->pxd[pxdlist->npxd];
pxdlist->npxd++;
rbn = addressPXD(pxd);
xlen = lengthPXD(pxd);
xsize = xlen << JFS_SBI(sb)->l2bsize;
rmp = get_metapage(ip, rbn, xsize, 1);
if (!rmp)
return -EIO;
rp = rmp->data;
/* Allocate blocks to quota. */
rc = dquot_alloc_block(ip, lengthPXD(pxd));
if (rc) {
release_metapage(rmp);
return rc;
}
BT_MARK_DIRTY(rmp, ip);
/*
* acquire a transaction lock on the new right page
*/
tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
dtlck = (struct dt_lock *) & tlck->lock;
rp->header.flag =
(sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
rp->header.self = *pxd;
/* initialize sibling pointers */
rp->header.next = 0;
rp->header.prev = 0;
/*
* move in-line root page into new right page extent
*/
/* linelock header + copied entries + new stbl (1st slot) in new page */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = 0;
lv->length = 10; /* 1 + 8 + 1 */
dtlck->index++;
n = xsize >> L2DTSLOTSIZE;
rp->header.maxslot = n;
stblsize = (n + 31) >> L2DTSLOTSIZE;
/* copy old stbl to new stbl at start of extended area */
rp->header.stblindex = DTROOTMAXSLOT;
stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
memcpy(stbl, sp->header.stbl, sp->header.nextindex);
rp->header.nextindex = sp->header.nextindex;
/* copy old data area to start of new data area */
memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
/*
* append free region of newly extended area at tail of freelist
*/
/* init free region of newly extended area */
fsi = n = DTROOTMAXSLOT + stblsize;
f = &rp->slot[fsi];
for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
f->next = fsi;
f->next = -1;
/* append new free region at tail of old freelist */
fsi = sp->header.freelist;
if (fsi == -1)
rp->header.freelist = n;
else {
rp->header.freelist = fsi;
do {
f = &rp->slot[fsi];
fsi = f->next;
} while (fsi != -1);
f->next = n;
}
rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
/*
* Update directory index table for entries now in right page
*/
if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
s64 lblock;
struct metapage *mp = NULL;
struct ldtentry *ldtentry;
stbl = DT_GETSTBL(rp);
for (n = 0; n < rp->header.nextindex; n++) {
ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
modify_index(tid, ip, le32_to_cpu(ldtentry->index),
rbn, n, &mp, &lblock);
}
if (mp)
release_metapage(mp);
}
/*
* insert the new entry into the new right/child page
* (skip index in the new right page will not change)
*/
dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
/*
* reset parent/root page
*
* set the 1st entry offset to 0, which force the left-most key
* at any level of the tree to be less than any search key.
*
* The btree comparison code guarantees that the left-most key on any
* level of the tree is never used, so it doesn't need to be filled in.
*/
BT_MARK_DIRTY(smp, ip);
/*
* acquire a transaction lock on the root page (in-memory inode)
*/
tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock root */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = 0;
lv->length = DTROOTMAXSLOT;
dtlck->index++;
/* update page header of root */
if (sp->header.flag & BT_LEAF) {
sp->header.flag &= ~BT_LEAF;
sp->header.flag |= BT_INTERNAL;
}
/* init the first entry */
s = (struct idtentry *) & sp->slot[DTENTRYSTART];
ppxd = (pxd_t *) s;
*ppxd = *pxd;
s->next = -1;
s->namlen = 0;
stbl = sp->header.stbl;
stbl[0] = DTENTRYSTART;
sp->header.nextindex = 1;
/* init freelist */
fsi = DTENTRYSTART + 1;
f = &sp->slot[fsi];
/* init free region of remaining area */
for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
f->next = fsi;
f->next = -1;
sp->header.freelist = DTENTRYSTART + 1;
sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
*rmpp = rmp;
return 0;
}
/*
* dtDelete()
*
* function: delete the entry(s) referenced by a key.
*
* parameter:
*
* return:
*/
int dtDelete(tid_t tid,
struct inode *ip, struct component_name * key, ino_t * ino, int flag)
{
int rc = 0;
s64 bn;
struct metapage *mp, *imp;
dtpage_t *p;
int index;
struct btstack btstack;
struct dt_lock *dtlck;
struct tlock *tlck;
struct lv *lv;
int i;
struct ldtentry *ldtentry;
u8 *stbl;
u32 table_index, next_index;
struct metapage *nmp;
dtpage_t *np;
/*
* search for the entry to delete:
*
* dtSearch() returns (leaf page pinned, index at which to delete).
*/
if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
return rc;
/* retrieve search result */
DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
/*
* We need to find put the index of the next entry into the
* directory index table in order to resume a readdir from this
* entry.
*/
if (DO_INDEX(ip)) {
stbl = DT_GETSTBL(p);
ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
table_index = le32_to_cpu(ldtentry->index);
if (index == (p->header.nextindex - 1)) {
/*
* Last entry in this leaf page
*/
if ((p->header.flag & BT_ROOT)
|| (p->header.next == 0))
next_index = -1;
else {
/* Read next leaf page */
DT_GETPAGE(ip, le64_to_cpu(p->header.next),
nmp, PSIZE, np, rc);
if (rc)
next_index = -1;
else {
stbl = DT_GETSTBL(np);
ldtentry =
(struct ldtentry *) & np->
slot[stbl[0]];
next_index =
le32_to_cpu(ldtentry->index);
DT_PUTPAGE(nmp);
}
}
} else {
ldtentry =
(struct ldtentry *) & p->slot[stbl[index + 1]];
next_index = le32_to_cpu(ldtentry->index);
}
free_index(tid, ip, table_index, next_index);
}
/*
* the leaf page becomes empty, delete the page
*/
if (p->header.nextindex == 1) {
/* delete empty page */
rc = dtDeleteUp(tid, ip, mp, p, &btstack);
}
/*
* the leaf page has other entries remaining:
*
* delete the entry from the leaf page.
*/
else {
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the leaf page
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
/*
* Do not assume that dtlck->index will be zero. During a
* rename within a directory, this transaction may have
* modified this page already when adding the new entry.
*/
/* linelock header */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
/* linelock stbl of non-root leaf page */
if (!(p->header.flag & BT_ROOT)) {
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
i = index >> L2DTSLOTSIZE;
lv->offset = p->header.stblindex + i;
lv->length =
((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
i + 1;
dtlck->index++;
}
/* free the leaf entry */
dtDeleteEntry(p, index, &dtlck);
/*
* Update directory index table for entries moved in stbl
*/
if (DO_INDEX(ip) && index < p->header.nextindex) {
s64 lblock;
imp = NULL;
stbl = DT_GETSTBL(p);
for (i = index; i < p->header.nextindex; i++) {
ldtentry =
(struct ldtentry *) & p->slot[stbl[i]];
modify_index(tid, ip,
le32_to_cpu(ldtentry->index),
bn, i, &imp, &lblock);
}
if (imp)
release_metapage(imp);
}
DT_PUTPAGE(mp);
}
return rc;
}
/*
* dtDeleteUp()
*
* function:
* free empty pages as propagating deletion up the tree
*
* parameter:
*
* return:
*/
static int dtDeleteUp(tid_t tid, struct inode *ip,
struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
{
int rc = 0;
struct metapage *mp;
dtpage_t *p;
int index, nextindex;
int xlen;
struct btframe *parent;
struct dt_lock *dtlck;
struct tlock *tlck;
struct lv *lv;
struct pxd_lock *pxdlock;
int i;
/*
* keep the root leaf page which has become empty
*/
if (BT_IS_ROOT(fmp)) {
/*
* reset the root
*
* dtInitRoot() acquires txlock on the root
*/
dtInitRoot(tid, ip, PARENT(ip));
DT_PUTPAGE(fmp);
return 0;
}
/*
* free the non-root leaf page
*/
/*
* acquire a transaction lock on the page
*
* write FREEXTENT|NOREDOPAGE log record
* N.B. linelock is overlaid as freed extent descriptor, and
* the buffer page is freed;
*/
tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
pxdlock = (struct pxd_lock *) & tlck->lock;
pxdlock->flag = mlckFREEPXD;
pxdlock->pxd = fp->header.self;
pxdlock->index = 1;
/* update sibling pointers */
if ((rc = dtRelink(tid, ip, fp))) {
BT_PUTPAGE(fmp);
return rc;
}
xlen = lengthPXD(&fp->header.self);
/* Free quota allocation. */
dquot_free_block(ip, xlen);
/* free/invalidate its buffer page */
discard_metapage(fmp);
/*
* propagate page deletion up the directory tree
*
* If the delete from the parent page makes it empty,
* continue all the way up the tree.
* stop if the root page is reached (which is never deleted) or
* if the entry deletion does not empty the page.
*/
while ((parent = BT_POP(btstack)) != NULL) {
/* pin the parent page <sp> */
DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
if (rc)
return rc;
/*
* free the extent of the child page deleted
*/
index = parent->index;
/*
* delete the entry for the child page from parent
*/
nextindex = p->header.nextindex;
/*
* the parent has the single entry being deleted:
*
* free the parent page which has become empty.
*/
if (nextindex == 1) {
/*
* keep the root internal page which has become empty
*/
if (p->header.flag & BT_ROOT) {
/*
* reset the root
*
* dtInitRoot() acquires txlock on the root
*/
dtInitRoot(tid, ip, PARENT(ip));
DT_PUTPAGE(mp);
return 0;
}
/*
* free the parent page
*/
else {
/*
* acquire a transaction lock on the page
*
* write FREEXTENT|NOREDOPAGE log record
*/
tlck =
txMaplock(tid, ip,
tlckDTREE | tlckFREE);
pxdlock = (struct pxd_lock *) & tlck->lock;
pxdlock->flag = mlckFREEPXD;
pxdlock->pxd = p->header.self;
pxdlock->index = 1;
/* update sibling pointers */
if ((rc = dtRelink(tid, ip, p))) {
DT_PUTPAGE(mp);
return rc;
}
xlen = lengthPXD(&p->header.self);
/* Free quota allocation */
dquot_free_block(ip, xlen);
/* free/invalidate its buffer page */
discard_metapage(mp);
/* propagate up */
continue;
}
}
/*
* the parent has other entries remaining:
*
* delete the router entry from the parent page.
*/
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the page
*
* action: router entry deletion
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
/* linelock stbl of non-root leaf page */
if (!(p->header.flag & BT_ROOT)) {
if (dtlck->index < dtlck->maxcnt)
lv++;
else {
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[0];
}
i = index >> L2DTSLOTSIZE;
lv->offset = p->header.stblindex + i;
lv->length =
((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
i + 1;
dtlck->index++;
}
/* free the router entry */
dtDeleteEntry(p, index, &dtlck);
/* reset key of new leftmost entry of level (for consistency) */
if (index == 0 &&
((p->header.flag & BT_ROOT) || p->header.prev == 0))
dtTruncateEntry(p, 0, &dtlck);
/* unpin the parent page */
DT_PUTPAGE(mp);
/* exit propagation up */
break;
}
if (!DO_INDEX(ip))
ip->i_size -= PSIZE;
return 0;
}
#ifdef _NOTYET
/*
* NAME: dtRelocate()
*
* FUNCTION: relocate dtpage (internal or leaf) of directory;
* This function is mainly used by defragfs utility.
*/
int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
s64 nxaddr)
{
int rc = 0;
struct metapage *mp, *pmp, *lmp, *rmp;
dtpage_t *p, *pp, *rp = 0, *lp= 0;
s64 bn;
int index;
struct btstack btstack;
pxd_t *pxd;
s64 oxaddr, nextbn, prevbn;
int xlen, xsize;
struct tlock *tlck;
struct dt_lock *dtlck;
struct pxd_lock *pxdlock;
s8 *stbl;
struct lv *lv;
oxaddr = addressPXD(opxd);
xlen = lengthPXD(opxd);
jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
(long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
xlen);
/*
* 1. get the internal parent dtpage covering
* router entry for the tartget page to be relocated;
*/
rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
if (rc)
return rc;
/* retrieve search result */
DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
jfs_info("dtRelocate: parent router entry validated.");
/*
* 2. relocate the target dtpage
*/
/* read in the target page from src extent */
DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
if (rc) {
/* release the pinned parent page */
DT_PUTPAGE(pmp);
return rc;
}
/*
* read in sibling pages if any to update sibling pointers;
*/
rmp = NULL;
if (p->header.next) {
nextbn = le64_to_cpu(p->header.next);
DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
if (rc) {
DT_PUTPAGE(mp);
DT_PUTPAGE(pmp);
return (rc);
}
}
lmp = NULL;
if (p->header.prev) {
prevbn = le64_to_cpu(p->header.prev);
DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
if (rc) {
DT_PUTPAGE(mp);
DT_PUTPAGE(pmp);
if (rmp)
DT_PUTPAGE(rmp);
return (rc);
}
}
/* at this point, all xtpages to be updated are in memory */
/*
* update sibling pointers of sibling dtpages if any;
*/
if (lmp) {
tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
lp->header.next = cpu_to_le64(nxaddr);
DT_PUTPAGE(lmp);
}
if (rmp) {
tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
rp->header.prev = cpu_to_le64(nxaddr);
DT_PUTPAGE(rmp);
}
/*
* update the target dtpage to be relocated
*
* write LOG_REDOPAGE of LOG_NEW type for dst page
* for the whole target page (logredo() will apply
* after image and update bmap for allocation of the
* dst extent), and update bmap for allocation of
* the dst extent;
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
/* update the self address in the dtpage header */
pxd = &p->header.self;
PXDaddress(pxd, nxaddr);
/* the dst page is the same as the src page, i.e.,
* linelock for afterimage of the whole page;
*/
lv->offset = 0;
lv->length = p->header.maxslot;
dtlck->index++;
/* update the buffer extent descriptor of the dtpage */
xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
/* unpin the relocated page */
DT_PUTPAGE(mp);
jfs_info("dtRelocate: target dtpage relocated.");
/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
* needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
* will also force a bmap update ).
*/
/*
* 3. acquire maplock for the source extent to be freed;
*/
/* for dtpage relocation, write a LOG_NOREDOPAGE record
* for the source dtpage (logredo() will init NoRedoPage
* filter and will also update bmap for free of the source
* dtpage), and upadte bmap for free of the source dtpage;
*/
tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
pxdlock = (struct pxd_lock *) & tlck->lock;
pxdlock->flag = mlckFREEPXD;
PXDaddress(&pxdlock->pxd, oxaddr);
PXDlength(&pxdlock->pxd, xlen);
pxdlock->index = 1;
/*
* 4. update the parent router entry for relocation;
*
* acquire tlck for the parent entry covering the target dtpage;
* write LOG_REDOPAGE to apply after image only;
*/
jfs_info("dtRelocate: update parent router entry.");
tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
lv = & dtlck->lv[dtlck->index];
/* update the PXD with the new address */
stbl = DT_GETSTBL(pp);
pxd = (pxd_t *) & pp->slot[stbl[index]];
PXDaddress(pxd, nxaddr);
lv->offset = stbl[index];
lv->length = 1;
dtlck->index++;
/* unpin the parent dtpage */
DT_PUTPAGE(pmp);
return rc;
}
/*
* NAME: dtSearchNode()
*
* FUNCTION: Search for an dtpage containing a specified address
* This function is mainly used by defragfs utility.
*
* NOTE: Search result on stack, the found page is pinned at exit.
* The result page must be an internal dtpage.
* lmxaddr give the address of the left most page of the
* dtree level, in which the required dtpage resides.
*/
static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
struct btstack * btstack)
{
int rc = 0;
s64 bn;
struct metapage *mp;
dtpage_t *p;
int psize = 288; /* initial in-line directory */
s8 *stbl;
int i;
pxd_t *pxd;
struct btframe *btsp;
BT_CLR(btstack); /* reset stack */
/*
* descend tree to the level with specified leftmost page
*
* by convention, root bn = 0.
*/
for (bn = 0;;) {
/* get/pin the page to search */
DT_GETPAGE(ip, bn, mp, psize, p, rc);
if (rc)
return rc;
/* does the xaddr of leftmost page of the levevl
* matches levevl search key ?
*/
if (p->header.flag & BT_ROOT) {
if (lmxaddr == 0)
break;
} else if (addressPXD(&p->header.self) == lmxaddr)
break;
/*
* descend down to leftmost child page
*/
if (p->header.flag & BT_LEAF) {
DT_PUTPAGE(mp);
return -ESTALE;
}
/* get the leftmost entry */
stbl = DT_GETSTBL(p);
pxd = (pxd_t *) & p->slot[stbl[0]];
/* get the child page block address */
bn = addressPXD(pxd);
psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
/* unpin the parent page */
DT_PUTPAGE(mp);
}
/*
* search each page at the current levevl
*/
loop:
stbl = DT_GETSTBL(p);
for (i = 0; i < p->header.nextindex; i++) {
pxd = (pxd_t *) & p->slot[stbl[i]];
/* found the specified router entry */
if (addressPXD(pxd) == addressPXD(kpxd) &&
lengthPXD(pxd) == lengthPXD(kpxd)) {
btsp = btstack->top;
btsp->bn = bn;
btsp->index = i;
btsp->mp = mp;
return 0;
}
}
/* get the right sibling page if any */
if (p->header.next)
bn = le64_to_cpu(p->header.next);
else {
DT_PUTPAGE(mp);
return -ESTALE;
}
/* unpin current page */
DT_PUTPAGE(mp);
/* get the right sibling page */
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc)
return rc;
goto loop;
}
#endif /* _NOTYET */
/*
* dtRelink()
*
* function:
* link around a freed page.
*
* parameter:
* fp: page to be freed
*
* return:
*/
static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
{
int rc;
struct metapage *mp;
s64 nextbn, prevbn;
struct tlock *tlck;
struct dt_lock *dtlck;
struct lv *lv;
nextbn = le64_to_cpu(p->header.next);
prevbn = le64_to_cpu(p->header.prev);
/* update prev pointer of the next page */
if (nextbn != 0) {
DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
if (rc)
return rc;
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the next page
*
* action: update prev pointer;
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
tlck, ip, mp);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
p->header.prev = cpu_to_le64(prevbn);
DT_PUTPAGE(mp);
}
/* update next pointer of the previous page */
if (prevbn != 0) {
DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
if (rc)
return rc;
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the prev page
*
* action: update next pointer;
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
tlck, ip, mp);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock header */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = 0;
lv->length = 1;
dtlck->index++;
p->header.next = cpu_to_le64(nextbn);
DT_PUTPAGE(mp);
}
return 0;
}
/*
* dtInitRoot()
*
* initialize directory root (inline in inode)
*/
void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
{
struct jfs_inode_info *jfs_ip = JFS_IP(ip);
dtroot_t *p;
int fsi;
struct dtslot *f;
struct tlock *tlck;
struct dt_lock *dtlck;
struct lv *lv;
u16 xflag_save;
/*
* If this was previously an non-empty directory, we need to remove
* the old directory table.
*/
if (DO_INDEX(ip)) {
if (!jfs_dirtable_inline(ip)) {
struct tblock *tblk = tid_to_tblock(tid);
/*
* We're playing games with the tid's xflag. If
* we're removing a regular file, the file's xtree
* is committed with COMMIT_PMAP, but we always
* commit the directories xtree with COMMIT_PWMAP.
*/
xflag_save = tblk->xflag;
tblk->xflag = 0;
/*
* xtTruncate isn't guaranteed to fully truncate
* the xtree. The caller needs to check i_size
* after committing the transaction to see if
* additional truncation is needed. The
* COMMIT_Stale flag tells caller that we
* initiated the truncation.
*/
xtTruncate(tid, ip, 0, COMMIT_PWMAP);
set_cflag(COMMIT_Stale, ip);
tblk->xflag = xflag_save;
} else
ip->i_size = 1;
jfs_ip->next_index = 2;
} else
ip->i_size = IDATASIZE;
/*
* acquire a transaction lock on the root
*
* action: directory initialization;
*/
tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
tlckDTREE | tlckENTRY | tlckBTROOT);
dtlck = (struct dt_lock *) & tlck->lock;
/* linelock root */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = 0;
lv->length = DTROOTMAXSLOT;
dtlck->index++;
p = &jfs_ip->i_dtroot;
p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
p->header.nextindex = 0;
/* init freelist */
fsi = 1;
f = &p->slot[fsi];
/* init data area of root */
for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
f->next = fsi;
f->next = -1;
p->header.freelist = 1;
p->header.freecnt = 8;
/* init '..' entry */
p->header.idotdot = cpu_to_le32(idotdot);
return;
}
/*
* add_missing_indices()
*
* function: Fix dtree page in which one or more entries has an invalid index.
* fsck.jfs should really fix this, but it currently does not.
* Called from jfs_readdir when bad index is detected.
*/
static void add_missing_indices(struct inode *inode, s64 bn)
{
struct ldtentry *d;
struct dt_lock *dtlck;
int i;
uint index;
struct lv *lv;
struct metapage *mp;
dtpage_t *p;
int rc;
s8 *stbl;
tid_t tid;
struct tlock *tlck;
tid = txBegin(inode->i_sb, 0);
DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
if (rc) {
printk(KERN_ERR "DT_GETPAGE failed!\n");
goto end;
}
BT_MARK_DIRTY(mp, inode);
ASSERT(p->header.flag & BT_LEAF);
tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
if (BT_IS_ROOT(mp))
tlck->type |= tlckBTROOT;
dtlck = (struct dt_lock *) &tlck->lock;
stbl = DT_GETSTBL(p);
for (i = 0; i < p->header.nextindex; i++) {
d = (struct ldtentry *) &p->slot[stbl[i]];
index = le32_to_cpu(d->index);
if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
d->index = cpu_to_le32(add_index(tid, inode, bn, i));
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = &dtlck->lv[dtlck->index];
lv->offset = stbl[i];
lv->length = 1;
dtlck->index++;
}
}
DT_PUTPAGE(mp);
(void) txCommit(tid, 1, &inode, 0);
end:
txEnd(tid);
}
/*
* Buffer to hold directory entry info while traversing a dtree page
* before being fed to the filldir function
*/
struct jfs_dirent {
loff_t position;
int ino;
u16 name_len;
char name[0];
};
/*
* function to determine next variable-sized jfs_dirent in buffer
*/
static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
{
return (struct jfs_dirent *)
((char *)dirent +
((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
sizeof (loff_t) - 1) &
~(sizeof (loff_t) - 1)));
}
/*
* jfs_readdir()
*
* function: read directory entries sequentially
* from the specified entry offset
*
* parameter:
*
* return: offset = (pn, index) of start entry
* of next jfs_readdir()/dtRead()
*/
int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
struct inode *ip = filp->f_path.dentry->d_inode;
struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
int rc = 0;
loff_t dtpos; /* legacy OS/2 style position */
struct dtoffset {
s16 pn;
s16 index;
s32 unused;
} *dtoffset = (struct dtoffset *) &dtpos;
s64 bn;
struct metapage *mp;
dtpage_t *p;
int index;
s8 *stbl;
struct btstack btstack;
int i, next;
struct ldtentry *d;
struct dtslot *t;
int d_namleft, len, outlen;
unsigned long dirent_buf;
char *name_ptr;
u32 dir_index;
int do_index = 0;
uint loop_count = 0;
struct jfs_dirent *jfs_dirent;
int jfs_dirents;
int overflow, fix_page, page_fixed = 0;
static int unique_pos = 2; /* If we can't fix broken index */
if (filp->f_pos == DIREND)
return 0;
if (DO_INDEX(ip)) {
/*
* persistent index is stored in directory entries.
* Special cases: 0 = .
* 1 = ..
* -1 = End of directory
*/
do_index = 1;
dir_index = (u32) filp->f_pos;
if (dir_index > 1) {
struct dir_table_slot dirtab_slot;
if (dtEmpty(ip) ||
(dir_index >= JFS_IP(ip)->next_index)) {
/* Stale position. Directory has shrunk */
filp->f_pos = DIREND;
return 0;
}
repeat:
rc = read_index(ip, dir_index, &dirtab_slot);
if (rc) {
filp->f_pos = DIREND;
return rc;
}
if (dirtab_slot.flag == DIR_INDEX_FREE) {
if (loop_count++ > JFS_IP(ip)->next_index) {
jfs_err("jfs_readdir detected "
"infinite loop!");
filp->f_pos = DIREND;
return 0;
}
dir_index = le32_to_cpu(dirtab_slot.addr2);
if (dir_index == -1) {
filp->f_pos = DIREND;
return 0;
}
goto repeat;
}
bn = addressDTS(&dirtab_slot);
index = dirtab_slot.slot;
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc) {
filp->f_pos = DIREND;
return 0;
}
if (p->header.flag & BT_INTERNAL) {
jfs_err("jfs_readdir: bad index table");
DT_PUTPAGE(mp);
filp->f_pos = -1;
return 0;
}
} else {
if (dir_index == 0) {
/*
* self "."
*/
filp->f_pos = 0;
if (filldir(dirent, ".", 1, 0, ip->i_ino,
DT_DIR))
return 0;
}
/*
* parent ".."
*/
filp->f_pos = 1;
if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
return 0;
/*
* Find first entry of left-most leaf
*/
if (dtEmpty(ip)) {
filp->f_pos = DIREND;
return 0;
}
if ((rc = dtReadFirst(ip, &btstack)))
return rc;
DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
}
} else {
/*
* Legacy filesystem - OS/2 & Linux JFS < 0.3.6
*
* pn = index = 0: First entry "."
* pn = 0; index = 1: Second entry ".."
* pn > 0: Real entries, pn=1 -> leftmost page
* pn = index = -1: No more entries
*/
dtpos = filp->f_pos;
if (dtpos == 0) {
/* build "." entry */
if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
DT_DIR))
return 0;
dtoffset->index = 1;
filp->f_pos = dtpos;
}
if (dtoffset->pn == 0) {
if (dtoffset->index == 1) {
/* build ".." entry */
if (filldir(dirent, "..", 2, filp->f_pos,
PARENT(ip), DT_DIR))
return 0;
} else {
jfs_err("jfs_readdir called with "
"invalid offset!");
}
dtoffset->pn = 1;
dtoffset->index = 0;
filp->f_pos = dtpos;
}
if (dtEmpty(ip)) {
filp->f_pos = DIREND;
return 0;
}
if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
jfs_err("jfs_readdir: unexpected rc = %d "
"from dtReadNext", rc);
filp->f_pos = DIREND;
return 0;
}
/* get start leaf page and index */
DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
/* offset beyond directory eof ? */
if (bn < 0) {
filp->f_pos = DIREND;
return 0;
}
}
dirent_buf = __get_free_page(GFP_KERNEL);
if (dirent_buf == 0) {
DT_PUTPAGE(mp);
jfs_warn("jfs_readdir: __get_free_page failed!");
filp->f_pos = DIREND;
return -ENOMEM;
}
while (1) {
jfs_dirent = (struct jfs_dirent *) dirent_buf;
jfs_dirents = 0;
overflow = fix_page = 0;
stbl = DT_GETSTBL(p);
for (i = index; i < p->header.nextindex; i++) {
d = (struct ldtentry *) & p->slot[stbl[i]];
if (((long) jfs_dirent + d->namlen + 1) >
(dirent_buf + PAGE_SIZE)) {
/* DBCS codepages could overrun dirent_buf */
index = i;
overflow = 1;
break;
}
d_namleft = d->namlen;
name_ptr = jfs_dirent->name;
jfs_dirent->ino = le32_to_cpu(d->inumber);
if (do_index) {
len = min(d_namleft, DTLHDRDATALEN);
jfs_dirent->position = le32_to_cpu(d->index);
/*
* d->index should always be valid, but it
* isn't. fsck.jfs doesn't create the
* directory index for the lost+found
* directory. Rather than let it go,
* we can try to fix it.
*/
if ((jfs_dirent->position < 2) ||
(jfs_dirent->position >=
JFS_IP(ip)->next_index)) {
if (!page_fixed && !isReadOnly(ip)) {
fix_page = 1;
/*
* setting overflow and setting
* index to i will cause the
* same page to be processed
* again starting here
*/
overflow = 1;
index = i;
break;
}
jfs_dirent->position = unique_pos++;
}
} else {
jfs_dirent->position = dtpos;
len = min(d_namleft, DTLHDRDATALEN_LEGACY);
}
/* copy the name of head/only segment */
outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
codepage);
jfs_dirent->name_len = outlen;
/* copy name in the additional segment(s) */
next = d->next;
while (next >= 0) {
t = (struct dtslot *) & p->slot[next];
name_ptr += outlen;
d_namleft -= len;
/* Sanity Check */
if (d_namleft == 0) {
jfs_error(ip->i_sb,
"JFS:Dtree error: ino = "
"%ld, bn=%Ld, index = %d",
(long)ip->i_ino,
(long long)bn,
i);
goto skip_one;
}
len = min(d_namleft, DTSLOTDATALEN);
outlen = jfs_strfromUCS_le(name_ptr, t->name,
len, codepage);
jfs_dirent->name_len += outlen;
next = t->next;
}
jfs_dirents++;
jfs_dirent = next_jfs_dirent(jfs_dirent);
skip_one:
if (!do_index)
dtoffset->index++;
}
if (!overflow) {
/* Point to next leaf page */
if (p->header.flag & BT_ROOT)
bn = 0;
else {
bn = le64_to_cpu(p->header.next);
index = 0;
/* update offset (pn:index) for new page */
if (!do_index) {
dtoffset->pn++;
dtoffset->index = 0;
}
}
page_fixed = 0;
}
/* unpin previous leaf page */
DT_PUTPAGE(mp);
jfs_dirent = (struct jfs_dirent *) dirent_buf;
while (jfs_dirents--) {
filp->f_pos = jfs_dirent->position;
if (filldir(dirent, jfs_dirent->name,
jfs_dirent->name_len, filp->f_pos,
jfs_dirent->ino, DT_UNKNOWN))
goto out;
jfs_dirent = next_jfs_dirent(jfs_dirent);
}
if (fix_page) {
add_missing_indices(ip, bn);
page_fixed = 1;
}
if (!overflow && (bn == 0)) {
filp->f_pos = DIREND;
break;
}
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc) {
free_page(dirent_buf);
return rc;
}
}
out:
free_page(dirent_buf);
return rc;
}
/*
* dtReadFirst()
*
* function: get the leftmost page of the directory
*/
static int dtReadFirst(struct inode *ip, struct btstack * btstack)
{
int rc = 0;
s64 bn;
int psize = 288; /* initial in-line directory */
struct metapage *mp;
dtpage_t *p;
s8 *stbl;
struct btframe *btsp;
pxd_t *xd;
BT_CLR(btstack); /* reset stack */
/*
* descend leftmost path of the tree
*
* by convention, root bn = 0.
*/
for (bn = 0;;) {
DT_GETPAGE(ip, bn, mp, psize, p, rc);
if (rc)
return rc;
/*
* leftmost leaf page
*/
if (p->header.flag & BT_LEAF) {
/* return leftmost entry */
btsp = btstack->top;
btsp->bn = bn;
btsp->index = 0;
btsp->mp = mp;
return 0;
}
/*
* descend down to leftmost child page
*/
if (BT_STACK_FULL(btstack)) {
DT_PUTPAGE(mp);
jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
BT_STACK_DUMP(btstack);
return -EIO;
}
/* push (bn, index) of the parent page/entry */
BT_PUSH(btstack, bn, 0);
/* get the leftmost entry */
stbl = DT_GETSTBL(p);
xd = (pxd_t *) & p->slot[stbl[0]];
/* get the child page block address */
bn = addressPXD(xd);
psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
/* unpin the parent page */
DT_PUTPAGE(mp);
}
}
/*
* dtReadNext()
*
* function: get the page of the specified offset (pn:index)
*
* return: if (offset > eof), bn = -1;
*
* note: if index > nextindex of the target leaf page,
* start with 1st entry of next leaf page;
*/
static int dtReadNext(struct inode *ip, loff_t * offset,
struct btstack * btstack)
{
int rc = 0;
struct dtoffset {
s16 pn;
s16 index;
s32 unused;
} *dtoffset = (struct dtoffset *) offset;
s64 bn;
struct metapage *mp;
dtpage_t *p;
int index;
int pn;
s8 *stbl;
struct btframe *btsp, *parent;
pxd_t *xd;
/*
* get leftmost leaf page pinned
*/
if ((rc = dtReadFirst(ip, btstack)))
return rc;
/* get leaf page */
DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
/* get the start offset (pn:index) */
pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
index = dtoffset->index;
/* start at leftmost page ? */
if (pn == 0) {
/* offset beyond eof ? */
if (index < p->header.nextindex)
goto out;
if (p->header.flag & BT_ROOT) {
bn = -1;
goto out;
}
/* start with 1st entry of next leaf page */
dtoffset->pn++;
dtoffset->index = index = 0;
goto a;
}
/* start at non-leftmost page: scan parent pages for large pn */
if (p->header.flag & BT_ROOT) {
bn = -1;
goto out;
}
/* start after next leaf page ? */
if (pn > 1)
goto b;
/* get leaf page pn = 1 */
a:
bn = le64_to_cpu(p->header.next);
/* unpin leaf page */
DT_PUTPAGE(mp);
/* offset beyond eof ? */
if (bn == 0) {
bn = -1;
goto out;
}
goto c;
/*
* scan last internal page level to get target leaf page
*/
b:
/* unpin leftmost leaf page */
DT_PUTPAGE(mp);
/* get left most parent page */
btsp = btstack->top;
parent = btsp - 1;
bn = parent->bn;
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc)
return rc;
/* scan parent pages at last internal page level */
while (pn >= p->header.nextindex) {
pn -= p->header.nextindex;
/* get next parent page address */
bn = le64_to_cpu(p->header.next);
/* unpin current parent page */
DT_PUTPAGE(mp);
/* offset beyond eof ? */
if (bn == 0) {
bn = -1;
goto out;
}
/* get next parent page */
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc)
return rc;
/* update parent page stack frame */
parent->bn = bn;
}
/* get leaf page address */
stbl = DT_GETSTBL(p);
xd = (pxd_t *) & p->slot[stbl[pn]];
bn = addressPXD(xd);
/* unpin parent page */
DT_PUTPAGE(mp);
/*
* get target leaf page
*/
c:
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc)
return rc;
/*
* leaf page has been completed:
* start with 1st entry of next leaf page
*/
if (index >= p->header.nextindex) {
bn = le64_to_cpu(p->header.next);
/* unpin leaf page */
DT_PUTPAGE(mp);
/* offset beyond eof ? */
if (bn == 0) {
bn = -1;
goto out;
}
/* get next leaf page */
DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
if (rc)
return rc;
/* start with 1st entry of next leaf page */
dtoffset->pn++;
dtoffset->index = 0;
}
out:
/* return target leaf page pinned */
btsp = btstack->top;
btsp->bn = bn;
btsp->index = dtoffset->index;
btsp->mp = mp;
return 0;
}
/*
* dtCompare()
*
* function: compare search key with an internal entry
*
* return:
* < 0 if k is < record
* = 0 if k is = record
* > 0 if k is > record
*/
static int dtCompare(struct component_name * key, /* search key */
dtpage_t * p, /* directory page */
int si)
{ /* entry slot index */
wchar_t *kname;
__le16 *name;
int klen, namlen, len, rc;
struct idtentry *ih;
struct dtslot *t;
/*
* force the left-most key on internal pages, at any level of
* the tree, to be less than any search key.
* this obviates having to update the leftmost key on an internal
* page when the user inserts a new key in the tree smaller than
* anything that has been stored.
*
* (? if/when dtSearch() narrows down to 1st entry (index = 0),
* at any internal page at any level of the tree,
* it descends to child of the entry anyway -
* ? make the entry as min size dummy entry)
*
* if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
* return (1);
*/
kname = key->name;
klen = key->namlen;
ih = (struct idtentry *) & p->slot[si];
si = ih->next;
name = ih->name;
namlen = ih->namlen;
len = min(namlen, DTIHDRDATALEN);
/* compare with head/only segment */
len = min(klen, len);
if ((rc = UniStrncmp_le(kname, name, len)))
return rc;
klen -= len;
namlen -= len;
/* compare with additional segment(s) */
kname += len;
while (klen > 0 && namlen > 0) {
/* compare with next name segment */
t = (struct dtslot *) & p->slot[si];
len = min(namlen, DTSLOTDATALEN);
len = min(klen, len);
name = t->name;
if ((rc = UniStrncmp_le(kname, name, len)))
return rc;
klen -= len;
namlen -= len;
kname += len;
si = t->next;
}
return (klen - namlen);
}
/*
* ciCompare()
*
* function: compare search key with an (leaf/internal) entry
*
* return:
* < 0 if k is < record
* = 0 if k is = record
* > 0 if k is > record
*/
static int ciCompare(struct component_name * key, /* search key */
dtpage_t * p, /* directory page */
int si, /* entry slot index */
int flag)
{
wchar_t *kname, x;
__le16 *name;
int klen, namlen, len, rc;
struct ldtentry *lh;
struct idtentry *ih;
struct dtslot *t;
int i;
/*
* force the left-most key on internal pages, at any level of
* the tree, to be less than any search key.
* this obviates having to update the leftmost key on an internal
* page when the user inserts a new key in the tree smaller than
* anything that has been stored.
*
* (? if/when dtSearch() narrows down to 1st entry (index = 0),
* at any internal page at any level of the tree,
* it descends to child of the entry anyway -
* ? make the entry as min size dummy entry)
*
* if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
* return (1);
*/
kname = key->name;
klen = key->namlen;
/*
* leaf page entry
*/
if (p->header.flag & BT_LEAF) {
lh = (struct ldtentry *) & p->slot[si];
si = lh->next;
name = lh->name;
namlen = lh->namlen;
if (flag & JFS_DIR_INDEX)
len = min(namlen, DTLHDRDATALEN);
else
len = min(namlen, DTLHDRDATALEN_LEGACY);
}
/*
* internal page entry
*/
else {
ih = (struct idtentry *) & p->slot[si];
si = ih->next;
name = ih->name;
namlen = ih->namlen;
len = min(namlen, DTIHDRDATALEN);
}
/* compare with head/only segment */
len = min(klen, len);
for (i = 0; i < len; i++, kname++, name++) {
/* only uppercase if case-insensitive support is on */
if ((flag & JFS_OS2) == JFS_OS2)
x = UniToupper(le16_to_cpu(*name));
else
x = le16_to_cpu(*name);
if ((rc = *kname - x))
return rc;
}
klen -= len;
namlen -= len;
/* compare with additional segment(s) */
while (klen > 0 && namlen > 0) {
/* compare with next name segment */
t = (struct dtslot *) & p->slot[si];
len = min(namlen, DTSLOTDATALEN);
len = min(klen, len);
name = t->name;
for (i = 0; i < len; i++, kname++, name++) {
/* only uppercase if case-insensitive support is on */
if ((flag & JFS_OS2) == JFS_OS2)
x = UniToupper(le16_to_cpu(*name));
else
x = le16_to_cpu(*name);
if ((rc = *kname - x))
return rc;
}
klen -= len;
namlen -= len;
si = t->next;
}
return (klen - namlen);
}
/*
* ciGetLeafPrefixKey()
*
* function: compute prefix of suffix compression
* from two adjacent leaf entries
* across page boundary
*
* return: non-zero on error
*
*/
static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
int ri, struct component_name * key, int flag)
{
int klen, namlen;
wchar_t *pl, *pr, *kname;
struct component_name lkey;
struct component_name rkey;
lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
GFP_KERNEL);
if (lkey.name == NULL)
return -ENOMEM;
rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
GFP_KERNEL);
if (rkey.name == NULL) {
kfree(lkey.name);
return -ENOMEM;
}
/* get left and right key */
dtGetKey(lp, li, &lkey, flag);
lkey.name[lkey.namlen] = 0;
if ((flag & JFS_OS2) == JFS_OS2)
ciToUpper(&lkey);
dtGetKey(rp, ri, &rkey, flag);
rkey.name[rkey.namlen] = 0;
if ((flag & JFS_OS2) == JFS_OS2)
ciToUpper(&rkey);
/* compute prefix */
klen = 0;
kname = key->name;
namlen = min(lkey.namlen, rkey.namlen);
for (pl = lkey.name, pr = rkey.name;
namlen; pl++, pr++, namlen--, klen++, kname++) {
*kname = *pr;
if (*pl != *pr) {
key->namlen = klen + 1;
goto free_names;
}
}
/* l->namlen <= r->namlen since l <= r */
if (lkey.namlen < rkey.namlen) {
*kname = *pr;
key->namlen = klen + 1;
} else /* l->namelen == r->namelen */
key->namlen = klen;
free_names:
kfree(lkey.name);
kfree(rkey.name);
return 0;
}
/*
* dtGetKey()
*
* function: get key of the entry
*/
static void dtGetKey(dtpage_t * p, int i, /* entry index */
struct component_name * key, int flag)
{
int si;
s8 *stbl;
struct ldtentry *lh;
struct idtentry *ih;
struct dtslot *t;
int namlen, len;
wchar_t *kname;
__le16 *name;
/* get entry */
stbl = DT_GETSTBL(p);
si = stbl[i];
if (p->header.flag & BT_LEAF) {
lh = (struct ldtentry *) & p->slot[si];
si = lh->next;
namlen = lh->namlen;
name = lh->name;
if (flag & JFS_DIR_INDEX)
len = min(namlen, DTLHDRDATALEN);
else
len = min(namlen, DTLHDRDATALEN_LEGACY);
} else {
ih = (struct idtentry *) & p->slot[si];
si = ih->next;
namlen = ih->namlen;
name = ih->name;
len = min(namlen, DTIHDRDATALEN);
}
key->namlen = namlen;
kname = key->name;
/*
* move head/only segment
*/
UniStrncpy_from_le(kname, name, len);
/*
* move additional segment(s)
*/
while (si >= 0) {
/* get next segment */
t = &p->slot[si];
kname += len;
namlen -= len;
len = min(namlen, DTSLOTDATALEN);
UniStrncpy_from_le(kname, t->name, len);
si = t->next;
}
}
/*
* dtInsertEntry()
*
* function: allocate free slot(s) and
* write a leaf/internal entry
*
* return: entry slot index
*/
static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
ddata_t * data, struct dt_lock ** dtlock)
{
struct dtslot *h, *t;
struct ldtentry *lh = NULL;
struct idtentry *ih = NULL;
int hsi, fsi, klen, len, nextindex;
wchar_t *kname;
__le16 *name;
s8 *stbl;
pxd_t *xd;
struct dt_lock *dtlck = *dtlock;
struct lv *lv;
int xsi, n;
s64 bn = 0;
struct metapage *mp = NULL;
klen = key->namlen;
kname = key->name;
/* allocate a free slot */
hsi = fsi = p->header.freelist;
h = &p->slot[fsi];
p->header.freelist = h->next;
--p->header.freecnt;
/* open new linelock */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = hsi;
/* write head/only segment */
if (p->header.flag & BT_LEAF) {
lh = (struct ldtentry *) h;
lh->next = h->next;
lh->inumber = cpu_to_le32(data->leaf.ino);
lh->namlen = klen;
name = lh->name;
if (data->leaf.ip) {
len = min(klen, DTLHDRDATALEN);
if (!(p->header.flag & BT_ROOT))
bn = addressPXD(&p->header.self);
lh->index = cpu_to_le32(add_index(data->leaf.tid,
data->leaf.ip,
bn, index));
} else
len = min(klen, DTLHDRDATALEN_LEGACY);
} else {
ih = (struct idtentry *) h;
ih->next = h->next;
xd = (pxd_t *) ih;
*xd = data->xd;
ih->namlen = klen;
name = ih->name;
len = min(klen, DTIHDRDATALEN);
}
UniStrncpy_to_le(name, kname, len);
n = 1;
xsi = hsi;
/* write additional segment(s) */
t = h;
klen -= len;
while (klen) {
/* get free slot */
fsi = p->header.freelist;
t = &p->slot[fsi];
p->header.freelist = t->next;
--p->header.freecnt;
/* is next slot contiguous ? */
if (fsi != xsi + 1) {
/* close current linelock */
lv->length = n;
dtlck->index++;
/* open new linelock */
if (dtlck->index < dtlck->maxcnt)
lv++;
else {
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[0];
}
lv->offset = fsi;
n = 0;
}
kname += len;
len = min(klen, DTSLOTDATALEN);
UniStrncpy_to_le(t->name, kname, len);
n++;
xsi = fsi;
klen -= len;
}
/* close current linelock */
lv->length = n;
dtlck->index++;
*dtlock = dtlck;
/* terminate last/only segment */
if (h == t) {
/* single segment entry */
if (p->header.flag & BT_LEAF)
lh->next = -1;
else
ih->next = -1;
} else
/* multi-segment entry */
t->next = -1;
/* if insert into middle, shift right succeeding entries in stbl */
stbl = DT_GETSTBL(p);
nextindex = p->header.nextindex;
if (index < nextindex) {
memmove(stbl + index + 1, stbl + index, nextindex - index);
if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
s64 lblock;
/*
* Need to update slot number for entries that moved
* in the stbl
*/
mp = NULL;
for (n = index + 1; n <= nextindex; n++) {
lh = (struct ldtentry *) & (p->slot[stbl[n]]);
modify_index(data->leaf.tid, data->leaf.ip,
le32_to_cpu(lh->index), bn, n,
&mp, &lblock);
}
if (mp)
release_metapage(mp);
}
}
stbl[index] = hsi;
/* advance next available entry index of stbl */
++p->header.nextindex;
}
/*
* dtMoveEntry()
*
* function: move entries from split/left page to new/right page
*
* nextindex of dst page and freelist/freecnt of both pages
* are updated.
*/
static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
int do_index)
{
int ssi, next; /* src slot index */
int di; /* dst entry index */
int dsi; /* dst slot index */
s8 *sstbl, *dstbl; /* sorted entry table */
int snamlen, len;
struct ldtentry *slh, *dlh = NULL;
struct idtentry *sih, *dih = NULL;
struct dtslot *h, *s, *d;
struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
struct lv *slv, *dlv;
int xssi, ns, nd;
int sfsi;
sstbl = (s8 *) & sp->slot[sp->header.stblindex];
dstbl = (s8 *) & dp->slot[dp->header.stblindex];
dsi = dp->header.freelist; /* first (whole page) free slot */
sfsi = sp->header.freelist;
/* linelock destination entry slot */
dlv = & ddtlck->lv[ddtlck->index];
dlv->offset = dsi;
/* linelock source entry slot */
slv = & sdtlck->lv[sdtlck->index];
slv->offset = sstbl[si];
xssi = slv->offset - 1;
/*
* move entries
*/
ns = nd = 0;
for (di = 0; si < sp->header.nextindex; si++, di++) {
ssi = sstbl[si];
dstbl[di] = dsi;
/* is next slot contiguous ? */
if (ssi != xssi + 1) {
/* close current linelock */
slv->length = ns;
sdtlck->index++;
/* open new linelock */
if (sdtlck->index < sdtlck->maxcnt)
slv++;
else {
sdtlck = (struct dt_lock *) txLinelock(sdtlck);
slv = & sdtlck->lv[0];
}
slv->offset = ssi;
ns = 0;
}
/*
* move head/only segment of an entry
*/
/* get dst slot */
h = d = &dp->slot[dsi];
/* get src slot and move */
s = &sp->slot[ssi];
if (sp->header.flag & BT_LEAF) {
/* get source entry */
slh = (struct ldtentry *) s;
dlh = (struct ldtentry *) h;
snamlen = slh->namlen;
if (do_index) {
len = min(snamlen, DTLHDRDATALEN);
dlh->index = slh->index; /* little-endian */
} else
len = min(snamlen, DTLHDRDATALEN_LEGACY);
memcpy(dlh, slh, 6 + len * 2);
next = slh->next;
/* update dst head/only segment next field */
dsi++;
dlh->next = dsi;
} else {
sih = (struct idtentry *) s;
snamlen = sih->namlen;
len = min(snamlen, DTIHDRDATALEN);
dih = (struct idtentry *) h;
memcpy(dih, sih, 10 + len * 2);
next = sih->next;
dsi++;
dih->next = dsi;
}
/* free src head/only segment */
s->next = sfsi;
s->cnt = 1;
sfsi = ssi;
ns++;
nd++;
xssi = ssi;
/*
* move additional segment(s) of the entry
*/
snamlen -= len;
while ((ssi = next) >= 0) {
/* is next slot contiguous ? */
if (ssi != xssi + 1) {
/* close current linelock */
slv->length = ns;
sdtlck->index++;
/* open new linelock */
if (sdtlck->index < sdtlck->maxcnt)
slv++;
else {
sdtlck =
(struct dt_lock *)
txLinelock(sdtlck);
slv = & sdtlck->lv[0];
}
slv->offset = ssi;
ns = 0;
}
/* get next source segment */
s = &sp->slot[ssi];
/* get next destination free slot */
d++;
len = min(snamlen, DTSLOTDATALEN);
UniStrncpy_le(d->name, s->name, len);
ns++;
nd++;
xssi = ssi;
dsi++;
d->next = dsi;
/* free source segment */
next = s->next;
s->next = sfsi;
s->cnt = 1;
sfsi = ssi;
snamlen -= len;
} /* end while */
/* terminate dst last/only segment */
if (h == d) {
/* single segment entry */
if (dp->header.flag & BT_LEAF)
dlh->next = -1;
else
dih->next = -1;
} else
/* multi-segment entry */
d->next = -1;
} /* end for */
/* close current linelock */
slv->length = ns;
sdtlck->index++;
*sdtlock = sdtlck;
dlv->length = nd;
ddtlck->index++;
*ddtlock = ddtlck;
/* update source header */
sp->header.freelist = sfsi;
sp->header.freecnt += nd;
/* update destination header */
dp->header.nextindex = di;
dp->header.freelist = dsi;
dp->header.freecnt -= nd;
}
/*
* dtDeleteEntry()
*
* function: free a (leaf/internal) entry
*
* log freelist header, stbl, and each segment slot of entry
* (even though last/only segment next field is modified,
* physical image logging requires all segment slots of
* the entry logged to avoid applying previous updates
* to the same slots)
*/
static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
{
int fsi; /* free entry slot index */
s8 *stbl;
struct dtslot *t;
int si, freecnt;
struct dt_lock *dtlck = *dtlock;
struct lv *lv;
int xsi, n;
/* get free entry slot index */
stbl = DT_GETSTBL(p);
fsi = stbl[fi];
/* open new linelock */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = fsi;
/* get the head/only segment */
t = &p->slot[fsi];
if (p->header.flag & BT_LEAF)
si = ((struct ldtentry *) t)->next;
else
si = ((struct idtentry *) t)->next;
t->next = si;
t->cnt = 1;
n = freecnt = 1;
xsi = fsi;
/* find the last/only segment */
while (si >= 0) {
/* is next slot contiguous ? */
if (si != xsi + 1) {
/* close current linelock */
lv->length = n;
dtlck->index++;
/* open new linelock */
if (dtlck->index < dtlck->maxcnt)
lv++;
else {
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[0];
}
lv->offset = si;
n = 0;
}
n++;
xsi = si;
freecnt++;
t = &p->slot[si];
t->cnt = 1;
si = t->next;
}
/* close current linelock */
lv->length = n;
dtlck->index++;
*dtlock = dtlck;
/* update freelist */
t->next = p->header.freelist;
p->header.freelist = fsi;
p->header.freecnt += freecnt;
/* if delete from middle,
* shift left the succedding entries in the stbl
*/
si = p->header.nextindex;
if (fi < si - 1)
memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
p->header.nextindex--;
}
/*
* dtTruncateEntry()
*
* function: truncate a (leaf/internal) entry
*
* log freelist header, stbl, and each segment slot of entry
* (even though last/only segment next field is modified,
* physical image logging requires all segment slots of
* the entry logged to avoid applying previous updates
* to the same slots)
*/
static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
{
int tsi; /* truncate entry slot index */
s8 *stbl;
struct dtslot *t;
int si, freecnt;
struct dt_lock *dtlck = *dtlock;
struct lv *lv;
int fsi, xsi, n;
/* get free entry slot index */
stbl = DT_GETSTBL(p);
tsi = stbl[ti];
/* open new linelock */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = tsi;
/* get the head/only segment */
t = &p->slot[tsi];
ASSERT(p->header.flag & BT_INTERNAL);
((struct idtentry *) t)->namlen = 0;
si = ((struct idtentry *) t)->next;
((struct idtentry *) t)->next = -1;
n = 1;
freecnt = 0;
fsi = si;
xsi = tsi;
/* find the last/only segment */
while (si >= 0) {
/* is next slot contiguous ? */
if (si != xsi + 1) {
/* close current linelock */
lv->length = n;
dtlck->index++;
/* open new linelock */
if (dtlck->index < dtlck->maxcnt)
lv++;
else {
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[0];
}
lv->offset = si;
n = 0;
}
n++;
xsi = si;
freecnt++;
t = &p->slot[si];
t->cnt = 1;
si = t->next;
}
/* close current linelock */
lv->length = n;
dtlck->index++;
*dtlock = dtlck;
/* update freelist */
if (freecnt == 0)
return;
t->next = p->header.freelist;
p->header.freelist = fsi;
p->header.freecnt += freecnt;
}
/*
* dtLinelockFreelist()
*/
static void dtLinelockFreelist(dtpage_t * p, /* directory page */
int m, /* max slot index */
struct dt_lock ** dtlock)
{
int fsi; /* free entry slot index */
struct dtslot *t;
int si;
struct dt_lock *dtlck = *dtlock;
struct lv *lv;
int xsi, n;
/* get free entry slot index */
fsi = p->header.freelist;
/* open new linelock */
if (dtlck->index >= dtlck->maxcnt)
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[dtlck->index];
lv->offset = fsi;
n = 1;
xsi = fsi;
t = &p->slot[fsi];
si = t->next;
/* find the last/only segment */
while (si < m && si >= 0) {
/* is next slot contiguous ? */
if (si != xsi + 1) {
/* close current linelock */
lv->length = n;
dtlck->index++;
/* open new linelock */
if (dtlck->index < dtlck->maxcnt)
lv++;
else {
dtlck = (struct dt_lock *) txLinelock(dtlck);
lv = & dtlck->lv[0];
}
lv->offset = si;
n = 0;
}
n++;
xsi = si;
t = &p->slot[si];
si = t->next;
}
/* close current linelock */
lv->length = n;
dtlck->index++;
*dtlock = dtlck;
}
/*
* NAME: dtModify
*
* FUNCTION: Modify the inode number part of a directory entry
*
* PARAMETERS:
* tid - Transaction id
* ip - Inode of parent directory
* key - Name of entry to be modified
* orig_ino - Original inode number expected in entry
* new_ino - New inode number to put into entry
* flag - JFS_RENAME
*
* RETURNS:
* -ESTALE - If entry found does not match orig_ino passed in
* -ENOENT - If no entry can be found to match key
* 0 - If successfully modified entry
*/
int dtModify(tid_t tid, struct inode *ip,
struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
{
int rc;
s64 bn;
struct metapage *mp;
dtpage_t *p;
int index;
struct btstack btstack;
struct tlock *tlck;
struct dt_lock *dtlck;
struct lv *lv;
s8 *stbl;
int entry_si; /* entry slot index */
struct ldtentry *entry;
/*
* search for the entry to modify:
*
* dtSearch() returns (leaf page pinned, index at which to modify).
*/
if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
return rc;
/* retrieve search result */
DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
BT_MARK_DIRTY(mp, ip);
/*
* acquire a transaction lock on the leaf page of named entry
*/
tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
dtlck = (struct dt_lock *) & tlck->lock;
/* get slot index of the entry */
stbl = DT_GETSTBL(p);
entry_si = stbl[index];
/* linelock entry */
ASSERT(dtlck->index == 0);
lv = & dtlck->lv[0];
lv->offset = entry_si;
lv->length = 1;
dtlck->index++;
/* get the head/only segment */
entry = (struct ldtentry *) & p->slot[entry_si];
/* substitute the inode number of the entry */
entry->inumber = cpu_to_le32(new_ino);
/* unpin the leaf page */
DT_PUTPAGE(mp);
return 0;
}