2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 10:44:14 +08:00
linux-next/mm/memory_hotplug.c
Michal Hocko dc0bbf3b7f mm: remove return value from init_currently_empty_zone
Patch series "mm: make movable onlining suck less", v4.

Movable onlining is a real hack with many downsides - mainly
reintroduction of lowmem/highmem issues we used to have on 32b systems -
but it is the only way to make the memory hotremove more reliable which
is something that people are asking for.

The current semantic of memory movable onlinening is really cumbersome,
however.  The main reason for this is that the udev driven approach is
basically unusable because udev races with the memory probing while only
the last memory block or the one adjacent to the existing zone_movable
are allowed to be onlined movable.  In short the criterion for the
successful online_movable changes under udev's feet.  A reliable udev
approach would require a 2 phase approach where the first successful
movable online would have to check all the previous blocks and online
them in descending order.  This is hard to be considered sane.

This patchset aims at making the onlining semantic more usable.  First
of all it allows to online memory movable as long as it doesn't clash
with the existing ZONE_NORMAL.  That means that ZONE_NORMAL and
ZONE_MOVABLE cannot overlap.  Currently I preserve the original ordering
semantic so the zone always precedes the movable zone but I have plans
to remove this restriction in future because it is not really necessary.

First 3 patches are cleanups which should be ready to be merged right
away (unless I have missed something subtle of course).

Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path.

Patch 5 deals with implicit assumptions of register_one_node on pgdat
initialization.

Patches 6-10 deal with offline holes in the zone for pfn walkers.  I
hope I got all of them right but people familiar with compaction should
double check this.

Patch 11 is the core of the change.  In order to make it easier to
review I have tried it to be as minimalistic as possible and the large
code removal is moved to patch 14.

Patch 12 is a trivial follow up cleanup.  Patch 13 fixes sparse warnings
and finally patch 14 removes the unused code.

I have tested the patches in kvm:
  # qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ...

and then probed the additional memory by
  (qemu) object_add memory-backend-ram,id=mem1,size=1G
  (qemu) device_add pc-dimm,id=dimm1,memdev=mem1

Then I have used this simple script to probe the memory block by hand
  # cat probe_memblock.sh
  #!/bin/sh

  BLOCK_NR=$1

  # echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe

  # for i in $(seq 10); do sh probe_memblock.sh $i; done
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable
  /sys/devices/system/memory/memory35/valid_zones:Normal Movable
  /sys/devices/system/memory/memory36/valid_zones:Normal Movable
  /sys/devices/system/memory/memory37/valid_zones:Normal Movable
  /sys/devices/system/memory/memory38/valid_zones:Normal Movable
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

The main difference to the original implementation is that all new
memblocks can be both online_kernel and online_movable initially because
there is no clash obviously.  For the comparison the original
implementation would have

  /sys/devices/system/memory/memory33/valid_zones:Normal
  /sys/devices/system/memory/memory34/valid_zones:Normal
  /sys/devices/system/memory/memory35/valid_zones:Normal
  /sys/devices/system/memory/memory36/valid_zones:Normal
  /sys/devices/system/memory/memory37/valid_zones:Normal
  /sys/devices/system/memory/memory38/valid_zones:Normal
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

Now
  # echo online_movable > /sys/devices/system/memory/memory34/state
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable
  /sys/devices/system/memory/memory36/valid_zones:Movable
  /sys/devices/system/memory/memory37/valid_zones:Movable
  /sys/devices/system/memory/memory38/valid_zones:Movable
  /sys/devices/system/memory/memory39/valid_zones:Movable

Block 33 can still be online both kernel and movable while all
the remaining can be only movable.

/proc/zonelist says
  Node 0, zone   Normal
    pages free     0
          min      0
          low      0
          high     0
          spanned  0
          present  0
  --
  Node 0, zone  Movable
    pages free     32753
          min      85
          low      117
          high     149
          spanned  32768
          present  32768

A new memblock at a lower address will result in a new memblock (32)
which will still allow both Normal and Movable.

  # sh probe_memblock.sh 0
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

and online_kernel will convert it to the zone normal properly
while 33 can be still onlined both ways.

  # echo online_kernel > /sys/devices/system/memory/memory32/state
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     65441
          min      165
          low      230
          high     295
          spanned  65536
          present  65536
  --
  Node 0, zone  Movable
    pages free     32740
          min      82
          low      114
          high     146
          spanned  32768
          present  32768

so both zones have one memblock spanned and present.

Onlining 39 should associate this block to the movable zone

  # echo online > /sys/devices/system/memory/memory39/state

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     32765
          min      80
          low      112
          high     144
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     65501
          min      160
          low      225
          high     290
          spanned  196608
          present  65536

so we will have a movable zone which spans 6 memblocks, 2 present and 4
representing a hole.

Offlining both movable blocks will lead to the zone with no present
pages which is the expected behavior I believe.

  # echo offline > /sys/devices/system/memory/memory39/state
  # echo offline > /sys/devices/system/memory/memory34/state
  # grep -A6 "Movable\|Normal" /proc/zoneinfo
  Node 0, zone   Normal
    pages free     32735
          min      90
          low      122
          high     154
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     0
          min      0
          low      0
          high     0
          spanned  196608
          present  0

As a bonus we will get a nice cleanup in the memory hotplug codebase.

This patch (of 16):

init_currently_empty_zone doesn't have any error to return yet it is
still an int and callers try to be defensive and try to handle potential
error.  Remove this nonsense and simplify all callers.

This patch shouldn't have any visible effect

Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00

2191 lines
55 KiB
C

/*
* linux/mm/memory_hotplug.c
*
* Copyright (C)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/memory.h>
#include <linux/memremap.h>
#include <linux/memory_hotplug.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/pfn.h>
#include <linux/suspend.h>
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include <linux/compaction.h>
#include <asm/tlbflush.h>
#include "internal.h"
/*
* online_page_callback contains pointer to current page onlining function.
* Initially it is generic_online_page(). If it is required it could be
* changed by calling set_online_page_callback() for callback registration
* and restore_online_page_callback() for generic callback restore.
*/
static void generic_online_page(struct page *page);
static online_page_callback_t online_page_callback = generic_online_page;
static DEFINE_MUTEX(online_page_callback_lock);
/* The same as the cpu_hotplug lock, but for memory hotplug. */
static struct {
struct task_struct *active_writer;
struct mutex lock; /* Synchronizes accesses to refcount, */
/*
* Also blocks the new readers during
* an ongoing mem hotplug operation.
*/
int refcount;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
} mem_hotplug = {
.active_writer = NULL,
.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
.refcount = 0,
#ifdef CONFIG_DEBUG_LOCK_ALLOC
.dep_map = {.name = "mem_hotplug.lock" },
#endif
};
/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
bool memhp_auto_online;
#else
bool memhp_auto_online = true;
#endif
EXPORT_SYMBOL_GPL(memhp_auto_online);
static int __init setup_memhp_default_state(char *str)
{
if (!strcmp(str, "online"))
memhp_auto_online = true;
else if (!strcmp(str, "offline"))
memhp_auto_online = false;
return 1;
}
__setup("memhp_default_state=", setup_memhp_default_state);
void get_online_mems(void)
{
might_sleep();
if (mem_hotplug.active_writer == current)
return;
memhp_lock_acquire_read();
mutex_lock(&mem_hotplug.lock);
mem_hotplug.refcount++;
mutex_unlock(&mem_hotplug.lock);
}
void put_online_mems(void)
{
if (mem_hotplug.active_writer == current)
return;
mutex_lock(&mem_hotplug.lock);
if (WARN_ON(!mem_hotplug.refcount))
mem_hotplug.refcount++; /* try to fix things up */
if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
wake_up_process(mem_hotplug.active_writer);
mutex_unlock(&mem_hotplug.lock);
memhp_lock_release();
}
/* Serializes write accesses to mem_hotplug.active_writer. */
static DEFINE_MUTEX(memory_add_remove_lock);
void mem_hotplug_begin(void)
{
mutex_lock(&memory_add_remove_lock);
mem_hotplug.active_writer = current;
memhp_lock_acquire();
for (;;) {
mutex_lock(&mem_hotplug.lock);
if (likely(!mem_hotplug.refcount))
break;
__set_current_state(TASK_UNINTERRUPTIBLE);
mutex_unlock(&mem_hotplug.lock);
schedule();
}
}
void mem_hotplug_done(void)
{
mem_hotplug.active_writer = NULL;
mutex_unlock(&mem_hotplug.lock);
memhp_lock_release();
mutex_unlock(&memory_add_remove_lock);
}
/* add this memory to iomem resource */
static struct resource *register_memory_resource(u64 start, u64 size)
{
struct resource *res;
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (!res)
return ERR_PTR(-ENOMEM);
res->name = "System RAM";
res->start = start;
res->end = start + size - 1;
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
if (request_resource(&iomem_resource, res) < 0) {
pr_debug("System RAM resource %pR cannot be added\n", res);
kfree(res);
return ERR_PTR(-EEXIST);
}
return res;
}
static void release_memory_resource(struct resource *res)
{
if (!res)
return;
release_resource(res);
kfree(res);
return;
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
void get_page_bootmem(unsigned long info, struct page *page,
unsigned long type)
{
page->freelist = (void *)type;
SetPagePrivate(page);
set_page_private(page, info);
page_ref_inc(page);
}
void put_page_bootmem(struct page *page)
{
unsigned long type;
type = (unsigned long) page->freelist;
BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
if (page_ref_dec_return(page) == 1) {
page->freelist = NULL;
ClearPagePrivate(page);
set_page_private(page, 0);
INIT_LIST_HEAD(&page->lru);
free_reserved_page(page);
}
}
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
/* Get section's memmap address */
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
/*
* Get page for the memmap's phys address
* XXX: need more consideration for sparse_vmemmap...
*/
page = virt_to_page(memmap);
mapsize = sizeof(struct page) * PAGES_PER_SECTION;
mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
/* remember memmap's page */
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, SECTION_INFO);
usemap = __nr_to_section(section_nr)->pageblock_flags;
page = virt_to_page(usemap);
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#else /* CONFIG_SPARSEMEM_VMEMMAP */
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
if (!pfn_valid(start_pfn))
return;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
usemap = __nr_to_section(section_nr)->pageblock_flags;
page = virt_to_page(usemap);
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
{
unsigned long i, pfn, end_pfn, nr_pages;
int node = pgdat->node_id;
struct page *page;
nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
page = virt_to_page(pgdat);
for (i = 0; i < nr_pages; i++, page++)
get_page_bootmem(node, page, NODE_INFO);
pfn = pgdat->node_start_pfn;
end_pfn = pgdat_end_pfn(pgdat);
/* register section info */
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
/*
* Some platforms can assign the same pfn to multiple nodes - on
* node0 as well as nodeN. To avoid registering a pfn against
* multiple nodes we check that this pfn does not already
* reside in some other nodes.
*/
if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
register_page_bootmem_info_section(pfn);
}
}
#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long old_zone_end_pfn;
zone_span_writelock(zone);
old_zone_end_pfn = zone_end_pfn(zone);
if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
zone->zone_start_pfn;
zone_span_writeunlock(zone);
}
static void resize_zone(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
zone_span_writelock(zone);
if (end_pfn - start_pfn) {
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = end_pfn - start_pfn;
} else {
/*
* make it consist as free_area_init_core(),
* if spanned_pages = 0, then keep start_pfn = 0
*/
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
}
zone_span_writeunlock(zone);
}
static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
enum zone_type zid = zone_idx(zone);
int nid = zone->zone_pgdat->node_id;
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++)
set_page_links(pfn_to_page(pfn), zid, nid, pfn);
}
static void __ref ensure_zone_is_initialized(struct zone *zone,
unsigned long start_pfn, unsigned long num_pages)
{
if (!zone_is_initialized(zone))
init_currently_empty_zone(zone, start_pfn, num_pages);
}
static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long flags;
unsigned long z1_start_pfn;
ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
pgdat_resize_lock(z1->zone_pgdat, &flags);
/* can't move pfns which are higher than @z2 */
if (end_pfn > zone_end_pfn(z2))
goto out_fail;
/* the move out part must be at the left most of @z2 */
if (start_pfn > z2->zone_start_pfn)
goto out_fail;
/* must included/overlap */
if (end_pfn <= z2->zone_start_pfn)
goto out_fail;
/* use start_pfn for z1's start_pfn if z1 is empty */
if (!zone_is_empty(z1))
z1_start_pfn = z1->zone_start_pfn;
else
z1_start_pfn = start_pfn;
resize_zone(z1, z1_start_pfn, end_pfn);
resize_zone(z2, end_pfn, zone_end_pfn(z2));
pgdat_resize_unlock(z1->zone_pgdat, &flags);
fix_zone_id(z1, start_pfn, end_pfn);
return 0;
out_fail:
pgdat_resize_unlock(z1->zone_pgdat, &flags);
return -1;
}
static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long flags;
unsigned long z2_end_pfn;
ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
pgdat_resize_lock(z1->zone_pgdat, &flags);
/* can't move pfns which are lower than @z1 */
if (z1->zone_start_pfn > start_pfn)
goto out_fail;
/* the move out part mast at the right most of @z1 */
if (zone_end_pfn(z1) > end_pfn)
goto out_fail;
/* must included/overlap */
if (start_pfn >= zone_end_pfn(z1))
goto out_fail;
/* use end_pfn for z2's end_pfn if z2 is empty */
if (!zone_is_empty(z2))
z2_end_pfn = zone_end_pfn(z2);
else
z2_end_pfn = end_pfn;
resize_zone(z1, z1->zone_start_pfn, start_pfn);
resize_zone(z2, start_pfn, z2_end_pfn);
pgdat_resize_unlock(z1->zone_pgdat, &flags);
fix_zone_id(z2, start_pfn, end_pfn);
return 0;
out_fail:
pgdat_resize_unlock(z1->zone_pgdat, &flags);
return -1;
}
static struct zone * __meminit move_pfn_range(int zone_shift,
unsigned long start_pfn, unsigned long end_pfn)
{
struct zone *zone = page_zone(pfn_to_page(start_pfn));
int ret = 0;
if (zone_shift < 0)
ret = move_pfn_range_left(zone + zone_shift, zone,
start_pfn, end_pfn);
else if (zone_shift)
ret = move_pfn_range_right(zone, zone + zone_shift,
start_pfn, end_pfn);
if (ret)
return NULL;
return zone + zone_shift;
}
static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
pgdat->node_start_pfn;
}
static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nr_pages = PAGES_PER_SECTION;
int nid = pgdat->node_id;
int zone_type;
unsigned long flags, pfn;
zone_type = zone - pgdat->node_zones;
ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
pgdat_resize_lock(zone->zone_pgdat, &flags);
grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
phys_start_pfn + nr_pages);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
memmap_init_zone(nr_pages, nid, zone_type,
phys_start_pfn, MEMMAP_HOTPLUG);
/* online_page_range is called later and expects pages reserved */
for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
if (!pfn_valid(pfn))
continue;
SetPageReserved(pfn_to_page(pfn));
}
return 0;
}
static int __meminit __add_section(int nid, struct zone *zone,
unsigned long phys_start_pfn)
{
int ret;
if (pfn_valid(phys_start_pfn))
return -EEXIST;
ret = sparse_add_one_section(zone, phys_start_pfn);
if (ret < 0)
return ret;
ret = __add_zone(zone, phys_start_pfn);
if (ret < 0)
return ret;
return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
}
/*
* Reasonably generic function for adding memory. It is
* expected that archs that support memory hotplug will
* call this function after deciding the zone to which to
* add the new pages.
*/
int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
unsigned long nr_pages)
{
unsigned long i;
int err = 0;
int start_sec, end_sec;
struct vmem_altmap *altmap;
clear_zone_contiguous(zone);
/* during initialize mem_map, align hot-added range to section */
start_sec = pfn_to_section_nr(phys_start_pfn);
end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
if (altmap) {
/*
* Validate altmap is within bounds of the total request
*/
if (altmap->base_pfn != phys_start_pfn
|| vmem_altmap_offset(altmap) > nr_pages) {
pr_warn_once("memory add fail, invalid altmap\n");
err = -EINVAL;
goto out;
}
altmap->alloc = 0;
}
for (i = start_sec; i <= end_sec; i++) {
err = __add_section(nid, zone, section_nr_to_pfn(i));
/*
* EEXIST is finally dealt with by ioresource collision
* check. see add_memory() => register_memory_resource()
* Warning will be printed if there is collision.
*/
if (err && (err != -EEXIST))
break;
err = 0;
}
vmemmap_populate_print_last();
out:
set_zone_contiguous(zone);
return err;
}
EXPORT_SYMBOL_GPL(__add_pages);
#ifdef CONFIG_MEMORY_HOTREMOVE
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
static int find_smallest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
struct mem_section *ms;
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(start_pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(start_pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(start_pfn)))
continue;
return start_pfn;
}
return 0;
}
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
static int find_biggest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
struct mem_section *ms;
unsigned long pfn;
/* pfn is the end pfn of a memory section. */
pfn = end_pfn - 1;
for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(pfn)))
continue;
return pfn;
}
return 0;
}
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long zone_start_pfn = zone->zone_start_pfn;
unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
unsigned long zone_end_pfn = z;
unsigned long pfn;
struct mem_section *ms;
int nid = zone_to_nid(zone);
zone_span_writelock(zone);
if (zone_start_pfn == start_pfn) {
/*
* If the section is smallest section in the zone, it need
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
zone_end_pfn);
if (pfn) {
zone->zone_start_pfn = pfn;
zone->spanned_pages = zone_end_pfn - pfn;
}
} else if (zone_end_pfn == end_pfn) {
/*
* If the section is biggest section in the zone, it need
* shrink zone->spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
start_pfn);
if (pfn)
zone->spanned_pages = pfn - zone_start_pfn + 1;
}
/*
* The section is not biggest or smallest mem_section in the zone, it
* only creates a hole in the zone. So in this case, we need not
* change the zone. But perhaps, the zone has only hole data. Thus
* it check the zone has only hole or not.
*/
pfn = zone_start_pfn;
for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (page_zone(pfn_to_page(pfn)) != zone)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
zone_span_writeunlock(zone);
return;
}
/* The zone has no valid section */
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
zone_span_writeunlock(zone);
}
static void shrink_pgdat_span(struct pglist_data *pgdat,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
unsigned long pgdat_end_pfn = p;
unsigned long pfn;
struct mem_section *ms;
int nid = pgdat->node_id;
if (pgdat_start_pfn == start_pfn) {
/*
* If the section is smallest section in the pgdat, it need
* shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
pgdat_end_pfn);
if (pfn) {
pgdat->node_start_pfn = pfn;
pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
}
} else if (pgdat_end_pfn == end_pfn) {
/*
* If the section is biggest section in the pgdat, it need
* shrink pgdat->node_spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
start_pfn);
if (pfn)
pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
}
/*
* If the section is not biggest or smallest mem_section in the pgdat,
* it only creates a hole in the pgdat. So in this case, we need not
* change the pgdat.
* But perhaps, the pgdat has only hole data. Thus it check the pgdat
* has only hole or not.
*/
pfn = pgdat_start_pfn;
for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
return;
}
/* The pgdat has no valid section */
pgdat->node_start_pfn = 0;
pgdat->node_spanned_pages = 0;
}
static void __remove_zone(struct zone *zone, unsigned long start_pfn)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nr_pages = PAGES_PER_SECTION;
int zone_type;
unsigned long flags;
zone_type = zone - pgdat->node_zones;
pgdat_resize_lock(zone->zone_pgdat, &flags);
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
}
static int __remove_section(struct zone *zone, struct mem_section *ms,
unsigned long map_offset)
{
unsigned long start_pfn;
int scn_nr;
int ret = -EINVAL;
if (!valid_section(ms))
return ret;
ret = unregister_memory_section(ms);
if (ret)
return ret;
scn_nr = __section_nr(ms);
start_pfn = section_nr_to_pfn(scn_nr);
__remove_zone(zone, start_pfn);
sparse_remove_one_section(zone, ms, map_offset);
return 0;
}
/**
* __remove_pages() - remove sections of pages from a zone
* @zone: zone from which pages need to be removed
* @phys_start_pfn: starting pageframe (must be aligned to start of a section)
* @nr_pages: number of pages to remove (must be multiple of section size)
*
* Generic helper function to remove section mappings and sysfs entries
* for the section of the memory we are removing. Caller needs to make
* sure that pages are marked reserved and zones are adjust properly by
* calling offline_pages().
*/
int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
unsigned long nr_pages)
{
unsigned long i;
unsigned long map_offset = 0;
int sections_to_remove, ret = 0;
/* In the ZONE_DEVICE case device driver owns the memory region */
if (is_dev_zone(zone)) {
struct page *page = pfn_to_page(phys_start_pfn);
struct vmem_altmap *altmap;
altmap = to_vmem_altmap((unsigned long) page);
if (altmap)
map_offset = vmem_altmap_offset(altmap);
} else {
resource_size_t start, size;
start = phys_start_pfn << PAGE_SHIFT;
size = nr_pages * PAGE_SIZE;
ret = release_mem_region_adjustable(&iomem_resource, start,
size);
if (ret) {
resource_size_t endres = start + size - 1;
pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
&start, &endres, ret);
}
}
clear_zone_contiguous(zone);
/*
* We can only remove entire sections
*/
BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
BUG_ON(nr_pages % PAGES_PER_SECTION);
sections_to_remove = nr_pages / PAGES_PER_SECTION;
for (i = 0; i < sections_to_remove; i++) {
unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
map_offset = 0;
if (ret)
break;
}
set_zone_contiguous(zone);
return ret;
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
int set_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == generic_online_page) {
online_page_callback = callback;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(set_online_page_callback);
int restore_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == callback) {
online_page_callback = generic_online_page;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(restore_online_page_callback);
void __online_page_set_limits(struct page *page)
{
}
EXPORT_SYMBOL_GPL(__online_page_set_limits);
void __online_page_increment_counters(struct page *page)
{
adjust_managed_page_count(page, 1);
}
EXPORT_SYMBOL_GPL(__online_page_increment_counters);
void __online_page_free(struct page *page)
{
__free_reserved_page(page);
}
EXPORT_SYMBOL_GPL(__online_page_free);
static void generic_online_page(struct page *page)
{
__online_page_set_limits(page);
__online_page_increment_counters(page);
__online_page_free(page);
}
static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
void *arg)
{
unsigned long i;
unsigned long onlined_pages = *(unsigned long *)arg;
struct page *page;
if (PageReserved(pfn_to_page(start_pfn)))
for (i = 0; i < nr_pages; i++) {
page = pfn_to_page(start_pfn + i);
(*online_page_callback)(page);
onlined_pages++;
}
*(unsigned long *)arg = onlined_pages;
return 0;
}
#ifdef CONFIG_MOVABLE_NODE
/*
* When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
* normal memory.
*/
static bool can_online_high_movable(struct zone *zone)
{
return true;
}
#else /* CONFIG_MOVABLE_NODE */
/* ensure every online node has NORMAL memory */
static bool can_online_high_movable(struct zone *zone)
{
return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
}
#endif /* CONFIG_MOVABLE_NODE */
/* check which state of node_states will be changed when online memory */
static void node_states_check_changes_online(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
int nid = zone_to_nid(zone);
enum zone_type zone_last = ZONE_NORMAL;
/*
* If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
* contains nodes which have zones of 0...ZONE_NORMAL,
* set zone_last to ZONE_NORMAL.
*
* If we don't have HIGHMEM nor movable node,
* node_states[N_NORMAL_MEMORY] contains nodes which have zones of
* 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
*/
if (N_MEMORY == N_NORMAL_MEMORY)
zone_last = ZONE_MOVABLE;
/*
* if the memory to be online is in a zone of 0...zone_last, and
* the zones of 0...zone_last don't have memory before online, we will
* need to set the node to node_states[N_NORMAL_MEMORY] after
* the memory is online.
*/
if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
arg->status_change_nid_normal = nid;
else
arg->status_change_nid_normal = -1;
#ifdef CONFIG_HIGHMEM
/*
* If we have movable node, node_states[N_HIGH_MEMORY]
* contains nodes which have zones of 0...ZONE_HIGHMEM,
* set zone_last to ZONE_HIGHMEM.
*
* If we don't have movable node, node_states[N_NORMAL_MEMORY]
* contains nodes which have zones of 0...ZONE_MOVABLE,
* set zone_last to ZONE_MOVABLE.
*/
zone_last = ZONE_HIGHMEM;
if (N_MEMORY == N_HIGH_MEMORY)
zone_last = ZONE_MOVABLE;
if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
arg->status_change_nid_high = nid;
else
arg->status_change_nid_high = -1;
#else
arg->status_change_nid_high = arg->status_change_nid_normal;
#endif
/*
* if the node don't have memory befor online, we will need to
* set the node to node_states[N_MEMORY] after the memory
* is online.
*/
if (!node_state(nid, N_MEMORY))
arg->status_change_nid = nid;
else
arg->status_change_nid = -1;
}
static void node_states_set_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_set_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_set_state(node, N_HIGH_MEMORY);
node_set_state(node, N_MEMORY);
}
bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
enum zone_type target, int *zone_shift)
{
struct zone *zone = page_zone(pfn_to_page(pfn));
enum zone_type idx = zone_idx(zone);
int i;
*zone_shift = 0;
if (idx < target) {
/* pages must be at end of current zone */
if (pfn + nr_pages != zone_end_pfn(zone))
return false;
/* no zones in use between current zone and target */
for (i = idx + 1; i < target; i++)
if (zone_is_initialized(zone - idx + i))
return false;
}
if (target < idx) {
/* pages must be at beginning of current zone */
if (pfn != zone->zone_start_pfn)
return false;
/* no zones in use between current zone and target */
for (i = target + 1; i < idx; i++)
if (zone_is_initialized(zone - idx + i))
return false;
}
*zone_shift = target - idx;
return true;
}
/* Must be protected by mem_hotplug_begin() */
int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
{
unsigned long flags;
unsigned long onlined_pages = 0;
struct zone *zone;
int need_zonelists_rebuild = 0;
int nid;
int ret;
struct memory_notify arg;
int zone_shift = 0;
/*
* This doesn't need a lock to do pfn_to_page().
* The section can't be removed here because of the
* memory_block->state_mutex.
*/
zone = page_zone(pfn_to_page(pfn));
if ((zone_idx(zone) > ZONE_NORMAL ||
online_type == MMOP_ONLINE_MOVABLE) &&
!can_online_high_movable(zone))
return -EINVAL;
if (online_type == MMOP_ONLINE_KERNEL) {
if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
return -EINVAL;
} else if (online_type == MMOP_ONLINE_MOVABLE) {
if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
return -EINVAL;
}
zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
if (!zone)
return -EINVAL;
arg.start_pfn = pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_online(nr_pages, zone, &arg);
nid = zone_to_nid(zone);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
if (ret)
goto failed_addition;
/*
* If this zone is not populated, then it is not in zonelist.
* This means the page allocator ignores this zone.
* So, zonelist must be updated after online.
*/
mutex_lock(&zonelists_mutex);
if (!populated_zone(zone)) {
need_zonelists_rebuild = 1;
build_all_zonelists(NULL, zone);
}
ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
online_pages_range);
if (ret) {
if (need_zonelists_rebuild)
zone_pcp_reset(zone);
mutex_unlock(&zonelists_mutex);
goto failed_addition;
}
zone->present_pages += onlined_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages += onlined_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
if (onlined_pages) {
node_states_set_node(nid, &arg);
if (need_zonelists_rebuild)
build_all_zonelists(NULL, NULL);
else
zone_pcp_update(zone);
}
mutex_unlock(&zonelists_mutex);
init_per_zone_wmark_min();
if (onlined_pages) {
kswapd_run(nid);
kcompactd_run(nid);
}
vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
if (onlined_pages)
memory_notify(MEM_ONLINE, &arg);
return 0;
failed_addition:
pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
(unsigned long long) pfn << PAGE_SHIFT,
(((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_ONLINE, &arg);
return ret;
}
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
static void reset_node_present_pages(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
z->present_pages = 0;
pgdat->node_present_pages = 0;
}
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
{
struct pglist_data *pgdat;
unsigned long zones_size[MAX_NR_ZONES] = {0};
unsigned long zholes_size[MAX_NR_ZONES] = {0};
unsigned long start_pfn = PFN_DOWN(start);
pgdat = NODE_DATA(nid);
if (!pgdat) {
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
arch_refresh_nodedata(nid, pgdat);
} else {
/*
* Reset the nr_zones, order and classzone_idx before reuse.
* Note that kswapd will init kswapd_classzone_idx properly
* when it starts in the near future.
*/
pgdat->nr_zones = 0;
pgdat->kswapd_order = 0;
pgdat->kswapd_classzone_idx = 0;
}
/* we can use NODE_DATA(nid) from here */
/* init node's zones as empty zones, we don't have any present pages.*/
free_area_init_node(nid, zones_size, start_pfn, zholes_size);
pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
/*
* The node we allocated has no zone fallback lists. For avoiding
* to access not-initialized zonelist, build here.
*/
mutex_lock(&zonelists_mutex);
build_all_zonelists(pgdat, NULL);
mutex_unlock(&zonelists_mutex);
/*
* zone->managed_pages is set to an approximate value in
* free_area_init_core(), which will cause
* /sys/device/system/node/nodeX/meminfo has wrong data.
* So reset it to 0 before any memory is onlined.
*/
reset_node_managed_pages(pgdat);
/*
* When memory is hot-added, all the memory is in offline state. So
* clear all zones' present_pages because they will be updated in
* online_pages() and offline_pages().
*/
reset_node_present_pages(pgdat);
return pgdat;
}
static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
{
arch_refresh_nodedata(nid, NULL);
free_percpu(pgdat->per_cpu_nodestats);
arch_free_nodedata(pgdat);
return;
}
/**
* try_online_node - online a node if offlined
*
* called by cpu_up() to online a node without onlined memory.
*/
int try_online_node(int nid)
{
pg_data_t *pgdat;
int ret;
if (node_online(nid))
return 0;
mem_hotplug_begin();
pgdat = hotadd_new_pgdat(nid, 0);
if (!pgdat) {
pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
node_set_online(nid);
ret = register_one_node(nid);
BUG_ON(ret);
if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL, NULL);
mutex_unlock(&zonelists_mutex);
}
out:
mem_hotplug_done();
return ret;
}
static int check_hotplug_memory_range(u64 start, u64 size)
{
u64 start_pfn = PFN_DOWN(start);
u64 nr_pages = size >> PAGE_SHIFT;
/* Memory range must be aligned with section */
if ((start_pfn & ~PAGE_SECTION_MASK) ||
(nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
(unsigned long long)start,
(unsigned long long)size);
return -EINVAL;
}
return 0;
}
/*
* If movable zone has already been setup, newly added memory should be check.
* If its address is higher than movable zone, it should be added as movable.
* Without this check, movable zone may overlap with other zone.
*/
static int should_add_memory_movable(int nid, u64 start, u64 size)
{
unsigned long start_pfn = start >> PAGE_SHIFT;
pg_data_t *pgdat = NODE_DATA(nid);
struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
if (zone_is_empty(movable_zone))
return 0;
if (movable_zone->zone_start_pfn <= start_pfn)
return 1;
return 0;
}
int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
bool for_device)
{
#ifdef CONFIG_ZONE_DEVICE
if (for_device)
return ZONE_DEVICE;
#endif
if (should_add_memory_movable(nid, start, size))
return ZONE_MOVABLE;
return zone_default;
}
static int online_memory_block(struct memory_block *mem, void *arg)
{
return device_online(&mem->dev);
}
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
int __ref add_memory_resource(int nid, struct resource *res, bool online)
{
u64 start, size;
pg_data_t *pgdat = NULL;
bool new_pgdat;
bool new_node;
int ret;
start = res->start;
size = resource_size(res);
ret = check_hotplug_memory_range(start, size);
if (ret)
return ret;
{ /* Stupid hack to suppress address-never-null warning */
void *p = NODE_DATA(nid);
new_pgdat = !p;
}
mem_hotplug_begin();
/*
* Add new range to memblock so that when hotadd_new_pgdat() is called
* to allocate new pgdat, get_pfn_range_for_nid() will be able to find
* this new range and calculate total pages correctly. The range will
* be removed at hot-remove time.
*/
memblock_add_node(start, size, nid);
new_node = !node_online(nid);
if (new_node) {
pgdat = hotadd_new_pgdat(nid, start);
ret = -ENOMEM;
if (!pgdat)
goto error;
}
/* call arch's memory hotadd */
ret = arch_add_memory(nid, start, size, false);
if (ret < 0)
goto error;
/* we online node here. we can't roll back from here. */
node_set_online(nid);
if (new_node) {
ret = register_one_node(nid);
/*
* If sysfs file of new node can't create, cpu on the node
* can't be hot-added. There is no rollback way now.
* So, check by BUG_ON() to catch it reluctantly..
*/
BUG_ON(ret);
}
/* create new memmap entry */
firmware_map_add_hotplug(start, start + size, "System RAM");
/* online pages if requested */
if (online)
walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
NULL, online_memory_block);
goto out;
error:
/* rollback pgdat allocation and others */
if (new_pgdat)
rollback_node_hotadd(nid, pgdat);
memblock_remove(start, size);
out:
mem_hotplug_done();
return ret;
}
EXPORT_SYMBOL_GPL(add_memory_resource);
int __ref add_memory(int nid, u64 start, u64 size)
{
struct resource *res;
int ret;
res = register_memory_resource(start, size);
if (IS_ERR(res))
return PTR_ERR(res);
ret = add_memory_resource(nid, res, memhp_auto_online);
if (ret < 0)
release_memory_resource(res);
return ret;
}
EXPORT_SYMBOL_GPL(add_memory);
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
* A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
* set and the size of the free page is given by page_order(). Using this,
* the function determines if the pageblock contains only free pages.
* Due to buddy contraints, a free page at least the size of a pageblock will
* be located at the start of the pageblock
*/
static inline int pageblock_free(struct page *page)
{
return PageBuddy(page) && page_order(page) >= pageblock_order;
}
/* Return the start of the next active pageblock after a given page */
static struct page *next_active_pageblock(struct page *page)
{
/* Ensure the starting page is pageblock-aligned */
BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
/* If the entire pageblock is free, move to the end of free page */
if (pageblock_free(page)) {
int order;
/* be careful. we don't have locks, page_order can be changed.*/
order = page_order(page);
if ((order < MAX_ORDER) && (order >= pageblock_order))
return page + (1 << order);
}
return page + pageblock_nr_pages;
}
/* Checks if this range of memory is likely to be hot-removable. */
bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
{
struct page *page = pfn_to_page(start_pfn);
struct page *end_page = page + nr_pages;
/* Check the starting page of each pageblock within the range */
for (; page < end_page; page = next_active_pageblock(page)) {
if (!is_pageblock_removable_nolock(page))
return false;
cond_resched();
}
/* All pageblocks in the memory block are likely to be hot-removable */
return true;
}
/*
* Confirm all pages in a range [start, end) belong to the same zone.
* When true, return its valid [start, end).
*/
int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
unsigned long *valid_start, unsigned long *valid_end)
{
unsigned long pfn, sec_end_pfn;
unsigned long start, end;
struct zone *zone = NULL;
struct page *page;
int i;
for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
pfn < end_pfn;
pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
/* Make sure the memory section is present first */
if (!present_section_nr(pfn_to_section_nr(pfn)))
continue;
for (; pfn < sec_end_pfn && pfn < end_pfn;
pfn += MAX_ORDER_NR_PAGES) {
i = 0;
/* This is just a CONFIG_HOLES_IN_ZONE check.*/
while ((i < MAX_ORDER_NR_PAGES) &&
!pfn_valid_within(pfn + i))
i++;
if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
continue;
page = pfn_to_page(pfn + i);
if (zone && page_zone(page) != zone)
return 0;
if (!zone)
start = pfn + i;
zone = page_zone(page);
end = pfn + MAX_ORDER_NR_PAGES;
}
}
if (zone) {
*valid_start = start;
*valid_end = min(end, end_pfn);
return 1;
} else {
return 0;
}
}
/*
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
* non-lru movable pages and hugepages). We scan pfn because it's much
* easier than scanning over linked list. This function returns the pfn
* of the first found movable page if it's found, otherwise 0.
*/
static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
{
unsigned long pfn;
struct page *page;
for (pfn = start; pfn < end; pfn++) {
if (pfn_valid(pfn)) {
page = pfn_to_page(pfn);
if (PageLRU(page))
return pfn;
if (__PageMovable(page))
return pfn;
if (PageHuge(page)) {
if (page_huge_active(page))
return pfn;
else
pfn = round_up(pfn + 1,
1 << compound_order(page)) - 1;
}
}
}
return 0;
}
static struct page *new_node_page(struct page *page, unsigned long private,
int **result)
{
gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
int nid = page_to_nid(page);
nodemask_t nmask = node_states[N_MEMORY];
struct page *new_page = NULL;
/*
* TODO: allocate a destination hugepage from a nearest neighbor node,
* accordance with memory policy of the user process if possible. For
* now as a simple work-around, we use the next node for destination.
*/
if (PageHuge(page))
return alloc_huge_page_node(page_hstate(compound_head(page)),
next_node_in(nid, nmask));
node_clear(nid, nmask);
if (PageHighMem(page)
|| (zone_idx(page_zone(page)) == ZONE_MOVABLE))
gfp_mask |= __GFP_HIGHMEM;
if (!nodes_empty(nmask))
new_page = __alloc_pages_nodemask(gfp_mask, 0,
node_zonelist(nid, gfp_mask), &nmask);
if (!new_page)
new_page = __alloc_pages(gfp_mask, 0,
node_zonelist(nid, gfp_mask));
return new_page;
}
#define NR_OFFLINE_AT_ONCE_PAGES (256)
static int
do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
struct page *page;
int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
int not_managed = 0;
int ret = 0;
LIST_HEAD(source);
for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (PageHuge(page)) {
struct page *head = compound_head(page);
pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
if (compound_order(head) > PFN_SECTION_SHIFT) {
ret = -EBUSY;
break;
}
if (isolate_huge_page(page, &source))
move_pages -= 1 << compound_order(head);
continue;
}
if (!get_page_unless_zero(page))
continue;
/*
* We can skip free pages. And we can deal with pages on
* LRU and non-lru movable pages.
*/
if (PageLRU(page))
ret = isolate_lru_page(page);
else
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
if (!ret) { /* Success */
put_page(page);
list_add_tail(&page->lru, &source);
move_pages--;
if (!__PageMovable(page))
inc_node_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
} else {
#ifdef CONFIG_DEBUG_VM
pr_alert("failed to isolate pfn %lx\n", pfn);
dump_page(page, "isolation failed");
#endif
put_page(page);
/* Because we don't have big zone->lock. we should
check this again here. */
if (page_count(page)) {
not_managed++;
ret = -EBUSY;
break;
}
}
}
if (!list_empty(&source)) {
if (not_managed) {
putback_movable_pages(&source);
goto out;
}
/* Allocate a new page from the nearest neighbor node */
ret = migrate_pages(&source, new_node_page, NULL, 0,
MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
if (ret)
putback_movable_pages(&source);
}
out:
return ret;
}
/*
* remove from free_area[] and mark all as Reserved.
*/
static int
offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
void *data)
{
__offline_isolated_pages(start, start + nr_pages);
return 0;
}
static void
offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
offline_isolated_pages_cb);
}
/*
* Check all pages in range, recoreded as memory resource, are isolated.
*/
static int
check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
void *data)
{
int ret;
long offlined = *(long *)data;
ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
offlined = nr_pages;
if (!ret)
*(long *)data += offlined;
return ret;
}
static long
check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
{
long offlined = 0;
int ret;
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
check_pages_isolated_cb);
if (ret < 0)
offlined = (long)ret;
return offlined;
}
#ifdef CONFIG_MOVABLE_NODE
/*
* When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
* normal memory.
*/
static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
{
return true;
}
#else /* CONFIG_MOVABLE_NODE */
/* ensure the node has NORMAL memory if it is still online */
static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
{
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long present_pages = 0;
enum zone_type zt;
for (zt = 0; zt <= ZONE_NORMAL; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (present_pages > nr_pages)
return true;
present_pages = 0;
for (; zt <= ZONE_MOVABLE; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
/*
* we can't offline the last normal memory until all
* higher memory is offlined.
*/
return present_pages == 0;
}
#endif /* CONFIG_MOVABLE_NODE */
static int __init cmdline_parse_movable_node(char *p)
{
#ifdef CONFIG_MOVABLE_NODE
movable_node_enabled = true;
#else
pr_warn("movable_node option not supported\n");
#endif
return 0;
}
early_param("movable_node", cmdline_parse_movable_node);
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long present_pages = 0;
enum zone_type zt, zone_last = ZONE_NORMAL;
/*
* If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
* contains nodes which have zones of 0...ZONE_NORMAL,
* set zone_last to ZONE_NORMAL.
*
* If we don't have HIGHMEM nor movable node,
* node_states[N_NORMAL_MEMORY] contains nodes which have zones of
* 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
*/
if (N_MEMORY == N_NORMAL_MEMORY)
zone_last = ZONE_MOVABLE;
/*
* check whether node_states[N_NORMAL_MEMORY] will be changed.
* If the memory to be offline is in a zone of 0...zone_last,
* and it is the last present memory, 0...zone_last will
* become empty after offline , thus we can determind we will
* need to clear the node from node_states[N_NORMAL_MEMORY].
*/
for (zt = 0; zt <= zone_last; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
arg->status_change_nid_normal = zone_to_nid(zone);
else
arg->status_change_nid_normal = -1;
#ifdef CONFIG_HIGHMEM
/*
* If we have movable node, node_states[N_HIGH_MEMORY]
* contains nodes which have zones of 0...ZONE_HIGHMEM,
* set zone_last to ZONE_HIGHMEM.
*
* If we don't have movable node, node_states[N_NORMAL_MEMORY]
* contains nodes which have zones of 0...ZONE_MOVABLE,
* set zone_last to ZONE_MOVABLE.
*/
zone_last = ZONE_HIGHMEM;
if (N_MEMORY == N_HIGH_MEMORY)
zone_last = ZONE_MOVABLE;
for (; zt <= zone_last; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
arg->status_change_nid_high = zone_to_nid(zone);
else
arg->status_change_nid_high = -1;
#else
arg->status_change_nid_high = arg->status_change_nid_normal;
#endif
/*
* node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
*/
zone_last = ZONE_MOVABLE;
/*
* check whether node_states[N_HIGH_MEMORY] will be changed
* If we try to offline the last present @nr_pages from the node,
* we can determind we will need to clear the node from
* node_states[N_HIGH_MEMORY].
*/
for (; zt <= zone_last; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (nr_pages >= present_pages)
arg->status_change_nid = zone_to_nid(zone);
else
arg->status_change_nid = -1;
}
static void node_states_clear_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_clear_state(node, N_NORMAL_MEMORY);
if ((N_MEMORY != N_NORMAL_MEMORY) &&
(arg->status_change_nid_high >= 0))
node_clear_state(node, N_HIGH_MEMORY);
if ((N_MEMORY != N_HIGH_MEMORY) &&
(arg->status_change_nid >= 0))
node_clear_state(node, N_MEMORY);
}
static int __ref __offline_pages(unsigned long start_pfn,
unsigned long end_pfn, unsigned long timeout)
{
unsigned long pfn, nr_pages, expire;
long offlined_pages;
int ret, drain, retry_max, node;
unsigned long flags;
unsigned long valid_start, valid_end;
struct zone *zone;
struct memory_notify arg;
/* at least, alignment against pageblock is necessary */
if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
return -EINVAL;
if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
return -EINVAL;
/* This makes hotplug much easier...and readable.
we assume this for now. .*/
if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
return -EINVAL;
zone = page_zone(pfn_to_page(valid_start));
node = zone_to_nid(zone);
nr_pages = end_pfn - start_pfn;
if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
return -EINVAL;
/* set above range as isolated */
ret = start_isolate_page_range(start_pfn, end_pfn,
MIGRATE_MOVABLE, true);
if (ret)
return ret;
arg.start_pfn = start_pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_offline(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_OFFLINE, &arg);
ret = notifier_to_errno(ret);
if (ret)
goto failed_removal;
pfn = start_pfn;
expire = jiffies + timeout;
drain = 0;
retry_max = 5;
repeat:
/* start memory hot removal */
ret = -EAGAIN;
if (time_after(jiffies, expire))
goto failed_removal;
ret = -EINTR;
if (signal_pending(current))
goto failed_removal;
ret = 0;
if (drain) {
lru_add_drain_all();
cond_resched();
drain_all_pages(zone);
}
pfn = scan_movable_pages(start_pfn, end_pfn);
if (pfn) { /* We have movable pages */
ret = do_migrate_range(pfn, end_pfn);
if (!ret) {
drain = 1;
goto repeat;
} else {
if (ret < 0)
if (--retry_max == 0)
goto failed_removal;
yield();
drain = 1;
goto repeat;
}
}
/* drain all zone's lru pagevec, this is asynchronous... */
lru_add_drain_all();
yield();
/* drain pcp pages, this is synchronous. */
drain_all_pages(zone);
/*
* dissolve free hugepages in the memory block before doing offlining
* actually in order to make hugetlbfs's object counting consistent.
*/
ret = dissolve_free_huge_pages(start_pfn, end_pfn);
if (ret)
goto failed_removal;
/* check again */
offlined_pages = check_pages_isolated(start_pfn, end_pfn);
if (offlined_pages < 0) {
ret = -EBUSY;
goto failed_removal;
}
pr_info("Offlined Pages %ld\n", offlined_pages);
/* Ok, all of our target is isolated.
We cannot do rollback at this point. */
offline_isolated_pages(start_pfn, end_pfn);
/* reset pagetype flags and makes migrate type to be MOVABLE */
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
/* removal success */
adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
zone->present_pages -= offlined_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages -= offlined_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
init_per_zone_wmark_min();
if (!populated_zone(zone)) {
zone_pcp_reset(zone);
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL, NULL);
mutex_unlock(&zonelists_mutex);
} else
zone_pcp_update(zone);
node_states_clear_node(node, &arg);
if (arg.status_change_nid >= 0) {
kswapd_stop(node);
kcompactd_stop(node);
}
vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
memory_notify(MEM_OFFLINE, &arg);
return 0;
failed_removal:
pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_OFFLINE, &arg);
/* pushback to free area */
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
return ret;
}
/* Must be protected by mem_hotplug_begin() */
int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
/**
* walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
* @start_pfn: start pfn of the memory range
* @end_pfn: end pfn of the memory range
* @arg: argument passed to func
* @func: callback for each memory section walked
*
* This function walks through all present mem sections in range
* [start_pfn, end_pfn) and call func on each mem section.
*
* Returns the return value of func.
*/
int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
void *arg, int (*func)(struct memory_block *, void *))
{
struct memory_block *mem = NULL;
struct mem_section *section;
unsigned long pfn, section_nr;
int ret;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
continue;
section = __nr_to_section(section_nr);
/* same memblock? */
if (mem)
if ((section_nr >= mem->start_section_nr) &&
(section_nr <= mem->end_section_nr))
continue;
mem = find_memory_block_hinted(section, mem);
if (!mem)
continue;
ret = func(mem, arg);
if (ret) {
kobject_put(&mem->dev.kobj);
return ret;
}
}
if (mem)
kobject_put(&mem->dev.kobj);
return 0;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
if (unlikely(ret)) {
phys_addr_t beginpa, endpa;
beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
&beginpa, &endpa);
}
return ret;
}
static int check_cpu_on_node(pg_data_t *pgdat)
{
int cpu;
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == pgdat->node_id)
/*
* the cpu on this node isn't removed, and we can't
* offline this node.
*/
return -EBUSY;
}
return 0;
}
static void unmap_cpu_on_node(pg_data_t *pgdat)
{
#ifdef CONFIG_ACPI_NUMA
int cpu;
for_each_possible_cpu(cpu)
if (cpu_to_node(cpu) == pgdat->node_id)
numa_clear_node(cpu);
#endif
}
static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
{
int ret;
ret = check_cpu_on_node(pgdat);
if (ret)
return ret;
/*
* the node will be offlined when we come here, so we can clear
* the cpu_to_node() now.
*/
unmap_cpu_on_node(pgdat);
return 0;
}
/**
* try_offline_node
*
* Offline a node if all memory sections and cpus of the node are removed.
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call.
*/
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = pgdat->node_start_pfn;
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/*
* some memory sections of this node are not removed, and we
* can't offline node now.
*/
return;
}
if (check_and_unmap_cpu_on_node(pgdat))
return;
/*
* all memory/cpu of this node are removed, we can offline this
* node now.
*/
node_set_offline(nid);
unregister_one_node(nid);
}
EXPORT_SYMBOL(try_offline_node);
/**
* remove_memory
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call, as required by
* try_offline_node().
*/
void __ref remove_memory(int nid, u64 start, u64 size)
{
int ret;
BUG_ON(check_hotplug_memory_range(start, size));
mem_hotplug_begin();
/*
* All memory blocks must be offlined before removing memory. Check
* whether all memory blocks in question are offline and trigger a BUG()
* if this is not the case.
*/
ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
check_memblock_offlined_cb);
if (ret)
BUG();
/* remove memmap entry */
firmware_map_remove(start, start + size, "System RAM");
memblock_free(start, size);
memblock_remove(start, size);
arch_remove_memory(start, size);
try_offline_node(nid);
mem_hotplug_done();
}
EXPORT_SYMBOL_GPL(remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */