2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/fs/ubifs/io.c
Linus Torvalds 1751e8a6cb Rename superblock flags (MS_xyz -> SB_xyz)
This is a pure automated search-and-replace of the internal kernel
superblock flags.

The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.

Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.

The script to do this was:

    # places to look in; re security/*: it generally should *not* be
    # touched (that stuff parses mount(2) arguments directly), but
    # there are two places where we really deal with superblock flags.
    FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
            include/linux/fs.h include/uapi/linux/bfs_fs.h \
            security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
    # the list of MS_... constants
    SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
          DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
          POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
          I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
          ACTIVE NOUSER"

    SED_PROG=
    for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

    # we want files that contain at least one of MS_...,
    # with fs/namespace.c and fs/pnode.c excluded.
    L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

    for f in $L; do sed -i $f $SED_PROG; done

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 13:05:09 -08:00

1153 lines
33 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
* Copyright (C) 2006, 2007 University of Szeged, Hungary
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
* Zoltan Sogor
*/
/*
* This file implements UBIFS I/O subsystem which provides various I/O-related
* helper functions (reading/writing/checking/validating nodes) and implements
* write-buffering support. Write buffers help to save space which otherwise
* would have been wasted for padding to the nearest minimal I/O unit boundary.
* Instead, data first goes to the write-buffer and is flushed when the
* buffer is full or when it is not used for some time (by timer). This is
* similar to the mechanism is used by JFFS2.
*
* UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
* write size (@c->max_write_size). The latter is the maximum amount of bytes
* the underlying flash is able to program at a time, and writing in
* @c->max_write_size units should presumably be faster. Obviously,
* @c->min_io_size <= @c->max_write_size. Write-buffers are of
* @c->max_write_size bytes in size for maximum performance. However, when a
* write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
* boundary) which contains data is written, not the whole write-buffer,
* because this is more space-efficient.
*
* This optimization adds few complications to the code. Indeed, on the one
* hand, we want to write in optimal @c->max_write_size bytes chunks, which
* also means aligning writes at the @c->max_write_size bytes offsets. On the
* other hand, we do not want to waste space when synchronizing the write
* buffer, so during synchronization we writes in smaller chunks. And this makes
* the next write offset to be not aligned to @c->max_write_size bytes. So the
* have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
* to @c->max_write_size bytes again. We do this by temporarily shrinking
* write-buffer size (@wbuf->size).
*
* Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
* mutexes defined inside these objects. Since sometimes upper-level code
* has to lock the write-buffer (e.g. journal space reservation code), many
* functions related to write-buffers have "nolock" suffix which means that the
* caller has to lock the write-buffer before calling this function.
*
* UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
* aligned, UBIFS starts the next node from the aligned address, and the padded
* bytes may contain any rubbish. In other words, UBIFS does not put padding
* bytes in those small gaps. Common headers of nodes store real node lengths,
* not aligned lengths. Indexing nodes also store real lengths in branches.
*
* UBIFS uses padding when it pads to the next min. I/O unit. In this case it
* uses padding nodes or padding bytes, if the padding node does not fit.
*
* All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
* they are read from the flash media.
*/
#include <linux/crc32.h>
#include <linux/slab.h>
#include "ubifs.h"
/**
* ubifs_ro_mode - switch UBIFS to read read-only mode.
* @c: UBIFS file-system description object
* @err: error code which is the reason of switching to R/O mode
*/
void ubifs_ro_mode(struct ubifs_info *c, int err)
{
if (!c->ro_error) {
c->ro_error = 1;
c->no_chk_data_crc = 0;
c->vfs_sb->s_flags |= SB_RDONLY;
ubifs_warn(c, "switched to read-only mode, error %d", err);
dump_stack();
}
}
/*
* Below are simple wrappers over UBI I/O functions which include some
* additional checks and UBIFS debugging stuff. See corresponding UBI function
* for more information.
*/
int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
int len, int even_ebadmsg)
{
int err;
err = ubi_read(c->ubi, lnum, buf, offs, len);
/*
* In case of %-EBADMSG print the error message only if the
* @even_ebadmsg is true.
*/
if (err && (err != -EBADMSG || even_ebadmsg)) {
ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
len, lnum, offs, err);
dump_stack();
}
return err;
}
int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
int len)
{
int err;
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->ro_error)
return -EROFS;
if (!dbg_is_tst_rcvry(c))
err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
else
err = dbg_leb_write(c, lnum, buf, offs, len);
if (err) {
ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
len, lnum, offs, err);
ubifs_ro_mode(c, err);
dump_stack();
}
return err;
}
int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
{
int err;
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->ro_error)
return -EROFS;
if (!dbg_is_tst_rcvry(c))
err = ubi_leb_change(c->ubi, lnum, buf, len);
else
err = dbg_leb_change(c, lnum, buf, len);
if (err) {
ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
len, lnum, err);
ubifs_ro_mode(c, err);
dump_stack();
}
return err;
}
int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
{
int err;
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->ro_error)
return -EROFS;
if (!dbg_is_tst_rcvry(c))
err = ubi_leb_unmap(c->ubi, lnum);
else
err = dbg_leb_unmap(c, lnum);
if (err) {
ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
ubifs_ro_mode(c, err);
dump_stack();
}
return err;
}
int ubifs_leb_map(struct ubifs_info *c, int lnum)
{
int err;
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->ro_error)
return -EROFS;
if (!dbg_is_tst_rcvry(c))
err = ubi_leb_map(c->ubi, lnum);
else
err = dbg_leb_map(c, lnum);
if (err) {
ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
ubifs_ro_mode(c, err);
dump_stack();
}
return err;
}
int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
{
int err;
err = ubi_is_mapped(c->ubi, lnum);
if (err < 0) {
ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
lnum, err);
dump_stack();
}
return err;
}
/**
* ubifs_check_node - check node.
* @c: UBIFS file-system description object
* @buf: node to check
* @lnum: logical eraseblock number
* @offs: offset within the logical eraseblock
* @quiet: print no messages
* @must_chk_crc: indicates whether to always check the CRC
*
* This function checks node magic number and CRC checksum. This function also
* validates node length to prevent UBIFS from becoming crazy when an attacker
* feeds it a file-system image with incorrect nodes. For example, too large
* node length in the common header could cause UBIFS to read memory outside of
* allocated buffer when checking the CRC checksum.
*
* This function may skip data nodes CRC checking if @c->no_chk_data_crc is
* true, which is controlled by corresponding UBIFS mount option. However, if
* @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
* checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
* mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
* is checked. This is because during mounting or re-mounting from R/O mode to
* R/W mode we may read journal nodes (when replying the journal or doing the
* recovery) and the journal nodes may potentially be corrupted, so checking is
* required.
*
* This function returns zero in case of success and %-EUCLEAN in case of bad
* CRC or magic.
*/
int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
int offs, int quiet, int must_chk_crc)
{
int err = -EINVAL, type, node_len;
uint32_t crc, node_crc, magic;
const struct ubifs_ch *ch = buf;
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(!(offs & 7) && offs < c->leb_size);
magic = le32_to_cpu(ch->magic);
if (magic != UBIFS_NODE_MAGIC) {
if (!quiet)
ubifs_err(c, "bad magic %#08x, expected %#08x",
magic, UBIFS_NODE_MAGIC);
err = -EUCLEAN;
goto out;
}
type = ch->node_type;
if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
if (!quiet)
ubifs_err(c, "bad node type %d", type);
goto out;
}
node_len = le32_to_cpu(ch->len);
if (node_len + offs > c->leb_size)
goto out_len;
if (c->ranges[type].max_len == 0) {
if (node_len != c->ranges[type].len)
goto out_len;
} else if (node_len < c->ranges[type].min_len ||
node_len > c->ranges[type].max_len)
goto out_len;
if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
!c->remounting_rw && c->no_chk_data_crc)
return 0;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
node_crc = le32_to_cpu(ch->crc);
if (crc != node_crc) {
if (!quiet)
ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
crc, node_crc);
err = -EUCLEAN;
goto out;
}
return 0;
out_len:
if (!quiet)
ubifs_err(c, "bad node length %d", node_len);
out:
if (!quiet) {
ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
ubifs_dump_node(c, buf);
dump_stack();
}
return err;
}
/**
* ubifs_pad - pad flash space.
* @c: UBIFS file-system description object
* @buf: buffer to put padding to
* @pad: how many bytes to pad
*
* The flash media obliges us to write only in chunks of %c->min_io_size and
* when we have to write less data we add padding node to the write-buffer and
* pad it to the next minimal I/O unit's boundary. Padding nodes help when the
* media is being scanned. If the amount of wasted space is not enough to fit a
* padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
* pattern (%UBIFS_PADDING_BYTE).
*
* Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
* used.
*/
void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
{
uint32_t crc;
ubifs_assert(pad >= 0 && !(pad & 7));
if (pad >= UBIFS_PAD_NODE_SZ) {
struct ubifs_ch *ch = buf;
struct ubifs_pad_node *pad_node = buf;
ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
ch->node_type = UBIFS_PAD_NODE;
ch->group_type = UBIFS_NO_NODE_GROUP;
ch->padding[0] = ch->padding[1] = 0;
ch->sqnum = 0;
ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
pad -= UBIFS_PAD_NODE_SZ;
pad_node->pad_len = cpu_to_le32(pad);
crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
ch->crc = cpu_to_le32(crc);
memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
} else if (pad > 0)
/* Too little space, padding node won't fit */
memset(buf, UBIFS_PADDING_BYTE, pad);
}
/**
* next_sqnum - get next sequence number.
* @c: UBIFS file-system description object
*/
static unsigned long long next_sqnum(struct ubifs_info *c)
{
unsigned long long sqnum;
spin_lock(&c->cnt_lock);
sqnum = ++c->max_sqnum;
spin_unlock(&c->cnt_lock);
if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
if (sqnum >= SQNUM_WATERMARK) {
ubifs_err(c, "sequence number overflow %llu, end of life",
sqnum);
ubifs_ro_mode(c, -EINVAL);
}
ubifs_warn(c, "running out of sequence numbers, end of life soon");
}
return sqnum;
}
/**
* ubifs_prepare_node - prepare node to be written to flash.
* @c: UBIFS file-system description object
* @node: the node to pad
* @len: node length
* @pad: if the buffer has to be padded
*
* This function prepares node at @node to be written to the media - it
* calculates node CRC, fills the common header, and adds proper padding up to
* the next minimum I/O unit if @pad is not zero.
*/
void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
{
uint32_t crc;
struct ubifs_ch *ch = node;
unsigned long long sqnum = next_sqnum(c);
ubifs_assert(len >= UBIFS_CH_SZ);
ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
ch->len = cpu_to_le32(len);
ch->group_type = UBIFS_NO_NODE_GROUP;
ch->sqnum = cpu_to_le64(sqnum);
ch->padding[0] = ch->padding[1] = 0;
crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
ch->crc = cpu_to_le32(crc);
if (pad) {
len = ALIGN(len, 8);
pad = ALIGN(len, c->min_io_size) - len;
ubifs_pad(c, node + len, pad);
}
}
/**
* ubifs_prep_grp_node - prepare node of a group to be written to flash.
* @c: UBIFS file-system description object
* @node: the node to pad
* @len: node length
* @last: indicates the last node of the group
*
* This function prepares node at @node to be written to the media - it
* calculates node CRC and fills the common header.
*/
void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
{
uint32_t crc;
struct ubifs_ch *ch = node;
unsigned long long sqnum = next_sqnum(c);
ubifs_assert(len >= UBIFS_CH_SZ);
ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
ch->len = cpu_to_le32(len);
if (last)
ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
else
ch->group_type = UBIFS_IN_NODE_GROUP;
ch->sqnum = cpu_to_le64(sqnum);
ch->padding[0] = ch->padding[1] = 0;
crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
ch->crc = cpu_to_le32(crc);
}
/**
* wbuf_timer_callback - write-buffer timer callback function.
* @timer: timer data (write-buffer descriptor)
*
* This function is called when the write-buffer timer expires.
*/
static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
{
struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
wbuf->need_sync = 1;
wbuf->c->need_wbuf_sync = 1;
ubifs_wake_up_bgt(wbuf->c);
return HRTIMER_NORESTART;
}
/**
* new_wbuf_timer - start new write-buffer timer.
* @wbuf: write-buffer descriptor
*/
static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
{
ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
unsigned long long delta = dirty_writeback_interval;
/* centi to milli, milli to nano, then 10% */
delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
ubifs_assert(!hrtimer_active(&wbuf->timer));
ubifs_assert(delta <= ULONG_MAX);
if (wbuf->no_timer)
return;
dbg_io("set timer for jhead %s, %llu-%llu millisecs",
dbg_jhead(wbuf->jhead),
div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
HRTIMER_MODE_REL);
}
/**
* cancel_wbuf_timer - cancel write-buffer timer.
* @wbuf: write-buffer descriptor
*/
static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
{
if (wbuf->no_timer)
return;
wbuf->need_sync = 0;
hrtimer_cancel(&wbuf->timer);
}
/**
* ubifs_wbuf_sync_nolock - synchronize write-buffer.
* @wbuf: write-buffer to synchronize
*
* This function synchronizes write-buffer @buf and returns zero in case of
* success or a negative error code in case of failure.
*
* Note, although write-buffers are of @c->max_write_size, this function does
* not necessarily writes all @c->max_write_size bytes to the flash. Instead,
* if the write-buffer is only partially filled with data, only the used part
* of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
* This way we waste less space.
*/
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
{
struct ubifs_info *c = wbuf->c;
int err, dirt, sync_len;
cancel_wbuf_timer_nolock(wbuf);
if (!wbuf->used || wbuf->lnum == -1)
/* Write-buffer is empty or not seeked */
return 0;
dbg_io("LEB %d:%d, %d bytes, jhead %s",
wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
ubifs_assert(!(wbuf->avail & 7));
ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
ubifs_assert(wbuf->size >= c->min_io_size);
ubifs_assert(wbuf->size <= c->max_write_size);
ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->leb_size - wbuf->offs >= c->max_write_size)
ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
if (c->ro_error)
return -EROFS;
/*
* Do not write whole write buffer but write only the minimum necessary
* amount of min. I/O units.
*/
sync_len = ALIGN(wbuf->used, c->min_io_size);
dirt = sync_len - wbuf->used;
if (dirt)
ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
if (err)
return err;
spin_lock(&wbuf->lock);
wbuf->offs += sync_len;
/*
* Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
* But our goal is to optimize writes and make sure we write in
* @c->max_write_size chunks and to @c->max_write_size-aligned offset.
* Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
* sure that @wbuf->offs + @wbuf->size is aligned to
* @c->max_write_size. This way we make sure that after next
* write-buffer flush we are again at the optimal offset (aligned to
* @c->max_write_size).
*/
if (c->leb_size - wbuf->offs < c->max_write_size)
wbuf->size = c->leb_size - wbuf->offs;
else if (wbuf->offs & (c->max_write_size - 1))
wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
else
wbuf->size = c->max_write_size;
wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
if (wbuf->sync_callback)
err = wbuf->sync_callback(c, wbuf->lnum,
c->leb_size - wbuf->offs, dirt);
return err;
}
/**
* ubifs_wbuf_seek_nolock - seek write-buffer.
* @wbuf: write-buffer
* @lnum: logical eraseblock number to seek to
* @offs: logical eraseblock offset to seek to
*
* This function targets the write-buffer to logical eraseblock @lnum:@offs.
* The write-buffer has to be empty. Returns zero in case of success and a
* negative error code in case of failure.
*/
int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
{
const struct ubifs_info *c = wbuf->c;
dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
ubifs_assert(offs >= 0 && offs <= c->leb_size);
ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
ubifs_assert(lnum != wbuf->lnum);
ubifs_assert(wbuf->used == 0);
spin_lock(&wbuf->lock);
wbuf->lnum = lnum;
wbuf->offs = offs;
if (c->leb_size - wbuf->offs < c->max_write_size)
wbuf->size = c->leb_size - wbuf->offs;
else if (wbuf->offs & (c->max_write_size - 1))
wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
else
wbuf->size = c->max_write_size;
wbuf->avail = wbuf->size;
wbuf->used = 0;
spin_unlock(&wbuf->lock);
return 0;
}
/**
* ubifs_bg_wbufs_sync - synchronize write-buffers.
* @c: UBIFS file-system description object
*
* This function is called by background thread to synchronize write-buffers.
* Returns zero in case of success and a negative error code in case of
* failure.
*/
int ubifs_bg_wbufs_sync(struct ubifs_info *c)
{
int err, i;
ubifs_assert(!c->ro_media && !c->ro_mount);
if (!c->need_wbuf_sync)
return 0;
c->need_wbuf_sync = 0;
if (c->ro_error) {
err = -EROFS;
goto out_timers;
}
dbg_io("synchronize");
for (i = 0; i < c->jhead_cnt; i++) {
struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
cond_resched();
/*
* If the mutex is locked then wbuf is being changed, so
* synchronization is not necessary.
*/
if (mutex_is_locked(&wbuf->io_mutex))
continue;
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
if (!wbuf->need_sync) {
mutex_unlock(&wbuf->io_mutex);
continue;
}
err = ubifs_wbuf_sync_nolock(wbuf);
mutex_unlock(&wbuf->io_mutex);
if (err) {
ubifs_err(c, "cannot sync write-buffer, error %d", err);
ubifs_ro_mode(c, err);
goto out_timers;
}
}
return 0;
out_timers:
/* Cancel all timers to prevent repeated errors */
for (i = 0; i < c->jhead_cnt; i++) {
struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
cancel_wbuf_timer_nolock(wbuf);
mutex_unlock(&wbuf->io_mutex);
}
return err;
}
/**
* ubifs_wbuf_write_nolock - write data to flash via write-buffer.
* @wbuf: write-buffer
* @buf: node to write
* @len: node length
*
* This function writes data to flash via write-buffer @wbuf. This means that
* the last piece of the node won't reach the flash media immediately if it
* does not take whole max. write unit (@c->max_write_size). Instead, the node
* will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
* because more data are appended to the write-buffer).
*
* This function returns zero in case of success and a negative error code in
* case of failure. If the node cannot be written because there is no more
* space in this logical eraseblock, %-ENOSPC is returned.
*/
int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
{
struct ubifs_info *c = wbuf->c;
int err, written, n, aligned_len = ALIGN(len, 8);
dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
dbg_ntype(((struct ubifs_ch *)buf)->node_type),
dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
ubifs_assert(wbuf->size >= c->min_io_size);
ubifs_assert(wbuf->size <= c->max_write_size);
ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
ubifs_assert(!c->ro_media && !c->ro_mount);
ubifs_assert(!c->space_fixup);
if (c->leb_size - wbuf->offs >= c->max_write_size)
ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
err = -ENOSPC;
goto out;
}
cancel_wbuf_timer_nolock(wbuf);
if (c->ro_error)
return -EROFS;
if (aligned_len <= wbuf->avail) {
/*
* The node is not very large and fits entirely within
* write-buffer.
*/
memcpy(wbuf->buf + wbuf->used, buf, len);
if (aligned_len == wbuf->avail) {
dbg_io("flush jhead %s wbuf to LEB %d:%d",
dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
wbuf->offs, wbuf->size);
if (err)
goto out;
spin_lock(&wbuf->lock);
wbuf->offs += wbuf->size;
if (c->leb_size - wbuf->offs >= c->max_write_size)
wbuf->size = c->max_write_size;
else
wbuf->size = c->leb_size - wbuf->offs;
wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
} else {
spin_lock(&wbuf->lock);
wbuf->avail -= aligned_len;
wbuf->used += aligned_len;
spin_unlock(&wbuf->lock);
}
goto exit;
}
written = 0;
if (wbuf->used) {
/*
* The node is large enough and does not fit entirely within
* current available space. We have to fill and flush
* write-buffer and switch to the next max. write unit.
*/
dbg_io("flush jhead %s wbuf to LEB %d:%d",
dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
wbuf->size);
if (err)
goto out;
wbuf->offs += wbuf->size;
len -= wbuf->avail;
aligned_len -= wbuf->avail;
written += wbuf->avail;
} else if (wbuf->offs & (c->max_write_size - 1)) {
/*
* The write-buffer offset is not aligned to
* @c->max_write_size and @wbuf->size is less than
* @c->max_write_size. Write @wbuf->size bytes to make sure the
* following writes are done in optimal @c->max_write_size
* chunks.
*/
dbg_io("write %d bytes to LEB %d:%d",
wbuf->size, wbuf->lnum, wbuf->offs);
err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
wbuf->size);
if (err)
goto out;
wbuf->offs += wbuf->size;
len -= wbuf->size;
aligned_len -= wbuf->size;
written += wbuf->size;
}
/*
* The remaining data may take more whole max. write units, so write the
* remains multiple to max. write unit size directly to the flash media.
* We align node length to 8-byte boundary because we anyway flash wbuf
* if the remaining space is less than 8 bytes.
*/
n = aligned_len >> c->max_write_shift;
if (n) {
n <<= c->max_write_shift;
dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
wbuf->offs);
err = ubifs_leb_write(c, wbuf->lnum, buf + written,
wbuf->offs, n);
if (err)
goto out;
wbuf->offs += n;
aligned_len -= n;
len -= n;
written += n;
}
spin_lock(&wbuf->lock);
if (aligned_len)
/*
* And now we have what's left and what does not take whole
* max. write unit, so write it to the write-buffer and we are
* done.
*/
memcpy(wbuf->buf, buf + written, len);
if (c->leb_size - wbuf->offs >= c->max_write_size)
wbuf->size = c->max_write_size;
else
wbuf->size = c->leb_size - wbuf->offs;
wbuf->avail = wbuf->size - aligned_len;
wbuf->used = aligned_len;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
exit:
if (wbuf->sync_callback) {
int free = c->leb_size - wbuf->offs - wbuf->used;
err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
if (err)
goto out;
}
if (wbuf->used)
new_wbuf_timer_nolock(wbuf);
return 0;
out:
ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
len, wbuf->lnum, wbuf->offs, err);
ubifs_dump_node(c, buf);
dump_stack();
ubifs_dump_leb(c, wbuf->lnum);
return err;
}
/**
* ubifs_write_node - write node to the media.
* @c: UBIFS file-system description object
* @buf: the node to write
* @len: node length
* @lnum: logical eraseblock number
* @offs: offset within the logical eraseblock
*
* This function automatically fills node magic number, assigns sequence
* number, and calculates node CRC checksum. The length of the @buf buffer has
* to be aligned to the minimal I/O unit size. This function automatically
* appends padding node and padding bytes if needed. Returns zero in case of
* success and a negative error code in case of failure.
*/
int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
int offs)
{
int err, buf_len = ALIGN(len, c->min_io_size);
dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
buf_len);
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
ubifs_assert(!c->ro_media && !c->ro_mount);
ubifs_assert(!c->space_fixup);
if (c->ro_error)
return -EROFS;
ubifs_prepare_node(c, buf, len, 1);
err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
if (err)
ubifs_dump_node(c, buf);
return err;
}
/**
* ubifs_read_node_wbuf - read node from the media or write-buffer.
* @wbuf: wbuf to check for un-written data
* @buf: buffer to read to
* @type: node type
* @len: node length
* @lnum: logical eraseblock number
* @offs: offset within the logical eraseblock
*
* This function reads a node of known type and length, checks it and stores
* in @buf. If the node partially or fully sits in the write-buffer, this
* function takes data from the buffer, otherwise it reads the flash media.
* Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
* error code in case of failure.
*/
int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
int lnum, int offs)
{
const struct ubifs_info *c = wbuf->c;
int err, rlen, overlap;
struct ubifs_ch *ch = buf;
dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(!(offs & 7) && offs < c->leb_size);
ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
spin_lock(&wbuf->lock);
overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
if (!overlap) {
/* We may safely unlock the write-buffer and read the data */
spin_unlock(&wbuf->lock);
return ubifs_read_node(c, buf, type, len, lnum, offs);
}
/* Don't read under wbuf */
rlen = wbuf->offs - offs;
if (rlen < 0)
rlen = 0;
/* Copy the rest from the write-buffer */
memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
spin_unlock(&wbuf->lock);
if (rlen > 0) {
/* Read everything that goes before write-buffer */
err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
if (err && err != -EBADMSG)
return err;
}
if (type != ch->node_type) {
ubifs_err(c, "bad node type (%d but expected %d)",
ch->node_type, type);
goto out;
}
err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
if (err) {
ubifs_err(c, "expected node type %d", type);
return err;
}
rlen = le32_to_cpu(ch->len);
if (rlen != len) {
ubifs_err(c, "bad node length %d, expected %d", rlen, len);
goto out;
}
return 0;
out:
ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
ubifs_dump_node(c, buf);
dump_stack();
return -EINVAL;
}
/**
* ubifs_read_node - read node.
* @c: UBIFS file-system description object
* @buf: buffer to read to
* @type: node type
* @len: node length (not aligned)
* @lnum: logical eraseblock number
* @offs: offset within the logical eraseblock
*
* This function reads a node of known type and and length, checks it and
* stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
* and a negative error code in case of failure.
*/
int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
int lnum, int offs)
{
int err, l;
struct ubifs_ch *ch = buf;
dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
ubifs_assert(!(offs & 7) && offs < c->leb_size);
ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
if (err && err != -EBADMSG)
return err;
if (type != ch->node_type) {
ubifs_errc(c, "bad node type (%d but expected %d)",
ch->node_type, type);
goto out;
}
err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
if (err) {
ubifs_errc(c, "expected node type %d", type);
return err;
}
l = le32_to_cpu(ch->len);
if (l != len) {
ubifs_errc(c, "bad node length %d, expected %d", l, len);
goto out;
}
return 0;
out:
ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
offs, ubi_is_mapped(c->ubi, lnum));
if (!c->probing) {
ubifs_dump_node(c, buf);
dump_stack();
}
return -EINVAL;
}
/**
* ubifs_wbuf_init - initialize write-buffer.
* @c: UBIFS file-system description object
* @wbuf: write-buffer to initialize
*
* This function initializes write-buffer. Returns zero in case of success
* %-ENOMEM in case of failure.
*/
int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
{
size_t size;
wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
if (!wbuf->buf)
return -ENOMEM;
size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
wbuf->inodes = kmalloc(size, GFP_KERNEL);
if (!wbuf->inodes) {
kfree(wbuf->buf);
wbuf->buf = NULL;
return -ENOMEM;
}
wbuf->used = 0;
wbuf->lnum = wbuf->offs = -1;
/*
* If the LEB starts at the max. write size aligned address, then
* write-buffer size has to be set to @c->max_write_size. Otherwise,
* set it to something smaller so that it ends at the closest max.
* write size boundary.
*/
size = c->max_write_size - (c->leb_start % c->max_write_size);
wbuf->avail = wbuf->size = size;
wbuf->sync_callback = NULL;
mutex_init(&wbuf->io_mutex);
spin_lock_init(&wbuf->lock);
wbuf->c = c;
wbuf->next_ino = 0;
hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
wbuf->timer.function = wbuf_timer_callback_nolock;
return 0;
}
/**
* ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
* @wbuf: the write-buffer where to add
* @inum: the inode number
*
* This function adds an inode number to the inode array of the write-buffer.
*/
void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
{
if (!wbuf->buf)
/* NOR flash or something similar */
return;
spin_lock(&wbuf->lock);
if (wbuf->used)
wbuf->inodes[wbuf->next_ino++] = inum;
spin_unlock(&wbuf->lock);
}
/**
* wbuf_has_ino - returns if the wbuf contains data from the inode.
* @wbuf: the write-buffer
* @inum: the inode number
*
* This function returns with %1 if the write-buffer contains some data from the
* given inode otherwise it returns with %0.
*/
static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
{
int i, ret = 0;
spin_lock(&wbuf->lock);
for (i = 0; i < wbuf->next_ino; i++)
if (inum == wbuf->inodes[i]) {
ret = 1;
break;
}
spin_unlock(&wbuf->lock);
return ret;
}
/**
* ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
* @c: UBIFS file-system description object
* @inode: inode to synchronize
*
* This function synchronizes write-buffers which contain nodes belonging to
* @inode. Returns zero in case of success and a negative error code in case of
* failure.
*/
int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
{
int i, err = 0;
for (i = 0; i < c->jhead_cnt; i++) {
struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
if (i == GCHD)
/*
* GC head is special, do not look at it. Even if the
* head contains something related to this inode, it is
* a _copy_ of corresponding on-flash node which sits
* somewhere else.
*/
continue;
if (!wbuf_has_ino(wbuf, inode->i_ino))
continue;
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
if (wbuf_has_ino(wbuf, inode->i_ino))
err = ubifs_wbuf_sync_nolock(wbuf);
mutex_unlock(&wbuf->io_mutex);
if (err) {
ubifs_ro_mode(c, err);
return err;
}
}
return 0;
}