2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 05:04:00 +08:00
linux-next/drivers/thunderbolt/switch.c
Kranthi Kuntala dacb12877d thunderbolt: Add support for on-board retimers
USB4 spec specifies standard access to retimers (both on-board and
cable) through USB4 port sideband access. This makes it possible to
upgrade their firmware in the same way than we already do with the
routers.

This enumerates on-board retimers under each USB4 port when the link
comes up and adds them to the bus under the router the retimer belongs
to. Retimers are exposed in sysfs with name like <device>:<port>.<index>
where device is the router the retimer belongs to, port is the USB4 port
the retimer is connected to and index is the retimer index under that
port (starting from 1). This applies to the upstream USB4 port as well
so if there is on-board retimer between the port and the router it is
also added accordingly.

At this time we do not add cable retimers but there is no techincal
restriction to do so in the future if needed. It is not clear whether it
makes sense to upgrade their firmwares and at least Thunderbolt 3 cables
it has not been done outside of lab environments.

The sysfs interface is made to follow the router NVM upgrade to make it
easy to extend the existing userspace (fwupd) to handle these as well.

Signed-off-by: Kranthi Kuntala <kranthi.kuntala@intel.com>
Co-developed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2020-06-22 19:58:32 +03:00

2713 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - switch/port utility functions
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2018, Intel Corporation
*/
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/nvmem-provider.h>
#include <linux/pm_runtime.h>
#include <linux/sched/signal.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include "tb.h"
/* Switch NVM support */
#define NVM_CSS 0x10
struct nvm_auth_status {
struct list_head list;
uuid_t uuid;
u32 status;
};
/*
* Hold NVM authentication failure status per switch This information
* needs to stay around even when the switch gets power cycled so we
* keep it separately.
*/
static LIST_HEAD(nvm_auth_status_cache);
static DEFINE_MUTEX(nvm_auth_status_lock);
static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
list_for_each_entry(st, &nvm_auth_status_cache, list) {
if (uuid_equal(&st->uuid, sw->uuid))
return st;
}
return NULL;
}
static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
mutex_unlock(&nvm_auth_status_lock);
*status = st ? st->status : 0;
}
static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
{
struct nvm_auth_status *st;
if (WARN_ON(!sw->uuid))
return;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (!st) {
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto unlock;
memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
INIT_LIST_HEAD(&st->list);
list_add_tail(&st->list, &nvm_auth_status_cache);
}
st->status = status;
unlock:
mutex_unlock(&nvm_auth_status_lock);
}
static void nvm_clear_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (st) {
list_del(&st->list);
kfree(st);
}
mutex_unlock(&nvm_auth_status_lock);
}
static int nvm_validate_and_write(struct tb_switch *sw)
{
unsigned int image_size, hdr_size;
const u8 *buf = sw->nvm->buf;
u16 ds_size;
int ret;
if (!buf)
return -EINVAL;
image_size = sw->nvm->buf_data_size;
if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
return -EINVAL;
/*
* FARB pointer must point inside the image and must at least
* contain parts of the digital section we will be reading here.
*/
hdr_size = (*(u32 *)buf) & 0xffffff;
if (hdr_size + NVM_DEVID + 2 >= image_size)
return -EINVAL;
/* Digital section start should be aligned to 4k page */
if (!IS_ALIGNED(hdr_size, SZ_4K))
return -EINVAL;
/*
* Read digital section size and check that it also fits inside
* the image.
*/
ds_size = *(u16 *)(buf + hdr_size);
if (ds_size >= image_size)
return -EINVAL;
if (!sw->safe_mode) {
u16 device_id;
/*
* Make sure the device ID in the image matches the one
* we read from the switch config space.
*/
device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
if (device_id != sw->config.device_id)
return -EINVAL;
if (sw->generation < 3) {
/* Write CSS headers first */
ret = dma_port_flash_write(sw->dma_port,
DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
DMA_PORT_CSS_MAX_SIZE);
if (ret)
return ret;
}
/* Skip headers in the image */
buf += hdr_size;
image_size -= hdr_size;
}
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_write(sw, 0, buf, image_size);
return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
}
static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
{
int ret = 0;
/*
* Root switch NVM upgrade requires that we disconnect the
* existing paths first (in case it is not in safe mode
* already).
*/
if (!sw->safe_mode) {
u32 status;
ret = tb_domain_disconnect_all_paths(sw->tb);
if (ret)
return ret;
/*
* The host controller goes away pretty soon after this if
* everything goes well so getting timeout is expected.
*/
ret = dma_port_flash_update_auth(sw->dma_port);
if (!ret || ret == -ETIMEDOUT)
return 0;
/*
* Any error from update auth operation requires power
* cycling of the host router.
*/
tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
nvm_set_auth_status(sw, status);
}
/*
* From safe mode we can get out by just power cycling the
* switch.
*/
dma_port_power_cycle(sw->dma_port);
return ret;
}
static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
{
int ret, retries = 10;
ret = dma_port_flash_update_auth(sw->dma_port);
switch (ret) {
case 0:
case -ETIMEDOUT:
case -EACCES:
case -EINVAL:
/* Power cycle is required */
break;
default:
return ret;
}
/*
* Poll here for the authentication status. It takes some time
* for the device to respond (we get timeout for a while). Once
* we get response the device needs to be power cycled in order
* to the new NVM to be taken into use.
*/
do {
u32 status;
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret < 0 && ret != -ETIMEDOUT)
return ret;
if (ret > 0) {
if (status) {
tb_sw_warn(sw, "failed to authenticate NVM\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
return 0;
}
msleep(500);
} while (--retries);
return -ETIMEDOUT;
}
static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
/*
* During host router NVM upgrade we should not allow root port to
* go into D3cold because some root ports cannot trigger PME
* itself. To be on the safe side keep the root port in D0 during
* the whole upgrade process.
*/
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_get_noresume(&root_port->dev);
}
static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_put(&root_port->dev);
}
static inline bool nvm_readable(struct tb_switch *sw)
{
if (tb_switch_is_usb4(sw)) {
/*
* USB4 devices must support NVM operations but it is
* optional for hosts. Therefore we query the NVM sector
* size here and if it is supported assume NVM
* operations are implemented.
*/
return usb4_switch_nvm_sector_size(sw) > 0;
}
/* Thunderbolt 2 and 3 devices support NVM through DMA port */
return !!sw->dma_port;
}
static inline bool nvm_upgradeable(struct tb_switch *sw)
{
if (sw->no_nvm_upgrade)
return false;
return nvm_readable(sw);
}
static inline int nvm_read(struct tb_switch *sw, unsigned int address,
void *buf, size_t size)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_read(sw, address, buf, size);
return dma_port_flash_read(sw->dma_port, address, buf, size);
}
static int nvm_authenticate(struct tb_switch *sw)
{
int ret;
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_authenticate(sw);
if (!tb_route(sw)) {
nvm_authenticate_start_dma_port(sw);
ret = nvm_authenticate_host_dma_port(sw);
} else {
ret = nvm_authenticate_device_dma_port(sw);
}
return ret;
}
static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto out;
}
ret = nvm_read(sw, offset, val, bytes);
mutex_unlock(&sw->tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
/*
* Since writing the NVM image might require some special steps,
* for example when CSS headers are written, we cache the image
* locally here and handle the special cases when the user asks
* us to authenticate the image.
*/
ret = tb_nvm_write_buf(nvm, offset, val, bytes);
mutex_unlock(&sw->tb->lock);
return ret;
}
static int tb_switch_nvm_add(struct tb_switch *sw)
{
struct tb_nvm *nvm;
u32 val;
int ret;
if (!nvm_readable(sw))
return 0;
/*
* The NVM format of non-Intel hardware is not known so
* currently restrict NVM upgrade for Intel hardware. We may
* relax this in the future when we learn other NVM formats.
*/
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
sw->config.vendor_id != 0x8087) {
dev_info(&sw->dev,
"NVM format of vendor %#x is not known, disabling NVM upgrade\n",
sw->config.vendor_id);
return 0;
}
nvm = tb_nvm_alloc(&sw->dev);
if (IS_ERR(nvm))
return PTR_ERR(nvm);
/*
* If the switch is in safe-mode the only accessible portion of
* the NVM is the non-active one where userspace is expected to
* write new functional NVM.
*/
if (!sw->safe_mode) {
u32 nvm_size, hdr_size;
ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
if (ret)
goto err_nvm;
hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
nvm_size = (SZ_1M << (val & 7)) / 8;
nvm_size = (nvm_size - hdr_size) / 2;
ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
if (ret)
goto err_nvm;
nvm->major = val >> 16;
nvm->minor = val >> 8;
ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
if (ret)
goto err_nvm;
}
if (!sw->no_nvm_upgrade) {
ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
tb_switch_nvm_write);
if (ret)
goto err_nvm;
}
sw->nvm = nvm;
return 0;
err_nvm:
tb_nvm_free(nvm);
return ret;
}
static void tb_switch_nvm_remove(struct tb_switch *sw)
{
struct tb_nvm *nvm;
nvm = sw->nvm;
sw->nvm = NULL;
if (!nvm)
return;
/* Remove authentication status in case the switch is unplugged */
if (!nvm->authenticating)
nvm_clear_auth_status(sw);
tb_nvm_free(nvm);
}
/* port utility functions */
static const char *tb_port_type(struct tb_regs_port_header *port)
{
switch (port->type >> 16) {
case 0:
switch ((u8) port->type) {
case 0:
return "Inactive";
case 1:
return "Port";
case 2:
return "NHI";
default:
return "unknown";
}
case 0x2:
return "Ethernet";
case 0x8:
return "SATA";
case 0xe:
return "DP/HDMI";
case 0x10:
return "PCIe";
case 0x20:
return "USB";
default:
return "unknown";
}
}
static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
{
tb_dbg(tb,
" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
port->port_number, port->vendor_id, port->device_id,
port->revision, port->thunderbolt_version, tb_port_type(port),
port->type);
tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
port->max_in_hop_id, port->max_out_hop_id);
tb_dbg(tb, " Max counters: %d\n", port->max_counters);
tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
}
/**
* tb_port_state() - get connectedness state of a port
*
* The port must have a TB_CAP_PHY (i.e. it should be a real port).
*
* Return: Returns an enum tb_port_state on success or an error code on failure.
*/
static int tb_port_state(struct tb_port *port)
{
struct tb_cap_phy phy;
int res;
if (port->cap_phy == 0) {
tb_port_WARN(port, "does not have a PHY\n");
return -EINVAL;
}
res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
if (res)
return res;
return phy.state;
}
/**
* tb_wait_for_port() - wait for a port to become ready
*
* Wait up to 1 second for a port to reach state TB_PORT_UP. If
* wait_if_unplugged is set then we also wait if the port is in state
* TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
* switch resume). Otherwise we only wait if a device is registered but the link
* has not yet been established.
*
* Return: Returns an error code on failure. Returns 0 if the port is not
* connected or failed to reach state TB_PORT_UP within one second. Returns 1
* if the port is connected and in state TB_PORT_UP.
*/
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
{
int retries = 10;
int state;
if (!port->cap_phy) {
tb_port_WARN(port, "does not have PHY\n");
return -EINVAL;
}
if (tb_is_upstream_port(port)) {
tb_port_WARN(port, "is the upstream port\n");
return -EINVAL;
}
while (retries--) {
state = tb_port_state(port);
if (state < 0)
return state;
if (state == TB_PORT_DISABLED) {
tb_port_dbg(port, "is disabled (state: 0)\n");
return 0;
}
if (state == TB_PORT_UNPLUGGED) {
if (wait_if_unplugged) {
/* used during resume */
tb_port_dbg(port,
"is unplugged (state: 7), retrying...\n");
msleep(100);
continue;
}
tb_port_dbg(port, "is unplugged (state: 7)\n");
return 0;
}
if (state == TB_PORT_UP) {
tb_port_dbg(port, "is connected, link is up (state: 2)\n");
return 1;
}
/*
* After plug-in the state is TB_PORT_CONNECTING. Give it some
* time.
*/
tb_port_dbg(port,
"is connected, link is not up (state: %d), retrying...\n",
state);
msleep(100);
}
tb_port_warn(port,
"failed to reach state TB_PORT_UP. Ignoring port...\n");
return 0;
}
/**
* tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
*
* Change the number of NFC credits allocated to @port by @credits. To remove
* NFC credits pass a negative amount of credits.
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_add_nfc_credits(struct tb_port *port, int credits)
{
u32 nfc_credits;
if (credits == 0 || port->sw->is_unplugged)
return 0;
nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
nfc_credits += credits;
tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
port->config.nfc_credits |= nfc_credits;
return tb_port_write(port, &port->config.nfc_credits,
TB_CFG_PORT, ADP_CS_4, 1);
}
/**
* tb_port_set_initial_credits() - Set initial port link credits allocated
* @port: Port to set the initial credits
* @credits: Number of credits to to allocate
*
* Set initial credits value to be used for ingress shared buffering.
*/
int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
if (ret)
return ret;
data &= ~ADP_CS_5_LCA_MASK;
data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
}
/**
* tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_clear_counter(struct tb_port *port, int counter)
{
u32 zero[3] = { 0, 0, 0 };
tb_port_dbg(port, "clearing counter %d\n", counter);
return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
}
/**
* tb_port_unlock() - Unlock downstream port
* @port: Port to unlock
*
* Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
* downstream router accessible for CM.
*/
int tb_port_unlock(struct tb_port *port)
{
if (tb_switch_is_icm(port->sw))
return 0;
if (!tb_port_is_null(port))
return -EINVAL;
if (tb_switch_is_usb4(port->sw))
return usb4_port_unlock(port);
return 0;
}
/**
* tb_init_port() - initialize a port
*
* This is a helper method for tb_switch_alloc. Does not check or initialize
* any downstream switches.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_init_port(struct tb_port *port)
{
int res;
int cap;
res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
if (res) {
if (res == -ENODEV) {
tb_dbg(port->sw->tb, " Port %d: not implemented\n",
port->port);
return 0;
}
return res;
}
/* Port 0 is the switch itself and has no PHY. */
if (port->config.type == TB_TYPE_PORT && port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
if (cap > 0)
port->cap_phy = cap;
else
tb_port_WARN(port, "non switch port without a PHY\n");
cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
if (cap > 0)
port->cap_usb4 = cap;
} else if (port->port != 0) {
cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
if (cap > 0)
port->cap_adap = cap;
}
tb_dump_port(port->sw->tb, &port->config);
/* Control port does not need HopID allocation */
if (port->port) {
ida_init(&port->in_hopids);
ida_init(&port->out_hopids);
}
INIT_LIST_HEAD(&port->list);
return 0;
}
static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
int max_hopid)
{
int port_max_hopid;
struct ida *ida;
if (in) {
port_max_hopid = port->config.max_in_hop_id;
ida = &port->in_hopids;
} else {
port_max_hopid = port->config.max_out_hop_id;
ida = &port->out_hopids;
}
/*
* NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
* reserved.
*/
if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
min_hopid = TB_PATH_MIN_HOPID;
if (max_hopid < 0 || max_hopid > port_max_hopid)
max_hopid = port_max_hopid;
return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
}
/**
* tb_port_alloc_in_hopid() - Allocate input HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable input HopID
* @max_hopid: Maximum acceptable input HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
}
/**
* tb_port_alloc_out_hopid() - Allocate output HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable output HopID
* @max_hopid: Maximum acceptable output HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
}
/**
* tb_port_release_in_hopid() - Release allocated input HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_in_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->in_hopids, hopid);
}
/**
* tb_port_release_out_hopid() - Release allocated output HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_out_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->out_hopids, hopid);
}
static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
const struct tb_switch *sw)
{
u64 mask = (1ULL << parent->config.depth * 8) - 1;
return (tb_route(parent) & mask) == (tb_route(sw) & mask);
}
/**
* tb_next_port_on_path() - Return next port for given port on a path
* @start: Start port of the walk
* @end: End port of the walk
* @prev: Previous port (%NULL if this is the first)
*
* This function can be used to walk from one port to another if they
* are connected through zero or more switches. If the @prev is dual
* link port, the function follows that link and returns another end on
* that same link.
*
* If the @end port has been reached, return %NULL.
*
* Domain tb->lock must be held when this function is called.
*/
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
struct tb_port *prev)
{
struct tb_port *next;
if (!prev)
return start;
if (prev->sw == end->sw) {
if (prev == end)
return NULL;
return end;
}
if (tb_switch_is_reachable(prev->sw, end->sw)) {
next = tb_port_at(tb_route(end->sw), prev->sw);
/* Walk down the topology if next == prev */
if (prev->remote &&
(next == prev || next->dual_link_port == prev))
next = prev->remote;
} else {
if (tb_is_upstream_port(prev)) {
next = prev->remote;
} else {
next = tb_upstream_port(prev->sw);
/*
* Keep the same link if prev and next are both
* dual link ports.
*/
if (next->dual_link_port &&
next->link_nr != prev->link_nr) {
next = next->dual_link_port;
}
}
}
return next != prev ? next : NULL;
}
/**
* tb_port_get_link_speed() - Get current link speed
* @port: Port to check (USB4 or CIO)
*
* Returns link speed in Gb/s or negative errno in case of failure.
*/
int tb_port_get_link_speed(struct tb_port *port)
{
u32 val, speed;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
}
static int tb_port_get_link_width(struct tb_port *port)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
}
static bool tb_port_is_width_supported(struct tb_port *port, int width)
{
u32 phy, widths;
int ret;
if (!port->cap_phy)
return false;
ret = tb_port_read(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_0, 1);
if (ret)
return false;
widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
return !!(widths & width);
}
static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
switch (width) {
case 1:
val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
case 2:
val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
default:
return -EINVAL;
}
val |= LANE_ADP_CS_1_LB;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
static int tb_port_lane_bonding_enable(struct tb_port *port)
{
int ret;
/*
* Enable lane bonding for both links if not already enabled by
* for example the boot firmware.
*/
ret = tb_port_get_link_width(port);
if (ret == 1) {
ret = tb_port_set_link_width(port, 2);
if (ret)
return ret;
}
ret = tb_port_get_link_width(port->dual_link_port);
if (ret == 1) {
ret = tb_port_set_link_width(port->dual_link_port, 2);
if (ret) {
tb_port_set_link_width(port, 1);
return ret;
}
}
port->bonded = true;
port->dual_link_port->bonded = true;
return 0;
}
static void tb_port_lane_bonding_disable(struct tb_port *port)
{
port->dual_link_port->bonded = false;
port->bonded = false;
tb_port_set_link_width(port->dual_link_port, 1);
tb_port_set_link_width(port, 1);
}
/**
* tb_port_is_enabled() - Is the adapter port enabled
* @port: Port to check
*/
bool tb_port_is_enabled(struct tb_port *port)
{
switch (port->config.type) {
case TB_TYPE_PCIE_UP:
case TB_TYPE_PCIE_DOWN:
return tb_pci_port_is_enabled(port);
case TB_TYPE_DP_HDMI_IN:
case TB_TYPE_DP_HDMI_OUT:
return tb_dp_port_is_enabled(port);
case TB_TYPE_USB3_UP:
case TB_TYPE_USB3_DOWN:
return tb_usb3_port_is_enabled(port);
default:
return false;
}
}
/**
* tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
* @port: USB3 adapter port to check
*/
bool tb_usb3_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1))
return false;
return !!(data & ADP_USB3_CS_0_PE);
}
/**
* tb_usb3_port_enable() - Enable USB3 adapter port
* @port: USB3 adapter port to enable
* @enable: Enable/disable the USB3 adapter
*/
int tb_usb3_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
: ADP_USB3_CS_0_V;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1);
}
/**
* tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
* @port: PCIe port to check
*/
bool tb_pci_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1))
return false;
return !!(data & ADP_PCIE_CS_0_PE);
}
/**
* tb_pci_port_enable() - Enable PCIe adapter port
* @port: PCIe port to enable
* @enable: Enable/disable the PCIe adapter
*/
int tb_pci_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1);
}
/**
* tb_dp_port_hpd_is_active() - Is HPD already active
* @port: DP out port to check
*
* Checks if the DP OUT adapter port has HDP bit already set.
*/
int tb_dp_port_hpd_is_active(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
return !!(data & ADP_DP_CS_2_HDP);
}
/**
* tb_dp_port_hpd_clear() - Clear HPD from DP IN port
* @port: Port to clear HPD
*
* If the DP IN port has HDP set, this function can be used to clear it.
*/
int tb_dp_port_hpd_clear(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
if (ret)
return ret;
data |= ADP_DP_CS_3_HDPC;
return tb_port_write(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
}
/**
* tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
* @port: DP IN/OUT port to set hops
* @video: Video Hop ID
* @aux_tx: AUX TX Hop ID
* @aux_rx: AUX RX Hop ID
*
* Programs specified Hop IDs for DP IN/OUT port.
*/
int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
unsigned int aux_tx, unsigned int aux_rx)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
ADP_DP_CS_1_AUX_RX_HOPID_MASK;
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/**
* tb_dp_port_is_enabled() - Is DP adapter port enabled
* @port: DP adapter port to check
*/
bool tb_dp_port_is_enabled(struct tb_port *port)
{
u32 data[2];
if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
ARRAY_SIZE(data)))
return false;
return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
}
/**
* tb_dp_port_enable() - Enables/disables DP paths of a port
* @port: DP IN/OUT port
* @enable: Enable/disable DP path
*
* Once Hop IDs are programmed DP paths can be enabled or disabled by
* calling this function.
*/
int tb_dp_port_enable(struct tb_port *port, bool enable)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
if (enable)
data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
else
data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/* switch utility functions */
static const char *tb_switch_generation_name(const struct tb_switch *sw)
{
switch (sw->generation) {
case 1:
return "Thunderbolt 1";
case 2:
return "Thunderbolt 2";
case 3:
return "Thunderbolt 3";
case 4:
return "USB4";
default:
return "Unknown";
}
}
static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
{
const struct tb_regs_switch_header *regs = &sw->config;
tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
regs->revision, regs->thunderbolt_version);
tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
tb_dbg(tb, " Config:\n");
tb_dbg(tb,
" Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
regs->upstream_port_number, regs->depth,
(((u64) regs->route_hi) << 32) | regs->route_lo,
regs->enabled, regs->plug_events_delay);
tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
regs->__unknown1, regs->__unknown4);
}
/**
* reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_switch_reset(struct tb *tb, u64 route)
{
struct tb_cfg_result res;
struct tb_regs_switch_header header = {
header.route_hi = route >> 32,
header.route_lo = route,
header.enabled = true,
};
tb_dbg(tb, "resetting switch at %llx\n", route);
res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
0, 2, 2, 2);
if (res.err)
return res.err;
res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
if (res.err > 0)
return -EIO;
return res.err;
}
/**
* tb_plug_events_active() - enable/disable plug events on a switch
*
* Also configures a sane plug_events_delay of 255ms.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_plug_events_active(struct tb_switch *sw, bool active)
{
u32 data;
int res;
if (tb_switch_is_icm(sw))
return 0;
sw->config.plug_events_delay = 0xff;
res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
if (res)
return res;
/* Plug events are always enabled in USB4 */
if (tb_switch_is_usb4(sw))
return 0;
res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
if (res)
return res;
if (active) {
data = data & 0xFFFFFF83;
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
break;
default:
data |= 4;
}
} else {
data = data | 0x7c;
}
return tb_sw_write(sw, &data, TB_CFG_SWITCH,
sw->cap_plug_events + 1, 1);
}
static ssize_t authorized_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->authorized);
}
static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
{
int ret = -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized)
goto unlock;
switch (val) {
/* Approve switch */
case 1:
if (sw->key)
ret = tb_domain_approve_switch_key(sw->tb, sw);
else
ret = tb_domain_approve_switch(sw->tb, sw);
break;
/* Challenge switch */
case 2:
if (sw->key)
ret = tb_domain_challenge_switch_key(sw->tb, sw);
break;
default:
break;
}
if (!ret) {
sw->authorized = val;
/* Notify status change to the userspace */
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
}
unlock:
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t authorized_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int val;
ssize_t ret;
ret = kstrtouint(buf, 0, &val);
if (ret)
return ret;
if (val > 2)
return -EINVAL;
pm_runtime_get_sync(&sw->dev);
ret = tb_switch_set_authorized(sw, val);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret ? ret : count;
}
static DEVICE_ATTR_RW(authorized);
static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->boot);
}
static DEVICE_ATTR_RO(boot);
static ssize_t device_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->device);
}
static DEVICE_ATTR_RO(device);
static ssize_t
device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
}
static DEVICE_ATTR_RO(device_name);
static ssize_t
generation_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->generation);
}
static DEVICE_ATTR_RO(generation);
static ssize_t key_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
ssize_t ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->key)
ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
else
ret = sprintf(buf, "\n");
mutex_unlock(&sw->tb->lock);
return ret;
}
static ssize_t key_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
u8 key[TB_SWITCH_KEY_SIZE];
ssize_t ret = count;
bool clear = false;
if (!strcmp(buf, "\n"))
clear = true;
else if (hex2bin(key, buf, sizeof(key)))
return -EINVAL;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->authorized) {
ret = -EBUSY;
} else {
kfree(sw->key);
if (clear) {
sw->key = NULL;
} else {
sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
if (!sw->key)
ret = -ENOMEM;
}
}
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR(key, 0600, key_show, key_store);
static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
}
/*
* Currently all lanes must run at the same speed but we expose here
* both directions to allow possible asymmetric links in the future.
*/
static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%u\n", sw->link_width);
}
/*
* Currently link has same amount of lanes both directions (1 or 2) but
* expose them separately to allow possible asymmetric links in the future.
*/
static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
static ssize_t nvm_authenticate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
u32 status;
nvm_get_auth_status(sw, &status);
return sprintf(buf, "%#x\n", status);
}
static ssize_t nvm_authenticate_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
bool val;
int ret;
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto exit_rpm;
}
/* If NVMem devices are not yet added */
if (!sw->nvm) {
ret = -EAGAIN;
goto exit_unlock;
}
ret = kstrtobool(buf, &val);
if (ret)
goto exit_unlock;
/* Always clear the authentication status */
nvm_clear_auth_status(sw);
if (val) {
if (!sw->nvm->buf) {
ret = -EINVAL;
goto exit_unlock;
}
ret = nvm_validate_and_write(sw);
if (ret)
goto exit_unlock;
sw->nvm->authenticating = true;
ret = nvm_authenticate(sw);
}
exit_unlock:
mutex_unlock(&sw->tb->lock);
exit_rpm:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
if (ret)
return ret;
return count;
}
static DEVICE_ATTR_RW(nvm_authenticate);
static ssize_t nvm_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
int ret;
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
if (sw->safe_mode)
ret = -ENODATA;
else if (!sw->nvm)
ret = -EAGAIN;
else
ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
mutex_unlock(&sw->tb->lock);
return ret;
}
static DEVICE_ATTR_RO(nvm_version);
static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%#x\n", sw->vendor);
}
static DEVICE_ATTR_RO(vendor);
static ssize_t
vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
}
static DEVICE_ATTR_RO(vendor_name);
static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sprintf(buf, "%pUb\n", sw->uuid);
}
static DEVICE_ATTR_RO(unique_id);
static struct attribute *switch_attrs[] = {
&dev_attr_authorized.attr,
&dev_attr_boot.attr,
&dev_attr_device.attr,
&dev_attr_device_name.attr,
&dev_attr_generation.attr,
&dev_attr_key.attr,
&dev_attr_nvm_authenticate.attr,
&dev_attr_nvm_version.attr,
&dev_attr_rx_speed.attr,
&dev_attr_rx_lanes.attr,
&dev_attr_tx_speed.attr,
&dev_attr_tx_lanes.attr,
&dev_attr_vendor.attr,
&dev_attr_vendor_name.attr,
&dev_attr_unique_id.attr,
NULL,
};
static umode_t switch_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct tb_switch *sw = tb_to_switch(dev);
if (attr == &dev_attr_device.attr) {
if (!sw->device)
return 0;
} else if (attr == &dev_attr_device_name.attr) {
if (!sw->device_name)
return 0;
} else if (attr == &dev_attr_vendor.attr) {
if (!sw->vendor)
return 0;
} else if (attr == &dev_attr_vendor_name.attr) {
if (!sw->vendor_name)
return 0;
} else if (attr == &dev_attr_key.attr) {
if (tb_route(sw) &&
sw->tb->security_level == TB_SECURITY_SECURE &&
sw->security_level == TB_SECURITY_SECURE)
return attr->mode;
return 0;
} else if (attr == &dev_attr_rx_speed.attr ||
attr == &dev_attr_rx_lanes.attr ||
attr == &dev_attr_tx_speed.attr ||
attr == &dev_attr_tx_lanes.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate.attr) {
if (nvm_upgradeable(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_version.attr) {
if (nvm_readable(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_boot.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
}
return sw->safe_mode ? 0 : attr->mode;
}
static struct attribute_group switch_group = {
.is_visible = switch_attr_is_visible,
.attrs = switch_attrs,
};
static const struct attribute_group *switch_groups[] = {
&switch_group,
NULL,
};
static void tb_switch_release(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
struct tb_port *port;
dma_port_free(sw->dma_port);
tb_switch_for_each_port(sw, port) {
if (!port->disabled) {
ida_destroy(&port->in_hopids);
ida_destroy(&port->out_hopids);
}
}
kfree(sw->uuid);
kfree(sw->device_name);
kfree(sw->vendor_name);
kfree(sw->ports);
kfree(sw->drom);
kfree(sw->key);
kfree(sw);
}
/*
* Currently only need to provide the callbacks. Everything else is handled
* in the connection manager.
*/
static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_suspend_switch)
return cm_ops->runtime_suspend_switch(sw);
return 0;
}
static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_resume_switch)
return cm_ops->runtime_resume_switch(sw);
return 0;
}
static const struct dev_pm_ops tb_switch_pm_ops = {
SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
NULL)
};
struct device_type tb_switch_type = {
.name = "thunderbolt_device",
.release = tb_switch_release,
.pm = &tb_switch_pm_ops,
};
static int tb_switch_get_generation(struct tb_switch *sw)
{
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
return 1;
case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
return 2;
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
case PCI_DEVICE_ID_INTEL_ICL_NHI0:
case PCI_DEVICE_ID_INTEL_ICL_NHI1:
return 3;
default:
if (tb_switch_is_usb4(sw))
return 4;
/*
* For unknown switches assume generation to be 1 to be
* on the safe side.
*/
tb_sw_warn(sw, "unsupported switch device id %#x\n",
sw->config.device_id);
return 1;
}
}
static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
{
int max_depth;
if (tb_switch_is_usb4(sw) ||
(sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
max_depth = USB4_SWITCH_MAX_DEPTH;
else
max_depth = TB_SWITCH_MAX_DEPTH;
return depth > max_depth;
}
/**
* tb_switch_alloc() - allocate a switch
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* Allocates and initializes a switch. Will not upload configuration to
* the switch. For that you need to call tb_switch_configure()
* separately. The returned switch should be released by calling
* tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of
* failure.
*/
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
u64 route)
{
struct tb_switch *sw;
int upstream_port;
int i, ret, depth;
/* Unlock the downstream port so we can access the switch below */
if (route) {
struct tb_switch *parent_sw = tb_to_switch(parent);
struct tb_port *down;
down = tb_port_at(route, parent_sw);
tb_port_unlock(down);
}
depth = tb_route_length(route);
upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
if (upstream_port < 0)
return ERR_PTR(upstream_port);
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
if (ret)
goto err_free_sw_ports;
sw->generation = tb_switch_get_generation(sw);
tb_dbg(tb, "current switch config:\n");
tb_dump_switch(tb, sw);
/* configure switch */
sw->config.upstream_port_number = upstream_port;
sw->config.depth = depth;
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->config.enabled = 0;
/* Make sure we do not exceed maximum topology limit */
if (tb_switch_exceeds_max_depth(sw, depth)) {
ret = -EADDRNOTAVAIL;
goto err_free_sw_ports;
}
/* initialize ports */
sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
GFP_KERNEL);
if (!sw->ports) {
ret = -ENOMEM;
goto err_free_sw_ports;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
/* minimum setup for tb_find_cap and tb_drom_read to work */
sw->ports[i].sw = sw;
sw->ports[i].port = i;
}
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
if (ret > 0)
sw->cap_plug_events = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
if (ret > 0)
sw->cap_lc = ret;
/* Root switch is always authorized */
if (!route)
sw->authorized = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
err_free_sw_ports:
kfree(sw->ports);
kfree(sw);
return ERR_PTR(ret);
}
/**
* tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* This creates a switch in safe mode. This means the switch pretty much
* lacks all capabilities except DMA configuration port before it is
* flashed with a valid NVM firmware.
*
* The returned switch must be released by calling tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of failure
*/
struct tb_switch *
tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
{
struct tb_switch *sw;
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
sw->config.depth = tb_route_length(route);
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->safe_mode = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
}
/**
* tb_switch_configure() - Uploads configuration to the switch
* @sw: Switch to configure
*
* Call this function before the switch is added to the system. It will
* upload configuration to the switch and makes it available for the
* connection manager to use. Can be called to the switch again after
* resume from low power states to re-initialize it.
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_configure(struct tb_switch *sw)
{
struct tb *tb = sw->tb;
u64 route;
int ret;
route = tb_route(sw);
tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
sw->config.enabled ? "restoring " : "initializing", route,
tb_route_length(route), sw->config.upstream_port_number);
sw->config.enabled = 1;
if (tb_switch_is_usb4(sw)) {
/*
* For USB4 devices, we need to program the CM version
* accordingly so that it knows to expose all the
* additional capabilities.
*/
sw->config.cmuv = USB4_VERSION_1_0;
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 4);
if (ret)
return ret;
ret = usb4_switch_setup(sw);
if (ret)
return ret;
ret = usb4_switch_configure_link(sw);
} else {
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
tb_sw_warn(sw, "unknown switch vendor id %#x\n",
sw->config.vendor_id);
if (!sw->cap_plug_events) {
tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
return -ENODEV;
}
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 3);
if (ret)
return ret;
ret = tb_lc_configure_link(sw);
}
if (ret)
return ret;
return tb_plug_events_active(sw, true);
}
static int tb_switch_set_uuid(struct tb_switch *sw)
{
bool uid = false;
u32 uuid[4];
int ret;
if (sw->uuid)
return 0;
if (tb_switch_is_usb4(sw)) {
ret = usb4_switch_read_uid(sw, &sw->uid);
if (ret)
return ret;
uid = true;
} else {
/*
* The newer controllers include fused UUID as part of
* link controller specific registers
*/
ret = tb_lc_read_uuid(sw, uuid);
if (ret) {
if (ret != -EINVAL)
return ret;
uid = true;
}
}
if (uid) {
/*
* ICM generates UUID based on UID and fills the upper
* two words with ones. This is not strictly following
* UUID format but we want to be compatible with it so
* we do the same here.
*/
uuid[0] = sw->uid & 0xffffffff;
uuid[1] = (sw->uid >> 32) & 0xffffffff;
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
}
sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
if (!sw->uuid)
return -ENOMEM;
return 0;
}
static int tb_switch_add_dma_port(struct tb_switch *sw)
{
u32 status;
int ret;
switch (sw->generation) {
case 2:
/* Only root switch can be upgraded */
if (tb_route(sw))
return 0;
/* fallthrough */
case 3:
ret = tb_switch_set_uuid(sw);
if (ret)
return ret;
break;
default:
/*
* DMA port is the only thing available when the switch
* is in safe mode.
*/
if (!sw->safe_mode)
return 0;
break;
}
/* Root switch DMA port requires running firmware */
if (!tb_route(sw) && !tb_switch_is_icm(sw))
return 0;
sw->dma_port = dma_port_alloc(sw);
if (!sw->dma_port)
return 0;
if (sw->no_nvm_upgrade)
return 0;
/*
* If there is status already set then authentication failed
* when the dma_port_flash_update_auth() returned. Power cycling
* is not needed (it was done already) so only thing we do here
* is to unblock runtime PM of the root port.
*/
nvm_get_auth_status(sw, &status);
if (status) {
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
return 0;
}
/*
* Check status of the previous flash authentication. If there
* is one we need to power cycle the switch in any case to make
* it functional again.
*/
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret <= 0)
return ret;
/* Now we can allow root port to suspend again */
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
if (status) {
tb_sw_info(sw, "switch flash authentication failed\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
/*
* We return error here which causes the switch adding failure.
* It should appear back after power cycle is complete.
*/
return -ESHUTDOWN;
}
static void tb_switch_default_link_ports(struct tb_switch *sw)
{
int i;
for (i = 1; i <= sw->config.max_port_number; i += 2) {
struct tb_port *port = &sw->ports[i];
struct tb_port *subordinate;
if (!tb_port_is_null(port))
continue;
/* Check for the subordinate port */
if (i == sw->config.max_port_number ||
!tb_port_is_null(&sw->ports[i + 1]))
continue;
/* Link them if not already done so (by DROM) */
subordinate = &sw->ports[i + 1];
if (!port->dual_link_port && !subordinate->dual_link_port) {
port->link_nr = 0;
port->dual_link_port = subordinate;
subordinate->link_nr = 1;
subordinate->dual_link_port = port;
tb_sw_dbg(sw, "linked ports %d <-> %d\n",
port->port, subordinate->port);
}
}
}
static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
{
const struct tb_port *up = tb_upstream_port(sw);
if (!up->dual_link_port || !up->dual_link_port->remote)
return false;
if (tb_switch_is_usb4(sw))
return usb4_switch_lane_bonding_possible(sw);
return tb_lc_lane_bonding_possible(sw);
}
static int tb_switch_update_link_attributes(struct tb_switch *sw)
{
struct tb_port *up;
bool change = false;
int ret;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return 0;
up = tb_upstream_port(sw);
ret = tb_port_get_link_speed(up);
if (ret < 0)
return ret;
if (sw->link_speed != ret)
change = true;
sw->link_speed = ret;
ret = tb_port_get_link_width(up);
if (ret < 0)
return ret;
if (sw->link_width != ret)
change = true;
sw->link_width = ret;
/* Notify userspace that there is possible link attribute change */
if (device_is_registered(&sw->dev) && change)
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
return 0;
}
/**
* tb_switch_lane_bonding_enable() - Enable lane bonding
* @sw: Switch to enable lane bonding
*
* Connection manager can call this function to enable lane bonding of a
* switch. If conditions are correct and both switches support the feature,
* lanes are bonded. It is safe to call this to any switch.
*/
int tb_switch_lane_bonding_enable(struct tb_switch *sw)
{
struct tb_switch *parent = tb_to_switch(sw->dev.parent);
struct tb_port *up, *down;
u64 route = tb_route(sw);
int ret;
if (!route)
return 0;
if (!tb_switch_lane_bonding_possible(sw))
return 0;
up = tb_upstream_port(sw);
down = tb_port_at(route, parent);
if (!tb_port_is_width_supported(up, 2) ||
!tb_port_is_width_supported(down, 2))
return 0;
ret = tb_port_lane_bonding_enable(up);
if (ret) {
tb_port_warn(up, "failed to enable lane bonding\n");
return ret;
}
ret = tb_port_lane_bonding_enable(down);
if (ret) {
tb_port_warn(down, "failed to enable lane bonding\n");
tb_port_lane_bonding_disable(up);
return ret;
}
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding enabled\n");
return ret;
}
/**
* tb_switch_lane_bonding_disable() - Disable lane bonding
* @sw: Switch whose lane bonding to disable
*
* Disables lane bonding between @sw and parent. This can be called even
* if lanes were not bonded originally.
*/
void tb_switch_lane_bonding_disable(struct tb_switch *sw)
{
struct tb_switch *parent = tb_to_switch(sw->dev.parent);
struct tb_port *up, *down;
if (!tb_route(sw))
return;
up = tb_upstream_port(sw);
if (!up->bonded)
return;
down = tb_port_at(tb_route(sw), parent);
tb_port_lane_bonding_disable(up);
tb_port_lane_bonding_disable(down);
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding disabled\n");
}
/**
* tb_switch_add() - Add a switch to the domain
* @sw: Switch to add
*
* This is the last step in adding switch to the domain. It will read
* identification information from DROM and initializes ports so that
* they can be used to connect other switches. The switch will be
* exposed to the userspace when this function successfully returns. To
* remove and release the switch, call tb_switch_remove().
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_add(struct tb_switch *sw)
{
int i, ret;
/*
* Initialize DMA control port now before we read DROM. Recent
* host controllers have more complete DROM on NVM that includes
* vendor and model identification strings which we then expose
* to the userspace. NVM can be accessed through DMA
* configuration based mailbox.
*/
ret = tb_switch_add_dma_port(sw);
if (ret) {
dev_err(&sw->dev, "failed to add DMA port\n");
return ret;
}
if (!sw->safe_mode) {
/* read drom */
ret = tb_drom_read(sw);
if (ret) {
dev_err(&sw->dev, "reading DROM failed\n");
return ret;
}
tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
ret = tb_switch_set_uuid(sw);
if (ret) {
dev_err(&sw->dev, "failed to set UUID\n");
return ret;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
if (sw->ports[i].disabled) {
tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
continue;
}
ret = tb_init_port(&sw->ports[i]);
if (ret) {
dev_err(&sw->dev, "failed to initialize port %d\n", i);
return ret;
}
}
tb_switch_default_link_ports(sw);
ret = tb_switch_update_link_attributes(sw);
if (ret)
return ret;
ret = tb_switch_tmu_init(sw);
if (ret)
return ret;
}
ret = device_add(&sw->dev);
if (ret) {
dev_err(&sw->dev, "failed to add device: %d\n", ret);
return ret;
}
if (tb_route(sw)) {
dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
sw->vendor, sw->device);
if (sw->vendor_name && sw->device_name)
dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
sw->device_name);
}
ret = tb_switch_nvm_add(sw);
if (ret) {
dev_err(&sw->dev, "failed to add NVM devices\n");
device_del(&sw->dev);
return ret;
}
pm_runtime_set_active(&sw->dev);
if (sw->rpm) {
pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&sw->dev);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_enable(&sw->dev);
pm_request_autosuspend(&sw->dev);
}
return 0;
}
/**
* tb_switch_remove() - Remove and release a switch
* @sw: Switch to remove
*
* This will remove the switch from the domain and release it after last
* reference count drops to zero. If there are switches connected below
* this switch, they will be removed as well.
*/
void tb_switch_remove(struct tb_switch *sw)
{
struct tb_port *port;
if (sw->rpm) {
pm_runtime_get_sync(&sw->dev);
pm_runtime_disable(&sw->dev);
}
/* port 0 is the switch itself and never has a remote */
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port)) {
tb_switch_remove(port->remote->sw);
port->remote = NULL;
} else if (port->xdomain) {
tb_xdomain_remove(port->xdomain);
port->xdomain = NULL;
}
/* Remove any downstream retimers */
tb_retimer_remove_all(port);
}
if (!sw->is_unplugged)
tb_plug_events_active(sw, false);
if (tb_switch_is_usb4(sw))
usb4_switch_unconfigure_link(sw);
else
tb_lc_unconfigure_link(sw);
tb_switch_nvm_remove(sw);
if (tb_route(sw))
dev_info(&sw->dev, "device disconnected\n");
device_unregister(&sw->dev);
}
/**
* tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
*/
void tb_sw_set_unplugged(struct tb_switch *sw)
{
struct tb_port *port;
if (sw == sw->tb->root_switch) {
tb_sw_WARN(sw, "cannot unplug root switch\n");
return;
}
if (sw->is_unplugged) {
tb_sw_WARN(sw, "is_unplugged already set\n");
return;
}
sw->is_unplugged = true;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
}
}
int tb_switch_resume(struct tb_switch *sw)
{
struct tb_port *port;
int err;
tb_sw_dbg(sw, "resuming switch\n");
/*
* Check for UID of the connected switches except for root
* switch which we assume cannot be removed.
*/
if (tb_route(sw)) {
u64 uid;
/*
* Check first that we can still read the switch config
* space. It may be that there is now another domain
* connected.
*/
err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
if (err < 0) {
tb_sw_info(sw, "switch not present anymore\n");
return err;
}
if (tb_switch_is_usb4(sw))
err = usb4_switch_read_uid(sw, &uid);
else
err = tb_drom_read_uid_only(sw, &uid);
if (err) {
tb_sw_warn(sw, "uid read failed\n");
return err;
}
if (sw->uid != uid) {
tb_sw_info(sw,
"changed while suspended (uid %#llx -> %#llx)\n",
sw->uid, uid);
return -ENODEV;
}
}
err = tb_switch_configure(sw);
if (err)
return err;
/* check for surviving downstream switches */
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port) && !port->xdomain)
continue;
if (tb_wait_for_port(port, true) <= 0) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
} else if (tb_port_has_remote(port) || port->xdomain) {
/*
* Always unlock the port so the downstream
* switch/domain is accessible.
*/
if (tb_port_unlock(port))
tb_port_warn(port, "failed to unlock port\n");
if (port->remote && tb_switch_resume(port->remote->sw)) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
tb_sw_set_unplugged(port->remote->sw);
}
}
}
return 0;
}
void tb_switch_suspend(struct tb_switch *sw)
{
struct tb_port *port;
int err;
err = tb_plug_events_active(sw, false);
if (err)
return;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_switch_suspend(port->remote->sw);
}
if (tb_switch_is_usb4(sw))
usb4_switch_set_sleep(sw);
else
tb_lc_set_sleep(sw);
}
/**
* tb_switch_query_dp_resource() - Query availability of DP resource
* @sw: Switch whose DP resource is queried
* @in: DP IN port
*
* Queries availability of DP resource for DP tunneling using switch
* specific means. Returns %true if resource is available.
*/
bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_query_dp_resource(sw, in);
return tb_lc_dp_sink_query(sw, in);
}
/**
* tb_switch_alloc_dp_resource() - Allocate available DP resource
* @sw: Switch whose DP resource is allocated
* @in: DP IN port
*
* Allocates DP resource for DP tunneling. The resource must be
* available for this to succeed (see tb_switch_query_dp_resource()).
* Returns %0 in success and negative errno otherwise.
*/
int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_alloc_dp_resource(sw, in);
return tb_lc_dp_sink_alloc(sw, in);
}
/**
* tb_switch_dealloc_dp_resource() - De-allocate DP resource
* @sw: Switch whose DP resource is de-allocated
* @in: DP IN port
*
* De-allocates DP resource that was previously allocated for DP
* tunneling.
*/
void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
int ret;
if (tb_switch_is_usb4(sw))
ret = usb4_switch_dealloc_dp_resource(sw, in);
else
ret = tb_lc_dp_sink_dealloc(sw, in);
if (ret)
tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
in->port);
}
struct tb_sw_lookup {
struct tb *tb;
u8 link;
u8 depth;
const uuid_t *uuid;
u64 route;
};
static int tb_switch_match(struct device *dev, const void *data)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_sw_lookup *lookup = data;
if (!sw)
return 0;
if (sw->tb != lookup->tb)
return 0;
if (lookup->uuid)
return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
if (lookup->route) {
return sw->config.route_lo == lower_32_bits(lookup->route) &&
sw->config.route_hi == upper_32_bits(lookup->route);
}
/* Root switch is matched only by depth */
if (!lookup->depth)
return !sw->depth;
return sw->link == lookup->link && sw->depth == lookup->depth;
}
/**
* tb_switch_find_by_link_depth() - Find switch by link and depth
* @tb: Domain the switch belongs
* @link: Link number the switch is connected
* @depth: Depth of the switch in link
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.link = link;
lookup.depth = depth;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_uuid() - Find switch by UUID
* @tb: Domain the switch belongs
* @uuid: UUID to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.uuid = uuid;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_route() - Find switch by route string
* @tb: Domain the switch belongs
* @route: Route string to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
{
struct tb_sw_lookup lookup;
struct device *dev;
if (!route)
return tb_switch_get(tb->root_switch);
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.route = route;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_port() - return the first port of @type on @sw or NULL
* @sw: Switch to find the port from
* @type: Port type to look for
*/
struct tb_port *tb_switch_find_port(struct tb_switch *sw,
enum tb_port_type type)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (port->config.type == type)
return port;
}
return NULL;
}