2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/tools/perf/builtin-timechart.c
Arnaldo Carvalho de Melo e7ff8920e6 perf tools: Use just forward declarations for struct thread where possible
Removing various instances of unnecessary includes, reducing the maze of
header dependencies.

Link: http://lkml.kernel.org/n/tip-hwu6eyuok9pc57alookyzmsf@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-04-24 13:43:35 -03:00

2015 lines
47 KiB
C

/*
* builtin-timechart.c - make an svg timechart of system activity
*
* (C) Copyright 2009 Intel Corporation
*
* Authors:
* Arjan van de Ven <arjan@linux.intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <errno.h>
#include <inttypes.h>
#include <traceevent/event-parse.h>
#include "builtin.h"
#include "util/util.h"
#include "util/color.h"
#include <linux/list.h>
#include "util/cache.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include <linux/kernel.h>
#include <linux/rbtree.h>
#include <linux/time64.h>
#include "util/symbol.h"
#include "util/thread.h"
#include "util/callchain.h"
#include "perf.h"
#include "util/header.h"
#include <subcmd/parse-options.h>
#include "util/parse-events.h"
#include "util/event.h"
#include "util/session.h"
#include "util/svghelper.h"
#include "util/tool.h"
#include "util/data.h"
#include "util/debug.h"
#define SUPPORT_OLD_POWER_EVENTS 1
#define PWR_EVENT_EXIT -1
struct per_pid;
struct power_event;
struct wake_event;
struct timechart {
struct perf_tool tool;
struct per_pid *all_data;
struct power_event *power_events;
struct wake_event *wake_events;
int proc_num;
unsigned int numcpus;
u64 min_freq, /* Lowest CPU frequency seen */
max_freq, /* Highest CPU frequency seen */
turbo_frequency,
first_time, last_time;
bool power_only,
tasks_only,
with_backtrace,
topology;
bool force;
/* IO related settings */
bool io_only,
skip_eagain;
u64 io_events;
u64 min_time,
merge_dist;
};
struct per_pidcomm;
struct cpu_sample;
struct io_sample;
/*
* Datastructure layout:
* We keep an list of "pid"s, matching the kernels notion of a task struct.
* Each "pid" entry, has a list of "comm"s.
* this is because we want to track different programs different, while
* exec will reuse the original pid (by design).
* Each comm has a list of samples that will be used to draw
* final graph.
*/
struct per_pid {
struct per_pid *next;
int pid;
int ppid;
u64 start_time;
u64 end_time;
u64 total_time;
u64 total_bytes;
int display;
struct per_pidcomm *all;
struct per_pidcomm *current;
};
struct per_pidcomm {
struct per_pidcomm *next;
u64 start_time;
u64 end_time;
u64 total_time;
u64 max_bytes;
u64 total_bytes;
int Y;
int display;
long state;
u64 state_since;
char *comm;
struct cpu_sample *samples;
struct io_sample *io_samples;
};
struct sample_wrapper {
struct sample_wrapper *next;
u64 timestamp;
unsigned char data[0];
};
#define TYPE_NONE 0
#define TYPE_RUNNING 1
#define TYPE_WAITING 2
#define TYPE_BLOCKED 3
struct cpu_sample {
struct cpu_sample *next;
u64 start_time;
u64 end_time;
int type;
int cpu;
const char *backtrace;
};
enum {
IOTYPE_READ,
IOTYPE_WRITE,
IOTYPE_SYNC,
IOTYPE_TX,
IOTYPE_RX,
IOTYPE_POLL,
};
struct io_sample {
struct io_sample *next;
u64 start_time;
u64 end_time;
u64 bytes;
int type;
int fd;
int err;
int merges;
};
#define CSTATE 1
#define PSTATE 2
struct power_event {
struct power_event *next;
int type;
int state;
u64 start_time;
u64 end_time;
int cpu;
};
struct wake_event {
struct wake_event *next;
int waker;
int wakee;
u64 time;
const char *backtrace;
};
struct process_filter {
char *name;
int pid;
struct process_filter *next;
};
static struct process_filter *process_filter;
static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
{
struct per_pid *cursor = tchart->all_data;
while (cursor) {
if (cursor->pid == pid)
return cursor;
cursor = cursor->next;
}
cursor = zalloc(sizeof(*cursor));
assert(cursor != NULL);
cursor->pid = pid;
cursor->next = tchart->all_data;
tchart->all_data = cursor;
return cursor;
}
static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
{
struct per_pid *p;
struct per_pidcomm *c;
p = find_create_pid(tchart, pid);
c = p->all;
while (c) {
if (c->comm && strcmp(c->comm, comm) == 0) {
p->current = c;
return;
}
if (!c->comm) {
c->comm = strdup(comm);
p->current = c;
return;
}
c = c->next;
}
c = zalloc(sizeof(*c));
assert(c != NULL);
c->comm = strdup(comm);
p->current = c;
c->next = p->all;
p->all = c;
}
static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
{
struct per_pid *p, *pp;
p = find_create_pid(tchart, pid);
pp = find_create_pid(tchart, ppid);
p->ppid = ppid;
if (pp->current && pp->current->comm && !p->current)
pid_set_comm(tchart, pid, pp->current->comm);
p->start_time = timestamp;
if (p->current && !p->current->start_time) {
p->current->start_time = timestamp;
p->current->state_since = timestamp;
}
}
static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
{
struct per_pid *p;
p = find_create_pid(tchart, pid);
p->end_time = timestamp;
if (p->current)
p->current->end_time = timestamp;
}
static void pid_put_sample(struct timechart *tchart, int pid, int type,
unsigned int cpu, u64 start, u64 end,
const char *backtrace)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
p = find_create_pid(tchart, pid);
c = p->current;
if (!c) {
c = zalloc(sizeof(*c));
assert(c != NULL);
p->current = c;
c->next = p->all;
p->all = c;
}
sample = zalloc(sizeof(*sample));
assert(sample != NULL);
sample->start_time = start;
sample->end_time = end;
sample->type = type;
sample->next = c->samples;
sample->cpu = cpu;
sample->backtrace = backtrace;
c->samples = sample;
if (sample->type == TYPE_RUNNING && end > start && start > 0) {
c->total_time += (end-start);
p->total_time += (end-start);
}
if (c->start_time == 0 || c->start_time > start)
c->start_time = start;
if (p->start_time == 0 || p->start_time > start)
p->start_time = start;
}
#define MAX_CPUS 4096
static u64 cpus_cstate_start_times[MAX_CPUS];
static int cpus_cstate_state[MAX_CPUS];
static u64 cpus_pstate_start_times[MAX_CPUS];
static u64 cpus_pstate_state[MAX_CPUS];
static int process_comm_event(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct timechart *tchart = container_of(tool, struct timechart, tool);
pid_set_comm(tchart, event->comm.tid, event->comm.comm);
return 0;
}
static int process_fork_event(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct timechart *tchart = container_of(tool, struct timechart, tool);
pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
return 0;
}
static int process_exit_event(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct timechart *tchart = container_of(tool, struct timechart, tool);
pid_exit(tchart, event->fork.pid, event->fork.time);
return 0;
}
#ifdef SUPPORT_OLD_POWER_EVENTS
static int use_old_power_events;
#endif
static void c_state_start(int cpu, u64 timestamp, int state)
{
cpus_cstate_start_times[cpu] = timestamp;
cpus_cstate_state[cpu] = state;
}
static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
{
struct power_event *pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_cstate_state[cpu];
pwr->start_time = cpus_cstate_start_times[cpu];
pwr->end_time = timestamp;
pwr->cpu = cpu;
pwr->type = CSTATE;
pwr->next = tchart->power_events;
tchart->power_events = pwr;
}
static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
{
struct power_event *pwr;
if (new_freq > 8000000) /* detect invalid data */
return;
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_pstate_state[cpu];
pwr->start_time = cpus_pstate_start_times[cpu];
pwr->end_time = timestamp;
pwr->cpu = cpu;
pwr->type = PSTATE;
pwr->next = tchart->power_events;
if (!pwr->start_time)
pwr->start_time = tchart->first_time;
tchart->power_events = pwr;
cpus_pstate_state[cpu] = new_freq;
cpus_pstate_start_times[cpu] = timestamp;
if ((u64)new_freq > tchart->max_freq)
tchart->max_freq = new_freq;
if (new_freq < tchart->min_freq || tchart->min_freq == 0)
tchart->min_freq = new_freq;
if (new_freq == tchart->max_freq - 1000)
tchart->turbo_frequency = tchart->max_freq;
}
static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
int waker, int wakee, u8 flags, const char *backtrace)
{
struct per_pid *p;
struct wake_event *we = zalloc(sizeof(*we));
if (!we)
return;
we->time = timestamp;
we->waker = waker;
we->backtrace = backtrace;
if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
we->waker = -1;
we->wakee = wakee;
we->next = tchart->wake_events;
tchart->wake_events = we;
p = find_create_pid(tchart, we->wakee);
if (p && p->current && p->current->state == TYPE_NONE) {
p->current->state_since = timestamp;
p->current->state = TYPE_WAITING;
}
if (p && p->current && p->current->state == TYPE_BLOCKED) {
pid_put_sample(tchart, p->pid, p->current->state, cpu,
p->current->state_since, timestamp, NULL);
p->current->state_since = timestamp;
p->current->state = TYPE_WAITING;
}
}
static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
int prev_pid, int next_pid, u64 prev_state,
const char *backtrace)
{
struct per_pid *p = NULL, *prev_p;
prev_p = find_create_pid(tchart, prev_pid);
p = find_create_pid(tchart, next_pid);
if (prev_p->current && prev_p->current->state != TYPE_NONE)
pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
prev_p->current->state_since, timestamp,
backtrace);
if (p && p->current) {
if (p->current->state != TYPE_NONE)
pid_put_sample(tchart, next_pid, p->current->state, cpu,
p->current->state_since, timestamp,
backtrace);
p->current->state_since = timestamp;
p->current->state = TYPE_RUNNING;
}
if (prev_p->current) {
prev_p->current->state = TYPE_NONE;
prev_p->current->state_since = timestamp;
if (prev_state & 2)
prev_p->current->state = TYPE_BLOCKED;
if (prev_state == 0)
prev_p->current->state = TYPE_WAITING;
}
}
static const char *cat_backtrace(union perf_event *event,
struct perf_sample *sample,
struct machine *machine)
{
struct addr_location al;
unsigned int i;
char *p = NULL;
size_t p_len;
u8 cpumode = PERF_RECORD_MISC_USER;
struct addr_location tal;
struct ip_callchain *chain = sample->callchain;
FILE *f = open_memstream(&p, &p_len);
if (!f) {
perror("open_memstream error");
return NULL;
}
if (!chain)
goto exit;
if (machine__resolve(machine, &al, sample) < 0) {
fprintf(stderr, "problem processing %d event, skipping it.\n",
event->header.type);
goto exit;
}
for (i = 0; i < chain->nr; i++) {
u64 ip;
if (callchain_param.order == ORDER_CALLEE)
ip = chain->ips[i];
else
ip = chain->ips[chain->nr - i - 1];
if (ip >= PERF_CONTEXT_MAX) {
switch (ip) {
case PERF_CONTEXT_HV:
cpumode = PERF_RECORD_MISC_HYPERVISOR;
break;
case PERF_CONTEXT_KERNEL:
cpumode = PERF_RECORD_MISC_KERNEL;
break;
case PERF_CONTEXT_USER:
cpumode = PERF_RECORD_MISC_USER;
break;
default:
pr_debug("invalid callchain context: "
"%"PRId64"\n", (s64) ip);
/*
* It seems the callchain is corrupted.
* Discard all.
*/
zfree(&p);
goto exit_put;
}
continue;
}
tal.filtered = 0;
thread__find_addr_location(al.thread, cpumode,
MAP__FUNCTION, ip, &tal);
if (tal.sym)
fprintf(f, "..... %016" PRIx64 " %s\n", ip,
tal.sym->name);
else
fprintf(f, "..... %016" PRIx64 "\n", ip);
}
exit_put:
addr_location__put(&al);
exit:
fclose(f);
return p;
}
typedef int (*tracepoint_handler)(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace);
static int process_sample_event(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample,
struct perf_evsel *evsel,
struct machine *machine)
{
struct timechart *tchart = container_of(tool, struct timechart, tool);
if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
if (!tchart->first_time || tchart->first_time > sample->time)
tchart->first_time = sample->time;
if (tchart->last_time < sample->time)
tchart->last_time = sample->time;
}
if (evsel->handler != NULL) {
tracepoint_handler f = evsel->handler;
return f(tchart, evsel, sample,
cat_backtrace(event, sample, machine));
}
return 0;
}
static int
process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace __maybe_unused)
{
u32 state = perf_evsel__intval(evsel, sample, "state");
u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
if (state == (u32)PWR_EVENT_EXIT)
c_state_end(tchart, cpu_id, sample->time);
else
c_state_start(cpu_id, sample->time, state);
return 0;
}
static int
process_sample_cpu_frequency(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace __maybe_unused)
{
u32 state = perf_evsel__intval(evsel, sample, "state");
u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
p_state_change(tchart, cpu_id, sample->time, state);
return 0;
}
static int
process_sample_sched_wakeup(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace)
{
u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
int waker = perf_evsel__intval(evsel, sample, "common_pid");
int wakee = perf_evsel__intval(evsel, sample, "pid");
sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
return 0;
}
static int
process_sample_sched_switch(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace)
{
int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
prev_state, backtrace);
return 0;
}
#ifdef SUPPORT_OLD_POWER_EVENTS
static int
process_sample_power_start(struct timechart *tchart __maybe_unused,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace __maybe_unused)
{
u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
u64 value = perf_evsel__intval(evsel, sample, "value");
c_state_start(cpu_id, sample->time, value);
return 0;
}
static int
process_sample_power_end(struct timechart *tchart,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample,
const char *backtrace __maybe_unused)
{
c_state_end(tchart, sample->cpu, sample->time);
return 0;
}
static int
process_sample_power_frequency(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample,
const char *backtrace __maybe_unused)
{
u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
u64 value = perf_evsel__intval(evsel, sample, "value");
p_state_change(tchart, cpu_id, sample->time, value);
return 0;
}
#endif /* SUPPORT_OLD_POWER_EVENTS */
/*
* After the last sample we need to wrap up the current C/P state
* and close out each CPU for these.
*/
static void end_sample_processing(struct timechart *tchart)
{
u64 cpu;
struct power_event *pwr;
for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
/* C state */
#if 0
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_cstate_state[cpu];
pwr->start_time = cpus_cstate_start_times[cpu];
pwr->end_time = tchart->last_time;
pwr->cpu = cpu;
pwr->type = CSTATE;
pwr->next = tchart->power_events;
tchart->power_events = pwr;
#endif
/* P state */
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_pstate_state[cpu];
pwr->start_time = cpus_pstate_start_times[cpu];
pwr->end_time = tchart->last_time;
pwr->cpu = cpu;
pwr->type = PSTATE;
pwr->next = tchart->power_events;
if (!pwr->start_time)
pwr->start_time = tchart->first_time;
if (!pwr->state)
pwr->state = tchart->min_freq;
tchart->power_events = pwr;
}
}
static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
u64 start, int fd)
{
struct per_pid *p = find_create_pid(tchart, pid);
struct per_pidcomm *c = p->current;
struct io_sample *sample;
struct io_sample *prev;
if (!c) {
c = zalloc(sizeof(*c));
if (!c)
return -ENOMEM;
p->current = c;
c->next = p->all;
p->all = c;
}
prev = c->io_samples;
if (prev && prev->start_time && !prev->end_time) {
pr_warning("Skip invalid start event: "
"previous event already started!\n");
/* remove previous event that has been started,
* we are not sure we will ever get an end for it */
c->io_samples = prev->next;
free(prev);
return 0;
}
sample = zalloc(sizeof(*sample));
if (!sample)
return -ENOMEM;
sample->start_time = start;
sample->type = type;
sample->fd = fd;
sample->next = c->io_samples;
c->io_samples = sample;
if (c->start_time == 0 || c->start_time > start)
c->start_time = start;
return 0;
}
static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
u64 end, long ret)
{
struct per_pid *p = find_create_pid(tchart, pid);
struct per_pidcomm *c = p->current;
struct io_sample *sample, *prev;
if (!c) {
pr_warning("Invalid pidcomm!\n");
return -1;
}
sample = c->io_samples;
if (!sample) /* skip partially captured events */
return 0;
if (sample->end_time) {
pr_warning("Skip invalid end event: "
"previous event already ended!\n");
return 0;
}
if (sample->type != type) {
pr_warning("Skip invalid end event: invalid event type!\n");
return 0;
}
sample->end_time = end;
prev = sample->next;
/* we want to be able to see small and fast transfers, so make them
* at least min_time long, but don't overlap them */
if (sample->end_time - sample->start_time < tchart->min_time)
sample->end_time = sample->start_time + tchart->min_time;
if (prev && sample->start_time < prev->end_time) {
if (prev->err) /* try to make errors more visible */
sample->start_time = prev->end_time;
else
prev->end_time = sample->start_time;
}
if (ret < 0) {
sample->err = ret;
} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
type == IOTYPE_TX || type == IOTYPE_RX) {
if ((u64)ret > c->max_bytes)
c->max_bytes = ret;
c->total_bytes += ret;
p->total_bytes += ret;
sample->bytes = ret;
}
/* merge two requests to make svg smaller and render-friendly */
if (prev &&
prev->type == sample->type &&
prev->err == sample->err &&
prev->fd == sample->fd &&
prev->end_time + tchart->merge_dist >= sample->start_time) {
sample->bytes += prev->bytes;
sample->merges += prev->merges + 1;
sample->start_time = prev->start_time;
sample->next = prev->next;
free(prev);
if (!sample->err && sample->bytes > c->max_bytes)
c->max_bytes = sample->bytes;
}
tchart->io_events++;
return 0;
}
static int
process_enter_read(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
sample->time, fd);
}
static int
process_exit_read(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
sample->time, ret);
}
static int
process_enter_write(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
sample->time, fd);
}
static int
process_exit_write(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
sample->time, ret);
}
static int
process_enter_sync(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
sample->time, fd);
}
static int
process_exit_sync(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
sample->time, ret);
}
static int
process_enter_tx(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
sample->time, fd);
}
static int
process_exit_tx(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
sample->time, ret);
}
static int
process_enter_rx(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
sample->time, fd);
}
static int
process_exit_rx(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
sample->time, ret);
}
static int
process_enter_poll(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long fd = perf_evsel__intval(evsel, sample, "fd");
return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
sample->time, fd);
}
static int
process_exit_poll(struct timechart *tchart,
struct perf_evsel *evsel,
struct perf_sample *sample)
{
long ret = perf_evsel__intval(evsel, sample, "ret");
return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
sample->time, ret);
}
/*
* Sort the pid datastructure
*/
static void sort_pids(struct timechart *tchart)
{
struct per_pid *new_list, *p, *cursor, *prev;
/* sort by ppid first, then by pid, lowest to highest */
new_list = NULL;
while (tchart->all_data) {
p = tchart->all_data;
tchart->all_data = p->next;
p->next = NULL;
if (new_list == NULL) {
new_list = p;
p->next = NULL;
continue;
}
prev = NULL;
cursor = new_list;
while (cursor) {
if (cursor->ppid > p->ppid ||
(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
/* must insert before */
if (prev) {
p->next = prev->next;
prev->next = p;
cursor = NULL;
continue;
} else {
p->next = new_list;
new_list = p;
cursor = NULL;
continue;
}
}
prev = cursor;
cursor = cursor->next;
if (!cursor)
prev->next = p;
}
}
tchart->all_data = new_list;
}
static void draw_c_p_states(struct timechart *tchart)
{
struct power_event *pwr;
pwr = tchart->power_events;
/*
* two pass drawing so that the P state bars are on top of the C state blocks
*/
while (pwr) {
if (pwr->type == CSTATE)
svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
pwr = pwr->next;
}
pwr = tchart->power_events;
while (pwr) {
if (pwr->type == PSTATE) {
if (!pwr->state)
pwr->state = tchart->min_freq;
svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
}
pwr = pwr->next;
}
}
static void draw_wakeups(struct timechart *tchart)
{
struct wake_event *we;
struct per_pid *p;
struct per_pidcomm *c;
we = tchart->wake_events;
while (we) {
int from = 0, to = 0;
char *task_from = NULL, *task_to = NULL;
/* locate the column of the waker and wakee */
p = tchart->all_data;
while (p) {
if (p->pid == we->waker || p->pid == we->wakee) {
c = p->all;
while (c) {
if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
if (p->pid == we->waker && !from) {
from = c->Y;
task_from = strdup(c->comm);
}
if (p->pid == we->wakee && !to) {
to = c->Y;
task_to = strdup(c->comm);
}
}
c = c->next;
}
c = p->all;
while (c) {
if (p->pid == we->waker && !from) {
from = c->Y;
task_from = strdup(c->comm);
}
if (p->pid == we->wakee && !to) {
to = c->Y;
task_to = strdup(c->comm);
}
c = c->next;
}
}
p = p->next;
}
if (!task_from) {
task_from = malloc(40);
sprintf(task_from, "[%i]", we->waker);
}
if (!task_to) {
task_to = malloc(40);
sprintf(task_to, "[%i]", we->wakee);
}
if (we->waker == -1)
svg_interrupt(we->time, to, we->backtrace);
else if (from && to && abs(from - to) == 1)
svg_wakeline(we->time, from, to, we->backtrace);
else
svg_partial_wakeline(we->time, from, task_from, to,
task_to, we->backtrace);
we = we->next;
free(task_from);
free(task_to);
}
}
static void draw_cpu_usage(struct timechart *tchart)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
p = tchart->all_data;
while (p) {
c = p->all;
while (c) {
sample = c->samples;
while (sample) {
if (sample->type == TYPE_RUNNING) {
svg_process(sample->cpu,
sample->start_time,
sample->end_time,
p->pid,
c->comm,
sample->backtrace);
}
sample = sample->next;
}
c = c->next;
}
p = p->next;
}
}
static void draw_io_bars(struct timechart *tchart)
{
const char *suf;
double bytes;
char comm[256];
struct per_pid *p;
struct per_pidcomm *c;
struct io_sample *sample;
int Y = 1;
p = tchart->all_data;
while (p) {
c = p->all;
while (c) {
if (!c->display) {
c->Y = 0;
c = c->next;
continue;
}
svg_box(Y, c->start_time, c->end_time, "process3");
sample = c->io_samples;
for (sample = c->io_samples; sample; sample = sample->next) {
double h = (double)sample->bytes / c->max_bytes;
if (tchart->skip_eagain &&
sample->err == -EAGAIN)
continue;
if (sample->err)
h = 1;
if (sample->type == IOTYPE_SYNC)
svg_fbox(Y,
sample->start_time,
sample->end_time,
1,
sample->err ? "error" : "sync",
sample->fd,
sample->err,
sample->merges);
else if (sample->type == IOTYPE_POLL)
svg_fbox(Y,
sample->start_time,
sample->end_time,
1,
sample->err ? "error" : "poll",
sample->fd,
sample->err,
sample->merges);
else if (sample->type == IOTYPE_READ)
svg_ubox(Y,
sample->start_time,
sample->end_time,
h,
sample->err ? "error" : "disk",
sample->fd,
sample->err,
sample->merges);
else if (sample->type == IOTYPE_WRITE)
svg_lbox(Y,
sample->start_time,
sample->end_time,
h,
sample->err ? "error" : "disk",
sample->fd,
sample->err,
sample->merges);
else if (sample->type == IOTYPE_RX)
svg_ubox(Y,
sample->start_time,
sample->end_time,
h,
sample->err ? "error" : "net",
sample->fd,
sample->err,
sample->merges);
else if (sample->type == IOTYPE_TX)
svg_lbox(Y,
sample->start_time,
sample->end_time,
h,
sample->err ? "error" : "net",
sample->fd,
sample->err,
sample->merges);
}
suf = "";
bytes = c->total_bytes;
if (bytes > 1024) {
bytes = bytes / 1024;
suf = "K";
}
if (bytes > 1024) {
bytes = bytes / 1024;
suf = "M";
}
if (bytes > 1024) {
bytes = bytes / 1024;
suf = "G";
}
sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
svg_text(Y, c->start_time, comm);
c->Y = Y;
Y++;
c = c->next;
}
p = p->next;
}
}
static void draw_process_bars(struct timechart *tchart)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
int Y = 0;
Y = 2 * tchart->numcpus + 2;
p = tchart->all_data;
while (p) {
c = p->all;
while (c) {
if (!c->display) {
c->Y = 0;
c = c->next;
continue;
}
svg_box(Y, c->start_time, c->end_time, "process");
sample = c->samples;
while (sample) {
if (sample->type == TYPE_RUNNING)
svg_running(Y, sample->cpu,
sample->start_time,
sample->end_time,
sample->backtrace);
if (sample->type == TYPE_BLOCKED)
svg_blocked(Y, sample->cpu,
sample->start_time,
sample->end_time,
sample->backtrace);
if (sample->type == TYPE_WAITING)
svg_waiting(Y, sample->cpu,
sample->start_time,
sample->end_time,
sample->backtrace);
sample = sample->next;
}
if (c->comm) {
char comm[256];
if (c->total_time > 5000000000) /* 5 seconds */
sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
else
sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
svg_text(Y, c->start_time, comm);
}
c->Y = Y;
Y++;
c = c->next;
}
p = p->next;
}
}
static void add_process_filter(const char *string)
{
int pid = strtoull(string, NULL, 10);
struct process_filter *filt = malloc(sizeof(*filt));
if (!filt)
return;
filt->name = strdup(string);
filt->pid = pid;
filt->next = process_filter;
process_filter = filt;
}
static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
{
struct process_filter *filt;
if (!process_filter)
return 1;
filt = process_filter;
while (filt) {
if (filt->pid && p->pid == filt->pid)
return 1;
if (strcmp(filt->name, c->comm) == 0)
return 1;
filt = filt->next;
}
return 0;
}
static int determine_display_tasks_filtered(struct timechart *tchart)
{
struct per_pid *p;
struct per_pidcomm *c;
int count = 0;
p = tchart->all_data;
while (p) {
p->display = 0;
if (p->start_time == 1)
p->start_time = tchart->first_time;
/* no exit marker, task kept running to the end */
if (p->end_time == 0)
p->end_time = tchart->last_time;
c = p->all;
while (c) {
c->display = 0;
if (c->start_time == 1)
c->start_time = tchart->first_time;
if (passes_filter(p, c)) {
c->display = 1;
p->display = 1;
count++;
}
if (c->end_time == 0)
c->end_time = tchart->last_time;
c = c->next;
}
p = p->next;
}
return count;
}
static int determine_display_tasks(struct timechart *tchart, u64 threshold)
{
struct per_pid *p;
struct per_pidcomm *c;
int count = 0;
p = tchart->all_data;
while (p) {
p->display = 0;
if (p->start_time == 1)
p->start_time = tchart->first_time;
/* no exit marker, task kept running to the end */
if (p->end_time == 0)
p->end_time = tchart->last_time;
if (p->total_time >= threshold)
p->display = 1;
c = p->all;
while (c) {
c->display = 0;
if (c->start_time == 1)
c->start_time = tchart->first_time;
if (c->total_time >= threshold) {
c->display = 1;
count++;
}
if (c->end_time == 0)
c->end_time = tchart->last_time;
c = c->next;
}
p = p->next;
}
return count;
}
static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
{
struct per_pid *p;
struct per_pidcomm *c;
int count = 0;
p = timechart->all_data;
while (p) {
/* no exit marker, task kept running to the end */
if (p->end_time == 0)
p->end_time = timechart->last_time;
c = p->all;
while (c) {
c->display = 0;
if (c->total_bytes >= threshold) {
c->display = 1;
count++;
}
if (c->end_time == 0)
c->end_time = timechart->last_time;
c = c->next;
}
p = p->next;
}
return count;
}
#define BYTES_THRESH (1 * 1024 * 1024)
#define TIME_THRESH 10000000
static void write_svg_file(struct timechart *tchart, const char *filename)
{
u64 i;
int count;
int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
if (tchart->power_only)
tchart->proc_num = 0;
/* We'd like to show at least proc_num tasks;
* be less picky if we have fewer */
do {
if (process_filter)
count = determine_display_tasks_filtered(tchart);
else if (tchart->io_events)
count = determine_display_io_tasks(tchart, thresh);
else
count = determine_display_tasks(tchart, thresh);
thresh /= 10;
} while (!process_filter && thresh && count < tchart->proc_num);
if (!tchart->proc_num)
count = 0;
if (tchart->io_events) {
open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
svg_time_grid(0.5);
svg_io_legenda();
draw_io_bars(tchart);
} else {
open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
svg_time_grid(0);
svg_legenda();
for (i = 0; i < tchart->numcpus; i++)
svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
draw_cpu_usage(tchart);
if (tchart->proc_num)
draw_process_bars(tchart);
if (!tchart->tasks_only)
draw_c_p_states(tchart);
if (tchart->proc_num)
draw_wakeups(tchart);
}
svg_close();
}
static int process_header(struct perf_file_section *section __maybe_unused,
struct perf_header *ph,
int feat,
int fd __maybe_unused,
void *data)
{
struct timechart *tchart = data;
switch (feat) {
case HEADER_NRCPUS:
tchart->numcpus = ph->env.nr_cpus_avail;
break;
case HEADER_CPU_TOPOLOGY:
if (!tchart->topology)
break;
if (svg_build_topology_map(ph->env.sibling_cores,
ph->env.nr_sibling_cores,
ph->env.sibling_threads,
ph->env.nr_sibling_threads))
fprintf(stderr, "problem building topology\n");
break;
default:
break;
}
return 0;
}
static int __cmd_timechart(struct timechart *tchart, const char *output_name)
{
const struct perf_evsel_str_handler power_tracepoints[] = {
{ "power:cpu_idle", process_sample_cpu_idle },
{ "power:cpu_frequency", process_sample_cpu_frequency },
{ "sched:sched_wakeup", process_sample_sched_wakeup },
{ "sched:sched_switch", process_sample_sched_switch },
#ifdef SUPPORT_OLD_POWER_EVENTS
{ "power:power_start", process_sample_power_start },
{ "power:power_end", process_sample_power_end },
{ "power:power_frequency", process_sample_power_frequency },
#endif
{ "syscalls:sys_enter_read", process_enter_read },
{ "syscalls:sys_enter_pread64", process_enter_read },
{ "syscalls:sys_enter_readv", process_enter_read },
{ "syscalls:sys_enter_preadv", process_enter_read },
{ "syscalls:sys_enter_write", process_enter_write },
{ "syscalls:sys_enter_pwrite64", process_enter_write },
{ "syscalls:sys_enter_writev", process_enter_write },
{ "syscalls:sys_enter_pwritev", process_enter_write },
{ "syscalls:sys_enter_sync", process_enter_sync },
{ "syscalls:sys_enter_sync_file_range", process_enter_sync },
{ "syscalls:sys_enter_fsync", process_enter_sync },
{ "syscalls:sys_enter_msync", process_enter_sync },
{ "syscalls:sys_enter_recvfrom", process_enter_rx },
{ "syscalls:sys_enter_recvmmsg", process_enter_rx },
{ "syscalls:sys_enter_recvmsg", process_enter_rx },
{ "syscalls:sys_enter_sendto", process_enter_tx },
{ "syscalls:sys_enter_sendmsg", process_enter_tx },
{ "syscalls:sys_enter_sendmmsg", process_enter_tx },
{ "syscalls:sys_enter_epoll_pwait", process_enter_poll },
{ "syscalls:sys_enter_epoll_wait", process_enter_poll },
{ "syscalls:sys_enter_poll", process_enter_poll },
{ "syscalls:sys_enter_ppoll", process_enter_poll },
{ "syscalls:sys_enter_pselect6", process_enter_poll },
{ "syscalls:sys_enter_select", process_enter_poll },
{ "syscalls:sys_exit_read", process_exit_read },
{ "syscalls:sys_exit_pread64", process_exit_read },
{ "syscalls:sys_exit_readv", process_exit_read },
{ "syscalls:sys_exit_preadv", process_exit_read },
{ "syscalls:sys_exit_write", process_exit_write },
{ "syscalls:sys_exit_pwrite64", process_exit_write },
{ "syscalls:sys_exit_writev", process_exit_write },
{ "syscalls:sys_exit_pwritev", process_exit_write },
{ "syscalls:sys_exit_sync", process_exit_sync },
{ "syscalls:sys_exit_sync_file_range", process_exit_sync },
{ "syscalls:sys_exit_fsync", process_exit_sync },
{ "syscalls:sys_exit_msync", process_exit_sync },
{ "syscalls:sys_exit_recvfrom", process_exit_rx },
{ "syscalls:sys_exit_recvmmsg", process_exit_rx },
{ "syscalls:sys_exit_recvmsg", process_exit_rx },
{ "syscalls:sys_exit_sendto", process_exit_tx },
{ "syscalls:sys_exit_sendmsg", process_exit_tx },
{ "syscalls:sys_exit_sendmmsg", process_exit_tx },
{ "syscalls:sys_exit_epoll_pwait", process_exit_poll },
{ "syscalls:sys_exit_epoll_wait", process_exit_poll },
{ "syscalls:sys_exit_poll", process_exit_poll },
{ "syscalls:sys_exit_ppoll", process_exit_poll },
{ "syscalls:sys_exit_pselect6", process_exit_poll },
{ "syscalls:sys_exit_select", process_exit_poll },
};
struct perf_data_file file = {
.path = input_name,
.mode = PERF_DATA_MODE_READ,
.force = tchart->force,
};
struct perf_session *session = perf_session__new(&file, false,
&tchart->tool);
int ret = -EINVAL;
if (session == NULL)
return -1;
symbol__init(&session->header.env);
(void)perf_header__process_sections(&session->header,
perf_data_file__fd(session->file),
tchart,
process_header);
if (!perf_session__has_traces(session, "timechart record"))
goto out_delete;
if (perf_session__set_tracepoints_handlers(session,
power_tracepoints)) {
pr_err("Initializing session tracepoint handlers failed\n");
goto out_delete;
}
ret = perf_session__process_events(session);
if (ret)
goto out_delete;
end_sample_processing(tchart);
sort_pids(tchart);
write_svg_file(tchart, output_name);
pr_info("Written %2.1f seconds of trace to %s.\n",
(tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
out_delete:
perf_session__delete(session);
return ret;
}
static int timechart__io_record(int argc, const char **argv)
{
unsigned int rec_argc, i;
const char **rec_argv;
const char **p;
char *filter = NULL;
const char * const common_args[] = {
"record", "-a", "-R", "-c", "1",
};
unsigned int common_args_nr = ARRAY_SIZE(common_args);
const char * const disk_events[] = {
"syscalls:sys_enter_read",
"syscalls:sys_enter_pread64",
"syscalls:sys_enter_readv",
"syscalls:sys_enter_preadv",
"syscalls:sys_enter_write",
"syscalls:sys_enter_pwrite64",
"syscalls:sys_enter_writev",
"syscalls:sys_enter_pwritev",
"syscalls:sys_enter_sync",
"syscalls:sys_enter_sync_file_range",
"syscalls:sys_enter_fsync",
"syscalls:sys_enter_msync",
"syscalls:sys_exit_read",
"syscalls:sys_exit_pread64",
"syscalls:sys_exit_readv",
"syscalls:sys_exit_preadv",
"syscalls:sys_exit_write",
"syscalls:sys_exit_pwrite64",
"syscalls:sys_exit_writev",
"syscalls:sys_exit_pwritev",
"syscalls:sys_exit_sync",
"syscalls:sys_exit_sync_file_range",
"syscalls:sys_exit_fsync",
"syscalls:sys_exit_msync",
};
unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
const char * const net_events[] = {
"syscalls:sys_enter_recvfrom",
"syscalls:sys_enter_recvmmsg",
"syscalls:sys_enter_recvmsg",
"syscalls:sys_enter_sendto",
"syscalls:sys_enter_sendmsg",
"syscalls:sys_enter_sendmmsg",
"syscalls:sys_exit_recvfrom",
"syscalls:sys_exit_recvmmsg",
"syscalls:sys_exit_recvmsg",
"syscalls:sys_exit_sendto",
"syscalls:sys_exit_sendmsg",
"syscalls:sys_exit_sendmmsg",
};
unsigned int net_events_nr = ARRAY_SIZE(net_events);
const char * const poll_events[] = {
"syscalls:sys_enter_epoll_pwait",
"syscalls:sys_enter_epoll_wait",
"syscalls:sys_enter_poll",
"syscalls:sys_enter_ppoll",
"syscalls:sys_enter_pselect6",
"syscalls:sys_enter_select",
"syscalls:sys_exit_epoll_pwait",
"syscalls:sys_exit_epoll_wait",
"syscalls:sys_exit_poll",
"syscalls:sys_exit_ppoll",
"syscalls:sys_exit_pselect6",
"syscalls:sys_exit_select",
};
unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
rec_argc = common_args_nr +
disk_events_nr * 4 +
net_events_nr * 4 +
poll_events_nr * 4 +
argc;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
return -ENOMEM;
p = rec_argv;
for (i = 0; i < common_args_nr; i++)
*p++ = strdup(common_args[i]);
for (i = 0; i < disk_events_nr; i++) {
if (!is_valid_tracepoint(disk_events[i])) {
rec_argc -= 4;
continue;
}
*p++ = "-e";
*p++ = strdup(disk_events[i]);
*p++ = "--filter";
*p++ = filter;
}
for (i = 0; i < net_events_nr; i++) {
if (!is_valid_tracepoint(net_events[i])) {
rec_argc -= 4;
continue;
}
*p++ = "-e";
*p++ = strdup(net_events[i]);
*p++ = "--filter";
*p++ = filter;
}
for (i = 0; i < poll_events_nr; i++) {
if (!is_valid_tracepoint(poll_events[i])) {
rec_argc -= 4;
continue;
}
*p++ = "-e";
*p++ = strdup(poll_events[i]);
*p++ = "--filter";
*p++ = filter;
}
for (i = 0; i < (unsigned int)argc; i++)
*p++ = argv[i];
return cmd_record(rec_argc, rec_argv);
}
static int timechart__record(struct timechart *tchart, int argc, const char **argv)
{
unsigned int rec_argc, i, j;
const char **rec_argv;
const char **p;
unsigned int record_elems;
const char * const common_args[] = {
"record", "-a", "-R", "-c", "1",
};
unsigned int common_args_nr = ARRAY_SIZE(common_args);
const char * const backtrace_args[] = {
"-g",
};
unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
const char * const power_args[] = {
"-e", "power:cpu_frequency",
"-e", "power:cpu_idle",
};
unsigned int power_args_nr = ARRAY_SIZE(power_args);
const char * const old_power_args[] = {
#ifdef SUPPORT_OLD_POWER_EVENTS
"-e", "power:power_start",
"-e", "power:power_end",
"-e", "power:power_frequency",
#endif
};
unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
const char * const tasks_args[] = {
"-e", "sched:sched_wakeup",
"-e", "sched:sched_switch",
};
unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
#ifdef SUPPORT_OLD_POWER_EVENTS
if (!is_valid_tracepoint("power:cpu_idle") &&
is_valid_tracepoint("power:power_start")) {
use_old_power_events = 1;
power_args_nr = 0;
} else {
old_power_args_nr = 0;
}
#endif
if (tchart->power_only)
tasks_args_nr = 0;
if (tchart->tasks_only) {
power_args_nr = 0;
old_power_args_nr = 0;
}
if (!tchart->with_backtrace)
backtrace_args_no = 0;
record_elems = common_args_nr + tasks_args_nr +
power_args_nr + old_power_args_nr + backtrace_args_no;
rec_argc = record_elems + argc;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
p = rec_argv;
for (i = 0; i < common_args_nr; i++)
*p++ = strdup(common_args[i]);
for (i = 0; i < backtrace_args_no; i++)
*p++ = strdup(backtrace_args[i]);
for (i = 0; i < tasks_args_nr; i++)
*p++ = strdup(tasks_args[i]);
for (i = 0; i < power_args_nr; i++)
*p++ = strdup(power_args[i]);
for (i = 0; i < old_power_args_nr; i++)
*p++ = strdup(old_power_args[i]);
for (j = 0; j < (unsigned int)argc; j++)
*p++ = argv[j];
return cmd_record(rec_argc, rec_argv);
}
static int
parse_process(const struct option *opt __maybe_unused, const char *arg,
int __maybe_unused unset)
{
if (arg)
add_process_filter(arg);
return 0;
}
static int
parse_highlight(const struct option *opt __maybe_unused, const char *arg,
int __maybe_unused unset)
{
unsigned long duration = strtoul(arg, NULL, 0);
if (svg_highlight || svg_highlight_name)
return -1;
if (duration)
svg_highlight = duration;
else
svg_highlight_name = strdup(arg);
return 0;
}
static int
parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
{
char unit = 'n';
u64 *value = opt->value;
if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
switch (unit) {
case 'm':
*value *= NSEC_PER_MSEC;
break;
case 'u':
*value *= NSEC_PER_USEC;
break;
case 'n':
break;
default:
return -1;
}
}
return 0;
}
int cmd_timechart(int argc, const char **argv)
{
struct timechart tchart = {
.tool = {
.comm = process_comm_event,
.fork = process_fork_event,
.exit = process_exit_event,
.sample = process_sample_event,
.ordered_events = true,
},
.proc_num = 15,
.min_time = NSEC_PER_MSEC,
.merge_dist = 1000,
};
const char *output_name = "output.svg";
const struct option timechart_common_options[] = {
OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
OPT_END()
};
const struct option timechart_options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_INTEGER('w', "width", &svg_page_width, "page width"),
OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
"highlight tasks. Pass duration in ns or process name.",
parse_highlight),
OPT_CALLBACK('p', "process", NULL, "process",
"process selector. Pass a pid or process name.",
parse_process),
OPT_CALLBACK(0, "symfs", NULL, "directory",
"Look for files with symbols relative to this directory",
symbol__config_symfs),
OPT_INTEGER('n', "proc-num", &tchart.proc_num,
"min. number of tasks to print"),
OPT_BOOLEAN('t', "topology", &tchart.topology,
"sort CPUs according to topology"),
OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
"skip EAGAIN errors"),
OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
"all IO faster than min-time will visually appear longer",
parse_time),
OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
"merge events that are merge-dist us apart",
parse_time),
OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
OPT_PARENT(timechart_common_options),
};
const char * const timechart_subcommands[] = { "record", NULL };
const char *timechart_usage[] = {
"perf timechart [<options>] {record}",
NULL
};
const struct option timechart_record_options[] = {
OPT_BOOLEAN('I', "io-only", &tchart.io_only,
"record only IO data"),
OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
OPT_PARENT(timechart_common_options),
};
const char * const timechart_record_usage[] = {
"perf timechart record [<options>]",
NULL
};
argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
if (tchart.power_only && tchart.tasks_only) {
pr_err("-P and -T options cannot be used at the same time.\n");
return -1;
}
if (argc && !strncmp(argv[0], "rec", 3)) {
argc = parse_options(argc, argv, timechart_record_options,
timechart_record_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (tchart.power_only && tchart.tasks_only) {
pr_err("-P and -T options cannot be used at the same time.\n");
return -1;
}
if (tchart.io_only)
return timechart__io_record(argc, argv);
else
return timechart__record(&tchart, argc, argv);
} else if (argc)
usage_with_options(timechart_usage, timechart_options);
setup_pager();
return __cmd_timechart(&tchart, output_name);
}