2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/nvdimm/region_devs.c
Dan Williams 004f1afbe1 libnvdimm, pmem: direct map legacy pmem by default
The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persistent memory.  Larger capacities will be described via the ACPI
NFIT.  When "allocate struct page from pmem" support is added this default
policy can be overridden by assigning a legacy pmem namespace to a pfn
device, however this would be only be necessary if a platform used the
legacy mechanism to define a very large range.

Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-28 23:40:05 -04:00

813 lines
21 KiB
C

/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/io.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"
static DEFINE_IDA(region_ida);
static void nd_region_release(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
u16 i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
put_device(&nvdimm->dev);
}
free_percpu(nd_region->lane);
ida_simple_remove(&region_ida, nd_region->id);
if (is_nd_blk(dev))
kfree(to_nd_blk_region(dev));
else
kfree(nd_region);
}
static struct device_type nd_blk_device_type = {
.name = "nd_blk",
.release = nd_region_release,
};
static struct device_type nd_pmem_device_type = {
.name = "nd_pmem",
.release = nd_region_release,
};
static struct device_type nd_volatile_device_type = {
.name = "nd_volatile",
.release = nd_region_release,
};
bool is_nd_pmem(struct device *dev)
{
return dev ? dev->type == &nd_pmem_device_type : false;
}
bool is_nd_blk(struct device *dev)
{
return dev ? dev->type == &nd_blk_device_type : false;
}
struct nd_region *to_nd_region(struct device *dev)
{
struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
WARN_ON(dev->type->release != nd_region_release);
return nd_region;
}
EXPORT_SYMBOL_GPL(to_nd_region);
struct nd_blk_region *to_nd_blk_region(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
WARN_ON(!is_nd_blk(dev));
return container_of(nd_region, struct nd_blk_region, nd_region);
}
EXPORT_SYMBOL_GPL(to_nd_blk_region);
void *nd_region_provider_data(struct nd_region *nd_region)
{
return nd_region->provider_data;
}
EXPORT_SYMBOL_GPL(nd_region_provider_data);
void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
{
return ndbr->blk_provider_data;
}
EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
{
ndbr->blk_provider_data = data;
}
EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
/**
* nd_region_to_nstype() - region to an integer namespace type
* @nd_region: region-device to interrogate
*
* This is the 'nstype' attribute of a region as well, an input to the
* MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
* namespace devices with namespace drivers.
*/
int nd_region_to_nstype(struct nd_region *nd_region)
{
if (is_nd_pmem(&nd_region->dev)) {
u16 i, alias;
for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (nvdimm->flags & NDD_ALIASING)
alias++;
}
if (alias)
return ND_DEVICE_NAMESPACE_PMEM;
else
return ND_DEVICE_NAMESPACE_IO;
} else if (is_nd_blk(&nd_region->dev)) {
return ND_DEVICE_NAMESPACE_BLK;
}
return 0;
}
EXPORT_SYMBOL(nd_region_to_nstype);
static int is_uuid_busy(struct device *dev, void *data)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
u8 *uuid = data;
switch (nd_region_to_nstype(nd_region)) {
case ND_DEVICE_NAMESPACE_PMEM: {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
if (!nspm->uuid)
break;
if (memcmp(uuid, nspm->uuid, NSLABEL_UUID_LEN) == 0)
return -EBUSY;
break;
}
case ND_DEVICE_NAMESPACE_BLK: {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
if (!nsblk->uuid)
break;
if (memcmp(uuid, nsblk->uuid, NSLABEL_UUID_LEN) == 0)
return -EBUSY;
break;
}
default:
break;
}
return 0;
}
static int is_namespace_uuid_busy(struct device *dev, void *data)
{
if (is_nd_pmem(dev) || is_nd_blk(dev))
return device_for_each_child(dev, data, is_uuid_busy);
return 0;
}
/**
* nd_is_uuid_unique - verify that no other namespace has @uuid
* @dev: any device on a nvdimm_bus
* @uuid: uuid to check
*/
bool nd_is_uuid_unique(struct device *dev, u8 *uuid)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
if (!nvdimm_bus)
return false;
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm_bus->dev));
if (device_for_each_child(&nvdimm_bus->dev, uuid,
is_namespace_uuid_busy) != 0)
return false;
return true;
}
static ssize_t size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long size = 0;
if (is_nd_pmem(dev)) {
size = nd_region->ndr_size;
} else if (nd_region->ndr_mappings == 1) {
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
size = nd_mapping->size;
}
return sprintf(buf, "%llu\n", size);
}
static DEVICE_ATTR_RO(size);
static ssize_t mappings_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ndr_mappings);
}
static DEVICE_ATTR_RO(mappings);
static ssize_t nstype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
}
static DEVICE_ATTR_RO(nstype);
static ssize_t set_cookie_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (is_nd_pmem(dev) && nd_set)
/* pass, should be precluded by region_visible */;
else
return -ENXIO;
return sprintf(buf, "%#llx\n", nd_set->cookie);
}
static DEVICE_ATTR_RO(set_cookie);
resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
{
resource_size_t blk_max_overlap = 0, available, overlap;
int i;
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
retry:
available = 0;
overlap = blk_max_overlap;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
/* if a dimm is disabled the available capacity is zero */
if (!ndd)
return 0;
if (is_nd_pmem(&nd_region->dev)) {
available += nd_pmem_available_dpa(nd_region,
nd_mapping, &overlap);
if (overlap > blk_max_overlap) {
blk_max_overlap = overlap;
goto retry;
}
} else if (is_nd_blk(&nd_region->dev)) {
available += nd_blk_available_dpa(nd_mapping);
}
}
return available;
}
static ssize_t available_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long available = 0;
/*
* Flush in-flight updates and grab a snapshot of the available
* size. Of course, this value is potentially invalidated the
* memory nvdimm_bus_lock() is dropped, but that's userspace's
* problem to not race itself.
*/
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
available = nd_region_available_dpa(nd_region);
nvdimm_bus_unlock(dev);
return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(available_size);
static ssize_t init_namespaces_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region_namespaces *num_ns = dev_get_drvdata(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (num_ns)
rc = sprintf(buf, "%d/%d\n", num_ns->active, num_ns->count);
else
rc = -ENXIO;
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(init_namespaces);
static ssize_t namespace_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->ns_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(namespace_seed);
static ssize_t btt_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->btt_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(btt_seed);
static ssize_t pfn_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->pfn_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(pfn_seed);
static ssize_t read_only_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ro);
}
static ssize_t read_only_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
bool ro;
int rc = strtobool(buf, &ro);
struct nd_region *nd_region = to_nd_region(dev);
if (rc)
return rc;
nd_region->ro = ro;
return len;
}
static DEVICE_ATTR_RW(read_only);
static struct attribute *nd_region_attributes[] = {
&dev_attr_size.attr,
&dev_attr_nstype.attr,
&dev_attr_mappings.attr,
&dev_attr_btt_seed.attr,
&dev_attr_pfn_seed.attr,
&dev_attr_read_only.attr,
&dev_attr_set_cookie.attr,
&dev_attr_available_size.attr,
&dev_attr_namespace_seed.attr,
&dev_attr_init_namespaces.attr,
NULL,
};
static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
int type = nd_region_to_nstype(nd_region);
if (a != &dev_attr_set_cookie.attr
&& a != &dev_attr_available_size.attr)
return a->mode;
if ((type == ND_DEVICE_NAMESPACE_PMEM
|| type == ND_DEVICE_NAMESPACE_BLK)
&& a == &dev_attr_available_size.attr)
return a->mode;
else if (is_nd_pmem(dev) && nd_set)
return a->mode;
return 0;
}
struct attribute_group nd_region_attribute_group = {
.attrs = nd_region_attributes,
.is_visible = region_visible,
};
EXPORT_SYMBOL_GPL(nd_region_attribute_group);
u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
{
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (nd_set)
return nd_set->cookie;
return 0;
}
/*
* Upon successful probe/remove, take/release a reference on the
* associated interleave set (if present), and plant new btt + namespace
* seeds. Also, on the removal of a BLK region, notify the provider to
* disable the region.
*/
static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
struct device *dev, bool probe)
{
struct nd_region *nd_region;
if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
int i;
nd_region = to_nd_region(dev);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = nd_mapping->ndd;
struct nvdimm *nvdimm = nd_mapping->nvdimm;
kfree(nd_mapping->labels);
nd_mapping->labels = NULL;
put_ndd(ndd);
nd_mapping->ndd = NULL;
if (ndd)
atomic_dec(&nvdimm->busy);
}
if (is_nd_pmem(dev))
return;
to_nd_blk_region(dev)->disable(nvdimm_bus, dev);
}
if (dev->parent && is_nd_blk(dev->parent) && probe) {
nd_region = to_nd_region(dev->parent);
nvdimm_bus_lock(dev);
if (nd_region->ns_seed == dev)
nd_region_create_blk_seed(nd_region);
nvdimm_bus_unlock(dev);
}
if (is_nd_btt(dev) && probe) {
struct nd_btt *nd_btt = to_nd_btt(dev);
nd_region = to_nd_region(dev->parent);
nvdimm_bus_lock(dev);
if (nd_region->btt_seed == dev)
nd_region_create_btt_seed(nd_region);
if (nd_region->ns_seed == &nd_btt->ndns->dev &&
is_nd_blk(dev->parent))
nd_region_create_blk_seed(nd_region);
nvdimm_bus_unlock(dev);
}
}
void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
{
nd_region_notify_driver_action(nvdimm_bus, dev, true);
}
void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
{
nd_region_notify_driver_action(nvdimm_bus, dev, false);
}
static ssize_t mappingN(struct device *dev, char *buf, int n)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_mapping *nd_mapping;
struct nvdimm *nvdimm;
if (n >= nd_region->ndr_mappings)
return -ENXIO;
nd_mapping = &nd_region->mapping[n];
nvdimm = nd_mapping->nvdimm;
return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
nd_mapping->start, nd_mapping->size);
}
#define REGION_MAPPING(idx) \
static ssize_t mapping##idx##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
return mappingN(dev, buf, idx); \
} \
static DEVICE_ATTR_RO(mapping##idx)
/*
* 32 should be enough for a while, even in the presence of socket
* interleave a 32-way interleave set is a degenerate case.
*/
REGION_MAPPING(0);
REGION_MAPPING(1);
REGION_MAPPING(2);
REGION_MAPPING(3);
REGION_MAPPING(4);
REGION_MAPPING(5);
REGION_MAPPING(6);
REGION_MAPPING(7);
REGION_MAPPING(8);
REGION_MAPPING(9);
REGION_MAPPING(10);
REGION_MAPPING(11);
REGION_MAPPING(12);
REGION_MAPPING(13);
REGION_MAPPING(14);
REGION_MAPPING(15);
REGION_MAPPING(16);
REGION_MAPPING(17);
REGION_MAPPING(18);
REGION_MAPPING(19);
REGION_MAPPING(20);
REGION_MAPPING(21);
REGION_MAPPING(22);
REGION_MAPPING(23);
REGION_MAPPING(24);
REGION_MAPPING(25);
REGION_MAPPING(26);
REGION_MAPPING(27);
REGION_MAPPING(28);
REGION_MAPPING(29);
REGION_MAPPING(30);
REGION_MAPPING(31);
static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nd_region *nd_region = to_nd_region(dev);
if (n < nd_region->ndr_mappings)
return a->mode;
return 0;
}
static struct attribute *mapping_attributes[] = {
&dev_attr_mapping0.attr,
&dev_attr_mapping1.attr,
&dev_attr_mapping2.attr,
&dev_attr_mapping3.attr,
&dev_attr_mapping4.attr,
&dev_attr_mapping5.attr,
&dev_attr_mapping6.attr,
&dev_attr_mapping7.attr,
&dev_attr_mapping8.attr,
&dev_attr_mapping9.attr,
&dev_attr_mapping10.attr,
&dev_attr_mapping11.attr,
&dev_attr_mapping12.attr,
&dev_attr_mapping13.attr,
&dev_attr_mapping14.attr,
&dev_attr_mapping15.attr,
&dev_attr_mapping16.attr,
&dev_attr_mapping17.attr,
&dev_attr_mapping18.attr,
&dev_attr_mapping19.attr,
&dev_attr_mapping20.attr,
&dev_attr_mapping21.attr,
&dev_attr_mapping22.attr,
&dev_attr_mapping23.attr,
&dev_attr_mapping24.attr,
&dev_attr_mapping25.attr,
&dev_attr_mapping26.attr,
&dev_attr_mapping27.attr,
&dev_attr_mapping28.attr,
&dev_attr_mapping29.attr,
&dev_attr_mapping30.attr,
&dev_attr_mapping31.attr,
NULL,
};
struct attribute_group nd_mapping_attribute_group = {
.is_visible = mapping_visible,
.attrs = mapping_attributes,
};
EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
int nd_blk_region_init(struct nd_region *nd_region)
{
struct device *dev = &nd_region->dev;
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
if (!is_nd_blk(dev))
return 0;
if (nd_region->ndr_mappings < 1) {
dev_err(dev, "invalid BLK region\n");
return -ENXIO;
}
return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
}
/**
* nd_region_acquire_lane - allocate and lock a lane
* @nd_region: region id and number of lanes possible
*
* A lane correlates to a BLK-data-window and/or a log slot in the BTT.
* We optimize for the common case where there are 256 lanes, one
* per-cpu. For larger systems we need to lock to share lanes. For now
* this implementation assumes the cost of maintaining an allocator for
* free lanes is on the order of the lock hold time, so it implements a
* static lane = cpu % num_lanes mapping.
*
* In the case of a BTT instance on top of a BLK namespace a lane may be
* acquired recursively. We lock on the first instance.
*
* In the case of a BTT instance on top of PMEM, we only acquire a lane
* for the BTT metadata updates.
*/
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
{
unsigned int cpu, lane;
cpu = get_cpu();
if (nd_region->num_lanes < nr_cpu_ids) {
struct nd_percpu_lane *ndl_lock, *ndl_count;
lane = cpu % nd_region->num_lanes;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (ndl_count->count++ == 0)
spin_lock(&ndl_lock->lock);
} else
lane = cpu;
return lane;
}
EXPORT_SYMBOL(nd_region_acquire_lane);
void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
{
if (nd_region->num_lanes < nr_cpu_ids) {
unsigned int cpu = get_cpu();
struct nd_percpu_lane *ndl_lock, *ndl_count;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (--ndl_count->count == 0)
spin_unlock(&ndl_lock->lock);
put_cpu();
}
put_cpu();
}
EXPORT_SYMBOL(nd_region_release_lane);
static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc, struct device_type *dev_type,
const char *caller)
{
struct nd_region *nd_region;
struct device *dev;
void *region_buf;
unsigned int i;
int ro = 0;
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
caller, dev_name(&nvdimm->dev), i);
return NULL;
}
if (nvdimm->flags & NDD_UNARMED)
ro = 1;
}
if (dev_type == &nd_blk_device_type) {
struct nd_blk_region_desc *ndbr_desc;
struct nd_blk_region *ndbr;
ndbr_desc = to_blk_region_desc(ndr_desc);
ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
* ndr_desc->num_mappings,
GFP_KERNEL);
if (ndbr) {
nd_region = &ndbr->nd_region;
ndbr->enable = ndbr_desc->enable;
ndbr->disable = ndbr_desc->disable;
ndbr->do_io = ndbr_desc->do_io;
}
region_buf = ndbr;
} else {
nd_region = kzalloc(sizeof(struct nd_region)
+ sizeof(struct nd_mapping)
* ndr_desc->num_mappings,
GFP_KERNEL);
region_buf = nd_region;
}
if (!region_buf)
return NULL;
nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
if (nd_region->id < 0)
goto err_id;
nd_region->lane = alloc_percpu(struct nd_percpu_lane);
if (!nd_region->lane)
goto err_percpu;
for (i = 0; i < nr_cpu_ids; i++) {
struct nd_percpu_lane *ndl;
ndl = per_cpu_ptr(nd_region->lane, i);
spin_lock_init(&ndl->lock);
ndl->count = 0;
}
memcpy(nd_region->mapping, ndr_desc->nd_mapping,
sizeof(struct nd_mapping) * ndr_desc->num_mappings);
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
get_device(&nvdimm->dev);
}
nd_region->ndr_mappings = ndr_desc->num_mappings;
nd_region->provider_data = ndr_desc->provider_data;
nd_region->nd_set = ndr_desc->nd_set;
nd_region->num_lanes = ndr_desc->num_lanes;
nd_region->flags = ndr_desc->flags;
nd_region->ro = ro;
nd_region->numa_node = ndr_desc->numa_node;
ida_init(&nd_region->ns_ida);
ida_init(&nd_region->btt_ida);
ida_init(&nd_region->pfn_ida);
dev = &nd_region->dev;
dev_set_name(dev, "region%d", nd_region->id);
dev->parent = &nvdimm_bus->dev;
dev->type = dev_type;
dev->groups = ndr_desc->attr_groups;
nd_region->ndr_size = resource_size(ndr_desc->res);
nd_region->ndr_start = ndr_desc->res->start;
nd_device_register(dev);
return nd_region;
err_percpu:
ida_simple_remove(&region_ida, nd_region->id);
err_id:
kfree(region_buf);
return NULL;
}
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
ndr_desc->num_lanes = ND_MAX_LANES;
return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
if (ndr_desc->num_mappings > 1)
return NULL;
ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
ndr_desc->num_lanes = ND_MAX_LANES;
return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);