2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/drivers/net/s2io.c
Eric Dumazet 28679751a9 net: dont update dev->trans_start in 10GB drivers
Followup of commits 9d21493b4b
and 08baf56108
(net: tx scalability works : trans_start)
(net: txq_trans_update() helper)

Now that core network takes care of trans_start updates, dont do it
in drivers themselves, if possible. Multi queue drivers can
avoid one cache miss (on dev->trans_start) in their start_xmit()
handler.

Exceptions are NETIF_F_LLTX drivers (vxge & tehuti)

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-05-29 01:46:26 -07:00

8704 lines
246 KiB
C

/************************************************************************
* s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
* Copyright(c) 2002-2007 Neterion Inc.
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* Credits:
* Jeff Garzik : For pointing out the improper error condition
* check in the s2io_xmit routine and also some
* issues in the Tx watch dog function. Also for
* patiently answering all those innumerable
* questions regaring the 2.6 porting issues.
* Stephen Hemminger : Providing proper 2.6 porting mechanism for some
* macros available only in 2.6 Kernel.
* Francois Romieu : For pointing out all code part that were
* deprecated and also styling related comments.
* Grant Grundler : For helping me get rid of some Architecture
* dependent code.
* Christopher Hellwig : Some more 2.6 specific issues in the driver.
*
* The module loadable parameters that are supported by the driver and a brief
* explaination of all the variables.
*
* rx_ring_num : This can be used to program the number of receive rings used
* in the driver.
* rx_ring_sz: This defines the number of receive blocks each ring can have.
* This is also an array of size 8.
* rx_ring_mode: This defines the operation mode of all 8 rings. The valid
* values are 1, 2.
* tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
* tx_fifo_len: This too is an array of 8. Each element defines the number of
* Tx descriptors that can be associated with each corresponding FIFO.
* intr_type: This defines the type of interrupt. The values can be 0(INTA),
* 2(MSI_X). Default value is '2(MSI_X)'
* lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
* Possible values '1' for enable '0' for disable. Default is '0'
* lro_max_pkts: This parameter defines maximum number of packets can be
* aggregated as a single large packet
* napi: This parameter used to enable/disable NAPI (polling Rx)
* Possible values '1' for enable and '0' for disable. Default is '1'
* ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
* Possible values '1' for enable and '0' for disable. Default is '0'
* vlan_tag_strip: This can be used to enable or disable vlan stripping.
* Possible values '1' for enable , '0' for disable.
* Default is '2' - which means disable in promisc mode
* and enable in non-promiscuous mode.
* multiq: This parameter used to enable/disable MULTIQUEUE support.
* Possible values '1' for enable and '0' for disable. Default is '0'
************************************************************************/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mdio.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/ioctl.h>
#include <linux/timex.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/tcp.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>
#include <asm/irq.h>
/* local include */
#include "s2io.h"
#include "s2io-regs.h"
#define DRV_VERSION "2.0.26.25"
/* S2io Driver name & version. */
static char s2io_driver_name[] = "Neterion";
static char s2io_driver_version[] = DRV_VERSION;
static int rxd_size[2] = {32,48};
static int rxd_count[2] = {127,85};
static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
{
int ret;
ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
(GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
return ret;
}
/*
* Cards with following subsystem_id have a link state indication
* problem, 600B, 600C, 600D, 640B, 640C and 640D.
* macro below identifies these cards given the subsystem_id.
*/
#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
(dev_type == XFRAME_I_DEVICE) ? \
((((subid >= 0x600B) && (subid <= 0x600D)) || \
((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
static inline int is_s2io_card_up(const struct s2io_nic * sp)
{
return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
}
/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
"Register test\t(offline)",
"Eeprom test\t(offline)",
"Link test\t(online)",
"RLDRAM test\t(offline)",
"BIST Test\t(offline)"
};
static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
{"tmac_frms"},
{"tmac_data_octets"},
{"tmac_drop_frms"},
{"tmac_mcst_frms"},
{"tmac_bcst_frms"},
{"tmac_pause_ctrl_frms"},
{"tmac_ttl_octets"},
{"tmac_ucst_frms"},
{"tmac_nucst_frms"},
{"tmac_any_err_frms"},
{"tmac_ttl_less_fb_octets"},
{"tmac_vld_ip_octets"},
{"tmac_vld_ip"},
{"tmac_drop_ip"},
{"tmac_icmp"},
{"tmac_rst_tcp"},
{"tmac_tcp"},
{"tmac_udp"},
{"rmac_vld_frms"},
{"rmac_data_octets"},
{"rmac_fcs_err_frms"},
{"rmac_drop_frms"},
{"rmac_vld_mcst_frms"},
{"rmac_vld_bcst_frms"},
{"rmac_in_rng_len_err_frms"},
{"rmac_out_rng_len_err_frms"},
{"rmac_long_frms"},
{"rmac_pause_ctrl_frms"},
{"rmac_unsup_ctrl_frms"},
{"rmac_ttl_octets"},
{"rmac_accepted_ucst_frms"},
{"rmac_accepted_nucst_frms"},
{"rmac_discarded_frms"},
{"rmac_drop_events"},
{"rmac_ttl_less_fb_octets"},
{"rmac_ttl_frms"},
{"rmac_usized_frms"},
{"rmac_osized_frms"},
{"rmac_frag_frms"},
{"rmac_jabber_frms"},
{"rmac_ttl_64_frms"},
{"rmac_ttl_65_127_frms"},
{"rmac_ttl_128_255_frms"},
{"rmac_ttl_256_511_frms"},
{"rmac_ttl_512_1023_frms"},
{"rmac_ttl_1024_1518_frms"},
{"rmac_ip"},
{"rmac_ip_octets"},
{"rmac_hdr_err_ip"},
{"rmac_drop_ip"},
{"rmac_icmp"},
{"rmac_tcp"},
{"rmac_udp"},
{"rmac_err_drp_udp"},
{"rmac_xgmii_err_sym"},
{"rmac_frms_q0"},
{"rmac_frms_q1"},
{"rmac_frms_q2"},
{"rmac_frms_q3"},
{"rmac_frms_q4"},
{"rmac_frms_q5"},
{"rmac_frms_q6"},
{"rmac_frms_q7"},
{"rmac_full_q0"},
{"rmac_full_q1"},
{"rmac_full_q2"},
{"rmac_full_q3"},
{"rmac_full_q4"},
{"rmac_full_q5"},
{"rmac_full_q6"},
{"rmac_full_q7"},
{"rmac_pause_cnt"},
{"rmac_xgmii_data_err_cnt"},
{"rmac_xgmii_ctrl_err_cnt"},
{"rmac_accepted_ip"},
{"rmac_err_tcp"},
{"rd_req_cnt"},
{"new_rd_req_cnt"},
{"new_rd_req_rtry_cnt"},
{"rd_rtry_cnt"},
{"wr_rtry_rd_ack_cnt"},
{"wr_req_cnt"},
{"new_wr_req_cnt"},
{"new_wr_req_rtry_cnt"},
{"wr_rtry_cnt"},
{"wr_disc_cnt"},
{"rd_rtry_wr_ack_cnt"},
{"txp_wr_cnt"},
{"txd_rd_cnt"},
{"txd_wr_cnt"},
{"rxd_rd_cnt"},
{"rxd_wr_cnt"},
{"txf_rd_cnt"},
{"rxf_wr_cnt"}
};
static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
{"rmac_ttl_1519_4095_frms"},
{"rmac_ttl_4096_8191_frms"},
{"rmac_ttl_8192_max_frms"},
{"rmac_ttl_gt_max_frms"},
{"rmac_osized_alt_frms"},
{"rmac_jabber_alt_frms"},
{"rmac_gt_max_alt_frms"},
{"rmac_vlan_frms"},
{"rmac_len_discard"},
{"rmac_fcs_discard"},
{"rmac_pf_discard"},
{"rmac_da_discard"},
{"rmac_red_discard"},
{"rmac_rts_discard"},
{"rmac_ingm_full_discard"},
{"link_fault_cnt"}
};
static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
{"\n DRIVER STATISTICS"},
{"single_bit_ecc_errs"},
{"double_bit_ecc_errs"},
{"parity_err_cnt"},
{"serious_err_cnt"},
{"soft_reset_cnt"},
{"fifo_full_cnt"},
{"ring_0_full_cnt"},
{"ring_1_full_cnt"},
{"ring_2_full_cnt"},
{"ring_3_full_cnt"},
{"ring_4_full_cnt"},
{"ring_5_full_cnt"},
{"ring_6_full_cnt"},
{"ring_7_full_cnt"},
{"alarm_transceiver_temp_high"},
{"alarm_transceiver_temp_low"},
{"alarm_laser_bias_current_high"},
{"alarm_laser_bias_current_low"},
{"alarm_laser_output_power_high"},
{"alarm_laser_output_power_low"},
{"warn_transceiver_temp_high"},
{"warn_transceiver_temp_low"},
{"warn_laser_bias_current_high"},
{"warn_laser_bias_current_low"},
{"warn_laser_output_power_high"},
{"warn_laser_output_power_low"},
{"lro_aggregated_pkts"},
{"lro_flush_both_count"},
{"lro_out_of_sequence_pkts"},
{"lro_flush_due_to_max_pkts"},
{"lro_avg_aggr_pkts"},
{"mem_alloc_fail_cnt"},
{"pci_map_fail_cnt"},
{"watchdog_timer_cnt"},
{"mem_allocated"},
{"mem_freed"},
{"link_up_cnt"},
{"link_down_cnt"},
{"link_up_time"},
{"link_down_time"},
{"tx_tcode_buf_abort_cnt"},
{"tx_tcode_desc_abort_cnt"},
{"tx_tcode_parity_err_cnt"},
{"tx_tcode_link_loss_cnt"},
{"tx_tcode_list_proc_err_cnt"},
{"rx_tcode_parity_err_cnt"},
{"rx_tcode_abort_cnt"},
{"rx_tcode_parity_abort_cnt"},
{"rx_tcode_rda_fail_cnt"},
{"rx_tcode_unkn_prot_cnt"},
{"rx_tcode_fcs_err_cnt"},
{"rx_tcode_buf_size_err_cnt"},
{"rx_tcode_rxd_corrupt_cnt"},
{"rx_tcode_unkn_err_cnt"},
{"tda_err_cnt"},
{"pfc_err_cnt"},
{"pcc_err_cnt"},
{"tti_err_cnt"},
{"tpa_err_cnt"},
{"sm_err_cnt"},
{"lso_err_cnt"},
{"mac_tmac_err_cnt"},
{"mac_rmac_err_cnt"},
{"xgxs_txgxs_err_cnt"},
{"xgxs_rxgxs_err_cnt"},
{"rc_err_cnt"},
{"prc_pcix_err_cnt"},
{"rpa_err_cnt"},
{"rda_err_cnt"},
{"rti_err_cnt"},
{"mc_err_cnt"}
};
#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
init_timer(&timer); \
timer.function = handle; \
timer.data = (unsigned long) arg; \
mod_timer(&timer, (jiffies + exp)) \
/* copy mac addr to def_mac_addr array */
static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
{
sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
}
/* Add the vlan */
static void s2io_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
int i;
struct s2io_nic *nic = netdev_priv(dev);
unsigned long flags[MAX_TX_FIFOS];
struct mac_info *mac_control = &nic->mac_control;
struct config_param *config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++)
spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
nic->vlgrp = grp;
for (i = config->tx_fifo_num - 1; i >= 0; i--)
spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
flags[i]);
}
/* Unregister the vlan */
static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
int i;
struct s2io_nic *nic = netdev_priv(dev);
unsigned long flags[MAX_TX_FIFOS];
struct mac_info *mac_control = &nic->mac_control;
struct config_param *config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++)
spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
if (nic->vlgrp)
vlan_group_set_device(nic->vlgrp, vid, NULL);
for (i = config->tx_fifo_num - 1; i >= 0; i--)
spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
flags[i]);
}
/*
* Constants to be programmed into the Xena's registers, to configure
* the XAUI.
*/
#define END_SIGN 0x0
static const u64 herc_act_dtx_cfg[] = {
/* Set address */
0x8000051536750000ULL, 0x80000515367500E0ULL,
/* Write data */
0x8000051536750004ULL, 0x80000515367500E4ULL,
/* Set address */
0x80010515003F0000ULL, 0x80010515003F00E0ULL,
/* Write data */
0x80010515003F0004ULL, 0x80010515003F00E4ULL,
/* Set address */
0x801205150D440000ULL, 0x801205150D4400E0ULL,
/* Write data */
0x801205150D440004ULL, 0x801205150D4400E4ULL,
/* Set address */
0x80020515F2100000ULL, 0x80020515F21000E0ULL,
/* Write data */
0x80020515F2100004ULL, 0x80020515F21000E4ULL,
/* Done */
END_SIGN
};
static const u64 xena_dtx_cfg[] = {
/* Set address */
0x8000051500000000ULL, 0x80000515000000E0ULL,
/* Write data */
0x80000515D9350004ULL, 0x80000515D93500E4ULL,
/* Set address */
0x8001051500000000ULL, 0x80010515000000E0ULL,
/* Write data */
0x80010515001E0004ULL, 0x80010515001E00E4ULL,
/* Set address */
0x8002051500000000ULL, 0x80020515000000E0ULL,
/* Write data */
0x80020515F2100004ULL, 0x80020515F21000E4ULL,
END_SIGN
};
/*
* Constants for Fixing the MacAddress problem seen mostly on
* Alpha machines.
*/
static const u64 fix_mac[] = {
0x0060000000000000ULL, 0x0060600000000000ULL,
0x0040600000000000ULL, 0x0000600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0000600000000000ULL,
0x0040600000000000ULL, 0x0060600000000000ULL,
END_SIGN
};
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/* Module Loadable parameters. */
S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
S2IO_PARM_INT(rx_ring_num, 1);
S2IO_PARM_INT(multiq, 0);
S2IO_PARM_INT(rx_ring_mode, 1);
S2IO_PARM_INT(use_continuous_tx_intrs, 1);
S2IO_PARM_INT(rmac_pause_time, 0x100);
S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
S2IO_PARM_INT(shared_splits, 0);
S2IO_PARM_INT(tmac_util_period, 5);
S2IO_PARM_INT(rmac_util_period, 5);
S2IO_PARM_INT(l3l4hdr_size, 128);
/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
/* Frequency of Rx desc syncs expressed as power of 2 */
S2IO_PARM_INT(rxsync_frequency, 3);
/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
S2IO_PARM_INT(intr_type, 2);
/* Large receive offload feature */
static unsigned int lro_enable;
module_param_named(lro, lro_enable, uint, 0);
/* Max pkts to be aggregated by LRO at one time. If not specified,
* aggregation happens until we hit max IP pkt size(64K)
*/
S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
S2IO_PARM_INT(indicate_max_pkts, 0);
S2IO_PARM_INT(napi, 1);
S2IO_PARM_INT(ufo, 0);
S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
static unsigned int rx_ring_sz[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
static unsigned int rts_frm_len[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 };
module_param_array(tx_fifo_len, uint, NULL, 0);
module_param_array(rx_ring_sz, uint, NULL, 0);
module_param_array(rts_frm_len, uint, NULL, 0);
/*
* S2IO device table.
* This table lists all the devices that this driver supports.
*/
static struct pci_device_id s2io_tbl[] __devinitdata = {
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{0,}
};
MODULE_DEVICE_TABLE(pci, s2io_tbl);
static struct pci_error_handlers s2io_err_handler = {
.error_detected = s2io_io_error_detected,
.slot_reset = s2io_io_slot_reset,
.resume = s2io_io_resume,
};
static struct pci_driver s2io_driver = {
.name = "S2IO",
.id_table = s2io_tbl,
.probe = s2io_init_nic,
.remove = __devexit_p(s2io_rem_nic),
.err_handler = &s2io_err_handler,
};
/* A simplifier macro used both by init and free shared_mem Fns(). */
#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
/* netqueue manipulation helper functions */
static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
{
if (!sp->config.multiq) {
int i;
for (i = 0; i < sp->config.tx_fifo_num; i++)
sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
}
netif_tx_stop_all_queues(sp->dev);
}
static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
{
if (!sp->config.multiq)
sp->mac_control.fifos[fifo_no].queue_state =
FIFO_QUEUE_STOP;
netif_tx_stop_all_queues(sp->dev);
}
static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
{
if (!sp->config.multiq) {
int i;
for (i = 0; i < sp->config.tx_fifo_num; i++)
sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
}
netif_tx_start_all_queues(sp->dev);
}
static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
{
if (!sp->config.multiq)
sp->mac_control.fifos[fifo_no].queue_state =
FIFO_QUEUE_START;
netif_tx_start_all_queues(sp->dev);
}
static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
{
if (!sp->config.multiq) {
int i;
for (i = 0; i < sp->config.tx_fifo_num; i++)
sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
}
netif_tx_wake_all_queues(sp->dev);
}
static inline void s2io_wake_tx_queue(
struct fifo_info *fifo, int cnt, u8 multiq)
{
if (multiq) {
if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
netif_wake_subqueue(fifo->dev, fifo->fifo_no);
} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
if (netif_queue_stopped(fifo->dev)) {
fifo->queue_state = FIFO_QUEUE_START;
netif_wake_queue(fifo->dev);
}
}
}
/**
* init_shared_mem - Allocation and Initialization of Memory
* @nic: Device private variable.
* Description: The function allocates all the memory areas shared
* between the NIC and the driver. This includes Tx descriptors,
* Rx descriptors and the statistics block.
*/
static int init_shared_mem(struct s2io_nic *nic)
{
u32 size;
void *tmp_v_addr, *tmp_v_addr_next;
dma_addr_t tmp_p_addr, tmp_p_addr_next;
struct RxD_block *pre_rxd_blk = NULL;
int i, j, blk_cnt;
int lst_size, lst_per_page;
struct net_device *dev = nic->dev;
unsigned long tmp;
struct buffAdd *ba;
struct mac_info *mac_control;
struct config_param *config;
unsigned long long mem_allocated = 0;
mac_control = &nic->mac_control;
config = &nic->config;
/* Allocation and initialization of TXDLs in FIOFs */
size = 0;
for (i = 0; i < config->tx_fifo_num; i++) {
size += config->tx_cfg[i].fifo_len;
}
if (size > MAX_AVAILABLE_TXDS) {
DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
return -EINVAL;
}
size = 0;
for (i = 0; i < config->tx_fifo_num; i++) {
size = config->tx_cfg[i].fifo_len;
/*
* Legal values are from 2 to 8192
*/
if (size < 2) {
DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
"are 2 to 8192\n");
return -EINVAL;
}
}
lst_size = (sizeof(struct TxD) * config->max_txds);
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
int fifo_len = config->tx_cfg[i].fifo_len;
int list_holder_size = fifo_len * sizeof(struct list_info_hold);
mac_control->fifos[i].list_info = kzalloc(list_holder_size,
GFP_KERNEL);
if (!mac_control->fifos[i].list_info) {
DBG_PRINT(INFO_DBG,
"Malloc failed for list_info\n");
return -ENOMEM;
}
mem_allocated += list_holder_size;
}
for (i = 0; i < config->tx_fifo_num; i++) {
int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
mac_control->fifos[i].tx_curr_put_info.offset = 0;
mac_control->fifos[i].tx_curr_put_info.fifo_len =
config->tx_cfg[i].fifo_len - 1;
mac_control->fifos[i].tx_curr_get_info.offset = 0;
mac_control->fifos[i].tx_curr_get_info.fifo_len =
config->tx_cfg[i].fifo_len - 1;
mac_control->fifos[i].fifo_no = i;
mac_control->fifos[i].nic = nic;
mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
mac_control->fifos[i].dev = dev;
for (j = 0; j < page_num; j++) {
int k = 0;
dma_addr_t tmp_p;
void *tmp_v;
tmp_v = pci_alloc_consistent(nic->pdev,
PAGE_SIZE, &tmp_p);
if (!tmp_v) {
DBG_PRINT(INFO_DBG,
"pci_alloc_consistent ");
DBG_PRINT(INFO_DBG, "failed for TxDL\n");
return -ENOMEM;
}
/* If we got a zero DMA address(can happen on
* certain platforms like PPC), reallocate.
* Store virtual address of page we don't want,
* to be freed later.
*/
if (!tmp_p) {
mac_control->zerodma_virt_addr = tmp_v;
DBG_PRINT(INIT_DBG,
"%s: Zero DMA address for TxDL. ", dev->name);
DBG_PRINT(INIT_DBG,
"Virtual address %p\n", tmp_v);
tmp_v = pci_alloc_consistent(nic->pdev,
PAGE_SIZE, &tmp_p);
if (!tmp_v) {
DBG_PRINT(INFO_DBG,
"pci_alloc_consistent ");
DBG_PRINT(INFO_DBG, "failed for TxDL\n");
return -ENOMEM;
}
mem_allocated += PAGE_SIZE;
}
while (k < lst_per_page) {
int l = (j * lst_per_page) + k;
if (l == config->tx_cfg[i].fifo_len)
break;
mac_control->fifos[i].list_info[l].list_virt_addr =
tmp_v + (k * lst_size);
mac_control->fifos[i].list_info[l].list_phy_addr =
tmp_p + (k * lst_size);
k++;
}
}
}
for (i = 0; i < config->tx_fifo_num; i++) {
size = config->tx_cfg[i].fifo_len;
mac_control->fifos[i].ufo_in_band_v
= kcalloc(size, sizeof(u64), GFP_KERNEL);
if (!mac_control->fifos[i].ufo_in_band_v)
return -ENOMEM;
mem_allocated += (size * sizeof(u64));
}
/* Allocation and initialization of RXDs in Rings */
size = 0;
for (i = 0; i < config->rx_ring_num; i++) {
if (config->rx_cfg[i].num_rxd %
(rxd_count[nic->rxd_mode] + 1)) {
DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
i);
DBG_PRINT(ERR_DBG, "RxDs per Block");
return FAILURE;
}
size += config->rx_cfg[i].num_rxd;
mac_control->rings[i].block_count =
config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1 );
mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
mac_control->rings[i].block_count;
}
if (nic->rxd_mode == RXD_MODE_1)
size = (size * (sizeof(struct RxD1)));
else
size = (size * (sizeof(struct RxD3)));
for (i = 0; i < config->rx_ring_num; i++) {
mac_control->rings[i].rx_curr_get_info.block_index = 0;
mac_control->rings[i].rx_curr_get_info.offset = 0;
mac_control->rings[i].rx_curr_get_info.ring_len =
config->rx_cfg[i].num_rxd - 1;
mac_control->rings[i].rx_curr_put_info.block_index = 0;
mac_control->rings[i].rx_curr_put_info.offset = 0;
mac_control->rings[i].rx_curr_put_info.ring_len =
config->rx_cfg[i].num_rxd - 1;
mac_control->rings[i].nic = nic;
mac_control->rings[i].ring_no = i;
mac_control->rings[i].lro = lro_enable;
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1);
/* Allocating all the Rx blocks */
for (j = 0; j < blk_cnt; j++) {
struct rx_block_info *rx_blocks;
int l;
rx_blocks = &mac_control->rings[i].rx_blocks[j];
size = SIZE_OF_BLOCK; //size is always page size
tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
&tmp_p_addr);
if (tmp_v_addr == NULL) {
/*
* In case of failure, free_shared_mem()
* is called, which should free any
* memory that was alloced till the
* failure happened.
*/
rx_blocks->block_virt_addr = tmp_v_addr;
return -ENOMEM;
}
mem_allocated += size;
memset(tmp_v_addr, 0, size);
rx_blocks->block_virt_addr = tmp_v_addr;
rx_blocks->block_dma_addr = tmp_p_addr;
rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
rxd_count[nic->rxd_mode],
GFP_KERNEL);
if (!rx_blocks->rxds)
return -ENOMEM;
mem_allocated +=
(sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
for (l=0; l<rxd_count[nic->rxd_mode];l++) {
rx_blocks->rxds[l].virt_addr =
rx_blocks->block_virt_addr +
(rxd_size[nic->rxd_mode] * l);
rx_blocks->rxds[l].dma_addr =
rx_blocks->block_dma_addr +
(rxd_size[nic->rxd_mode] * l);
}
}
/* Interlinking all Rx Blocks */
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr =
mac_control->rings[i].rx_blocks[j].block_virt_addr;
tmp_v_addr_next =
mac_control->rings[i].rx_blocks[(j + 1) %
blk_cnt].block_virt_addr;
tmp_p_addr =
mac_control->rings[i].rx_blocks[j].block_dma_addr;
tmp_p_addr_next =
mac_control->rings[i].rx_blocks[(j + 1) %
blk_cnt].block_dma_addr;
pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
pre_rxd_blk->reserved_2_pNext_RxD_block =
(unsigned long) tmp_v_addr_next;
pre_rxd_blk->pNext_RxD_Blk_physical =
(u64) tmp_p_addr_next;
}
}
if (nic->rxd_mode == RXD_MODE_3B) {
/*
* Allocation of Storages for buffer addresses in 2BUFF mode
* and the buffers as well.
*/
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode]+ 1);
mac_control->rings[i].ba =
kmalloc((sizeof(struct buffAdd *) * blk_cnt),
GFP_KERNEL);
if (!mac_control->rings[i].ba)
return -ENOMEM;
mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
for (j = 0; j < blk_cnt; j++) {
int k = 0;
mac_control->rings[i].ba[j] =
kmalloc((sizeof(struct buffAdd) *
(rxd_count[nic->rxd_mode] + 1)),
GFP_KERNEL);
if (!mac_control->rings[i].ba[j])
return -ENOMEM;
mem_allocated += (sizeof(struct buffAdd) * \
(rxd_count[nic->rxd_mode] + 1));
while (k != rxd_count[nic->rxd_mode]) {
ba = &mac_control->rings[i].ba[j][k];
ba->ba_0_org = (void *) kmalloc
(BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_0_org)
return -ENOMEM;
mem_allocated +=
(BUF0_LEN + ALIGN_SIZE);
tmp = (unsigned long)ba->ba_0_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_0 = (void *) tmp;
ba->ba_1_org = (void *) kmalloc
(BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_1_org)
return -ENOMEM;
mem_allocated
+= (BUF1_LEN + ALIGN_SIZE);
tmp = (unsigned long) ba->ba_1_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_1 = (void *) tmp;
k++;
}
}
}
}
/* Allocation and initialization of Statistics block */
size = sizeof(struct stat_block);
mac_control->stats_mem = pci_alloc_consistent
(nic->pdev, size, &mac_control->stats_mem_phy);
if (!mac_control->stats_mem) {
/*
* In case of failure, free_shared_mem() is called, which
* should free any memory that was alloced till the
* failure happened.
*/
return -ENOMEM;
}
mem_allocated += size;
mac_control->stats_mem_sz = size;
tmp_v_addr = mac_control->stats_mem;
mac_control->stats_info = (struct stat_block *) tmp_v_addr;
memset(tmp_v_addr, 0, size);
DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
(unsigned long long) tmp_p_addr);
mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
return SUCCESS;
}
/**
* free_shared_mem - Free the allocated Memory
* @nic: Device private variable.
* Description: This function is to free all memory locations allocated by
* the init_shared_mem() function and return it to the kernel.
*/
static void free_shared_mem(struct s2io_nic *nic)
{
int i, j, blk_cnt, size;
void *tmp_v_addr;
dma_addr_t tmp_p_addr;
struct mac_info *mac_control;
struct config_param *config;
int lst_size, lst_per_page;
struct net_device *dev;
int page_num = 0;
if (!nic)
return;
dev = nic->dev;
mac_control = &nic->mac_control;
config = &nic->config;
lst_size = (sizeof(struct TxD) * config->max_txds);
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
for (j = 0; j < page_num; j++) {
int mem_blks = (j * lst_per_page);
if (!mac_control->fifos[i].list_info)
return;
if (!mac_control->fifos[i].list_info[mem_blks].
list_virt_addr)
break;
pci_free_consistent(nic->pdev, PAGE_SIZE,
mac_control->fifos[i].
list_info[mem_blks].
list_virt_addr,
mac_control->fifos[i].
list_info[mem_blks].
list_phy_addr);
nic->mac_control.stats_info->sw_stat.mem_freed
+= PAGE_SIZE;
}
/* If we got a zero DMA address during allocation,
* free the page now
*/
if (mac_control->zerodma_virt_addr) {
pci_free_consistent(nic->pdev, PAGE_SIZE,
mac_control->zerodma_virt_addr,
(dma_addr_t)0);
DBG_PRINT(INIT_DBG,
"%s: Freeing TxDL with zero DMA addr. ",
dev->name);
DBG_PRINT(INIT_DBG, "Virtual address %p\n",
mac_control->zerodma_virt_addr);
nic->mac_control.stats_info->sw_stat.mem_freed
+= PAGE_SIZE;
}
kfree(mac_control->fifos[i].list_info);
nic->mac_control.stats_info->sw_stat.mem_freed +=
(nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
}
size = SIZE_OF_BLOCK;
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = mac_control->rings[i].block_count;
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = mac_control->rings[i].rx_blocks[j].
block_virt_addr;
tmp_p_addr = mac_control->rings[i].rx_blocks[j].
block_dma_addr;
if (tmp_v_addr == NULL)
break;
pci_free_consistent(nic->pdev, size,
tmp_v_addr, tmp_p_addr);
nic->mac_control.stats_info->sw_stat.mem_freed += size;
kfree(mac_control->rings[i].rx_blocks[j].rxds);
nic->mac_control.stats_info->sw_stat.mem_freed +=
( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
}
}
if (nic->rxd_mode == RXD_MODE_3B) {
/* Freeing buffer storage addresses in 2BUFF mode. */
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[nic->rxd_mode] + 1);
for (j = 0; j < blk_cnt; j++) {
int k = 0;
if (!mac_control->rings[i].ba[j])
continue;
while (k != rxd_count[nic->rxd_mode]) {
struct buffAdd *ba =
&mac_control->rings[i].ba[j][k];
kfree(ba->ba_0_org);
nic->mac_control.stats_info->sw_stat.\
mem_freed += (BUF0_LEN + ALIGN_SIZE);
kfree(ba->ba_1_org);
nic->mac_control.stats_info->sw_stat.\
mem_freed += (BUF1_LEN + ALIGN_SIZE);
k++;
}
kfree(mac_control->rings[i].ba[j]);
nic->mac_control.stats_info->sw_stat.mem_freed +=
(sizeof(struct buffAdd) *
(rxd_count[nic->rxd_mode] + 1));
}
kfree(mac_control->rings[i].ba);
nic->mac_control.stats_info->sw_stat.mem_freed +=
(sizeof(struct buffAdd *) * blk_cnt);
}
}
for (i = 0; i < nic->config.tx_fifo_num; i++) {
if (mac_control->fifos[i].ufo_in_band_v) {
nic->mac_control.stats_info->sw_stat.mem_freed
+= (config->tx_cfg[i].fifo_len * sizeof(u64));
kfree(mac_control->fifos[i].ufo_in_band_v);
}
}
if (mac_control->stats_mem) {
nic->mac_control.stats_info->sw_stat.mem_freed +=
mac_control->stats_mem_sz;
pci_free_consistent(nic->pdev,
mac_control->stats_mem_sz,
mac_control->stats_mem,
mac_control->stats_mem_phy);
}
}
/**
* s2io_verify_pci_mode -
*/
static int s2io_verify_pci_mode(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
int mode;
val64 = readq(&bar0->pci_mode);
mode = (u8)GET_PCI_MODE(val64);
if ( val64 & PCI_MODE_UNKNOWN_MODE)
return -1; /* Unknown PCI mode */
return mode;
}
#define NEC_VENID 0x1033
#define NEC_DEVID 0x0125
static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
{
struct pci_dev *tdev = NULL;
while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
if (tdev->bus == s2io_pdev->bus->parent) {
pci_dev_put(tdev);
return 1;
}
}
}
return 0;
}
static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
/**
* s2io_print_pci_mode -
*/
static int s2io_print_pci_mode(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
int mode;
struct config_param *config = &nic->config;
val64 = readq(&bar0->pci_mode);
mode = (u8)GET_PCI_MODE(val64);
if ( val64 & PCI_MODE_UNKNOWN_MODE)
return -1; /* Unknown PCI mode */
config->bus_speed = bus_speed[mode];
if (s2io_on_nec_bridge(nic->pdev)) {
DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
nic->dev->name);
return mode;
}
if (val64 & PCI_MODE_32_BITS) {
DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
} else {
DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
}
switch(mode) {
case PCI_MODE_PCI_33:
DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
break;
case PCI_MODE_PCI_66:
DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
break;
case PCI_MODE_PCIX_M1_66:
DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
break;
case PCI_MODE_PCIX_M1_100:
DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
break;
case PCI_MODE_PCIX_M1_133:
DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
break;
case PCI_MODE_PCIX_M2_66:
DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
break;
case PCI_MODE_PCIX_M2_100:
DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
break;
case PCI_MODE_PCIX_M2_133:
DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
break;
default:
return -1; /* Unsupported bus speed */
}
return mode;
}
/**
* init_tti - Initialization transmit traffic interrupt scheme
* @nic: device private variable
* @link: link status (UP/DOWN) used to enable/disable continuous
* transmit interrupts
* Description: The function configures transmit traffic interrupts
* Return Value: SUCCESS on success and
* '-1' on failure
*/
static int init_tti(struct s2io_nic *nic, int link)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
int i;
struct config_param *config;
config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++) {
/*
* TTI Initialization. Default Tx timer gets us about
* 250 interrupts per sec. Continuous interrupts are enabled
* by default.
*/
if (nic->device_type == XFRAME_II_DEVICE) {
int count = (nic->config.bus_speed * 125)/2;
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
} else
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
TTI_DATA1_MEM_TX_URNG_B(0x10) |
TTI_DATA1_MEM_TX_URNG_C(0x30) |
TTI_DATA1_MEM_TX_TIMER_AC_EN;
if (i == 0)
if (use_continuous_tx_intrs && (link == LINK_UP))
val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
writeq(val64, &bar0->tti_data1_mem);
if (nic->config.intr_type == MSI_X) {
val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
TTI_DATA2_MEM_TX_UFC_B(0x100) |
TTI_DATA2_MEM_TX_UFC_C(0x200) |
TTI_DATA2_MEM_TX_UFC_D(0x300);
} else {
if ((nic->config.tx_steering_type ==
TX_DEFAULT_STEERING) &&
(config->tx_fifo_num > 1) &&
(i >= nic->udp_fifo_idx) &&
(i < (nic->udp_fifo_idx +
nic->total_udp_fifos)))
val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
TTI_DATA2_MEM_TX_UFC_B(0x80) |
TTI_DATA2_MEM_TX_UFC_C(0x100) |
TTI_DATA2_MEM_TX_UFC_D(0x120);
else
val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
TTI_DATA2_MEM_TX_UFC_B(0x20) |
TTI_DATA2_MEM_TX_UFC_C(0x40) |
TTI_DATA2_MEM_TX_UFC_D(0x80);
}
writeq(val64, &bar0->tti_data2_mem);
val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
TTI_CMD_MEM_OFFSET(i);
writeq(val64, &bar0->tti_command_mem);
if (wait_for_cmd_complete(&bar0->tti_command_mem,
TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
return FAILURE;
}
return SUCCESS;
}
/**
* init_nic - Initialization of hardware
* @nic: device private variable
* Description: The function sequentially configures every block
* of the H/W from their reset values.
* Return Value: SUCCESS on success and
* '-1' on failure (endian settings incorrect).
*/
static int init_nic(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
void __iomem *add;
u32 time;
int i, j;
struct mac_info *mac_control;
struct config_param *config;
int dtx_cnt = 0;
unsigned long long mem_share;
int mem_size;
mac_control = &nic->mac_control;
config = &nic->config;
/* to set the swapper controle on the card */
if(s2io_set_swapper(nic)) {
DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
return -EIO;
}
/*
* Herc requires EOI to be removed from reset before XGXS, so..
*/
if (nic->device_type & XFRAME_II_DEVICE) {
val64 = 0xA500000000ULL;
writeq(val64, &bar0->sw_reset);
msleep(500);
val64 = readq(&bar0->sw_reset);
}
/* Remove XGXS from reset state */
val64 = 0;
writeq(val64, &bar0->sw_reset);
msleep(500);
val64 = readq(&bar0->sw_reset);
/* Ensure that it's safe to access registers by checking
* RIC_RUNNING bit is reset. Check is valid only for XframeII.
*/
if (nic->device_type == XFRAME_II_DEVICE) {
for (i = 0; i < 50; i++) {
val64 = readq(&bar0->adapter_status);
if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
break;
msleep(10);
}
if (i == 50)
return -ENODEV;
}
/* Enable Receiving broadcasts */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_RMAC_BCAST_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
/* Read registers in all blocks */
val64 = readq(&bar0->mac_int_mask);
val64 = readq(&bar0->mc_int_mask);
val64 = readq(&bar0->xgxs_int_mask);
/* Set MTU */
val64 = dev->mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
if (nic->device_type & XFRAME_II_DEVICE) {
while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
&bar0->dtx_control, UF);
if (dtx_cnt & 0x1)
msleep(1); /* Necessary!! */
dtx_cnt++;
}
} else {
while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
&bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
dtx_cnt++;
}
}
/* Tx DMA Initialization */
val64 = 0;
writeq(val64, &bar0->tx_fifo_partition_0);
writeq(val64, &bar0->tx_fifo_partition_1);
writeq(val64, &bar0->tx_fifo_partition_2);
writeq(val64, &bar0->tx_fifo_partition_3);
for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
val64 |=
vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
13) | vBIT(config->tx_cfg[i].fifo_priority,
((j * 32) + 5), 3);
if (i == (config->tx_fifo_num - 1)) {
if (i % 2 == 0)
i++;
}
switch (i) {
case 1:
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = 0;
j = 0;
break;
case 3:
writeq(val64, &bar0->tx_fifo_partition_1);
val64 = 0;
j = 0;
break;
case 5:
writeq(val64, &bar0->tx_fifo_partition_2);
val64 = 0;
j = 0;
break;
case 7:
writeq(val64, &bar0->tx_fifo_partition_3);
val64 = 0;
j = 0;
break;
default:
j++;
break;
}
}
/*
* Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
* SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
*/
if ((nic->device_type == XFRAME_I_DEVICE) &&
(nic->pdev->revision < 4))
writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
val64 = readq(&bar0->tx_fifo_partition_0);
DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
&bar0->tx_fifo_partition_0, (unsigned long long) val64);
/*
* Initialization of Tx_PA_CONFIG register to ignore packet
* integrity checking.
*/
val64 = readq(&bar0->tx_pa_cfg);
val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->tx_pa_cfg);
/* Rx DMA intialization. */
val64 = 0;
for (i = 0; i < config->rx_ring_num; i++) {
val64 |=
vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
3);
}
writeq(val64, &bar0->rx_queue_priority);
/*
* Allocating equal share of memory to all the
* configured Rings.
*/
val64 = 0;
if (nic->device_type & XFRAME_II_DEVICE)
mem_size = 32;
else
mem_size = 64;
for (i = 0; i < config->rx_ring_num; i++) {
switch (i) {
case 0:
mem_share = (mem_size / config->rx_ring_num +
mem_size % config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
continue;
case 1:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
continue;
case 2:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
continue;
case 3:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
continue;
case 4:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
continue;
case 5:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
continue;
case 6:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
continue;
case 7:
mem_share = (mem_size / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
continue;
}
}
writeq(val64, &bar0->rx_queue_cfg);
/*
* Filling Tx round robin registers
* as per the number of FIFOs for equal scheduling priority
*/
switch (config->tx_fifo_num) {
case 1:
val64 = 0x0;
writeq(val64, &bar0->tx_w_round_robin_0);
writeq(val64, &bar0->tx_w_round_robin_1);
writeq(val64, &bar0->tx_w_round_robin_2);
writeq(val64, &bar0->tx_w_round_robin_3);
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 2:
val64 = 0x0001000100010001ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
writeq(val64, &bar0->tx_w_round_robin_1);
writeq(val64, &bar0->tx_w_round_robin_2);
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001000100000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 3:
val64 = 0x0001020001020001ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0200010200010200ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0102000102000102ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0001020001020001ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0200010200000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 4:
val64 = 0x0001020300010203ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
writeq(val64, &bar0->tx_w_round_robin_1);
writeq(val64, &bar0->tx_w_round_robin_2);
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001020300000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 5:
val64 = 0x0001020304000102ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0304000102030400ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0102030400010203ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0400010203040001ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0203040000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 6:
val64 = 0x0001020304050001ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0203040500010203ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0405000102030405ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0001020304050001ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0203040500000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 7:
val64 = 0x0001020304050600ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
val64 = 0x0102030405060001ULL;
writeq(val64, &bar0->tx_w_round_robin_1);
val64 = 0x0203040506000102ULL;
writeq(val64, &bar0->tx_w_round_robin_2);
val64 = 0x0304050600010203ULL;
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0405060000000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
case 8:
val64 = 0x0001020304050607ULL;
writeq(val64, &bar0->tx_w_round_robin_0);
writeq(val64, &bar0->tx_w_round_robin_1);
writeq(val64, &bar0->tx_w_round_robin_2);
writeq(val64, &bar0->tx_w_round_robin_3);
val64 = 0x0001020300000000ULL;
writeq(val64, &bar0->tx_w_round_robin_4);
break;
}
/* Enable all configured Tx FIFO partitions */
val64 = readq(&bar0->tx_fifo_partition_0);
val64 |= (TX_FIFO_PARTITION_EN);
writeq(val64, &bar0->tx_fifo_partition_0);
/* Filling the Rx round robin registers as per the
* number of Rings and steering based on QoS with
* equal priority.
*/
switch (config->rx_ring_num) {
case 1:
val64 = 0x0;
writeq(val64, &bar0->rx_w_round_robin_0);
writeq(val64, &bar0->rx_w_round_robin_1);
writeq(val64, &bar0->rx_w_round_robin_2);
writeq(val64, &bar0->rx_w_round_robin_3);
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080808080808080ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 2:
val64 = 0x0001000100010001ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
writeq(val64, &bar0->rx_w_round_robin_1);
writeq(val64, &bar0->rx_w_round_robin_2);
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001000100000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080808040404040ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 3:
val64 = 0x0001020001020001ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0200010200010200ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0102000102000102ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0001020001020001ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0200010200000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080804040402020ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 4:
val64 = 0x0001020300010203ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
writeq(val64, &bar0->rx_w_round_robin_1);
writeq(val64, &bar0->rx_w_round_robin_2);
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001020300000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020201010ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 5:
val64 = 0x0001020304000102ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0304000102030400ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0102030400010203ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0400010203040001ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0203040000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020201008ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 6:
val64 = 0x0001020304050001ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0203040500010203ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0405000102030405ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0001020304050001ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0203040500000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080404020100804ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 7:
val64 = 0x0001020304050600ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
val64 = 0x0102030405060001ULL;
writeq(val64, &bar0->rx_w_round_robin_1);
val64 = 0x0203040506000102ULL;
writeq(val64, &bar0->rx_w_round_robin_2);
val64 = 0x0304050600010203ULL;
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0405060000000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8080402010080402ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
case 8:
val64 = 0x0001020304050607ULL;
writeq(val64, &bar0->rx_w_round_robin_0);
writeq(val64, &bar0->rx_w_round_robin_1);
writeq(val64, &bar0->rx_w_round_robin_2);
writeq(val64, &bar0->rx_w_round_robin_3);
val64 = 0x0001020300000000ULL;
writeq(val64, &bar0->rx_w_round_robin_4);
val64 = 0x8040201008040201ULL;
writeq(val64, &bar0->rts_qos_steering);
break;
}
/* UDP Fix */
val64 = 0;
for (i = 0; i < 8; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set the default rts frame length for the rings configured */
val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
for (i = 0 ; i < config->rx_ring_num ; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set the frame length for the configured rings
* desired by the user
*/
for (i = 0; i < config->rx_ring_num; i++) {
/* If rts_frm_len[i] == 0 then it is assumed that user not
* specified frame length steering.
* If the user provides the frame length then program
* the rts_frm_len register for those values or else
* leave it as it is.
*/
if (rts_frm_len[i] != 0) {
writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
&bar0->rts_frm_len_n[i]);
}
}
/* Disable differentiated services steering logic */
for (i = 0; i < 64; i++) {
if (rts_ds_steer(nic, i, 0) == FAILURE) {
DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
dev->name);
DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
return -ENODEV;
}
}
/* Program statistics memory */
writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
if (nic->device_type == XFRAME_II_DEVICE) {
val64 = STAT_BC(0x320);
writeq(val64, &bar0->stat_byte_cnt);
}
/*
* Initializing the sampling rate for the device to calculate the
* bandwidth utilization.
*/
val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
MAC_RX_LINK_UTIL_VAL(rmac_util_period);
writeq(val64, &bar0->mac_link_util);
/*
* Initializing the Transmit and Receive Traffic Interrupt
* Scheme.
*/
/* Initialize TTI */
if (SUCCESS != init_tti(nic, nic->last_link_state))
return -ENODEV;
/* RTI Initialization */
if (nic->device_type == XFRAME_II_DEVICE) {
/*
* Programmed to generate Apprx 500 Intrs per
* second
*/
int count = (nic->config.bus_speed * 125)/4;
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
} else
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
RTI_DATA1_MEM_RX_URNG_B(0x10) |
RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
writeq(val64, &bar0->rti_data1_mem);
val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
RTI_DATA2_MEM_RX_UFC_B(0x2) ;
if (nic->config.intr_type == MSI_X)
val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
RTI_DATA2_MEM_RX_UFC_D(0x40));
else
val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
RTI_DATA2_MEM_RX_UFC_D(0x80));
writeq(val64, &bar0->rti_data2_mem);
for (i = 0; i < config->rx_ring_num; i++) {
val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
| RTI_CMD_MEM_OFFSET(i);
writeq(val64, &bar0->rti_command_mem);
/*
* Once the operation completes, the Strobe bit of the
* command register will be reset. We poll for this
* particular condition. We wait for a maximum of 500ms
* for the operation to complete, if it's not complete
* by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->rti_command_mem);
if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
break;
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
dev->name);
return -ENODEV;
}
time++;
msleep(50);
}
}
/*
* Initializing proper values as Pause threshold into all
* the 8 Queues on Rx side.
*/
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
/* Disable RMAC PAD STRIPPING */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
/* Enable FCS stripping by adapter */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_STRIP_FCS;
if (nic->device_type == XFRAME_II_DEVICE)
writeq(val64, &bar0->mac_cfg);
else {
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
}
/*
* Set the time value to be inserted in the pause frame
* generated by xena.
*/
val64 = readq(&bar0->rmac_pause_cfg);
val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
writeq(val64, &bar0->rmac_pause_cfg);
/*
* Set the Threshold Limit for Generating the pause frame
* If the amount of data in any Queue exceeds ratio of
* (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
* pause frame is generated
*/
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q0q3)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q0q3);
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q4q7)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q4q7);
/*
* TxDMA will stop Read request if the number of read split has
* exceeded the limit pointed by shared_splits
*/
val64 = readq(&bar0->pic_control);
val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
writeq(val64, &bar0->pic_control);
if (nic->config.bus_speed == 266) {
writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
writeq(0x0, &bar0->read_retry_delay);
writeq(0x0, &bar0->write_retry_delay);
}
/*
* Programming the Herc to split every write transaction
* that does not start on an ADB to reduce disconnects.
*/
if (nic->device_type == XFRAME_II_DEVICE) {
val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
MISC_LINK_STABILITY_PRD(3);
writeq(val64, &bar0->misc_control);
val64 = readq(&bar0->pic_control2);
val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
writeq(val64, &bar0->pic_control2);
}
if (strstr(nic->product_name, "CX4")) {
val64 = TMAC_AVG_IPG(0x17);
writeq(val64, &bar0->tmac_avg_ipg);
}
return SUCCESS;
}
#define LINK_UP_DOWN_INTERRUPT 1
#define MAC_RMAC_ERR_TIMER 2
static int s2io_link_fault_indication(struct s2io_nic *nic)
{
if (nic->device_type == XFRAME_II_DEVICE)
return LINK_UP_DOWN_INTERRUPT;
else
return MAC_RMAC_ERR_TIMER;
}
/**
* do_s2io_write_bits - update alarm bits in alarm register
* @value: alarm bits
* @flag: interrupt status
* @addr: address value
* Description: update alarm bits in alarm register
* Return Value:
* NONE.
*/
static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
{
u64 temp64;
temp64 = readq(addr);
if(flag == ENABLE_INTRS)
temp64 &= ~((u64) value);
else
temp64 |= ((u64) value);
writeq(temp64, addr);
}
static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 gen_int_mask = 0;
u64 interruptible;
writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
if (mask & TX_DMA_INTR) {
gen_int_mask |= TXDMA_INT_M;
do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
TXDMA_PCC_INT | TXDMA_TTI_INT |
TXDMA_LSO_INT | TXDMA_TPA_INT |
TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
PFC_MISC_0_ERR | PFC_MISC_1_ERR |
PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
&bar0->pfc_err_mask);
do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
PCC_N_SERR | PCC_6_COF_OV_ERR |
PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
flag, &bar0->lso_err_mask);
do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
flag, &bar0->tpa_err_mask);
do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
}
if (mask & TX_MAC_INTR) {
gen_int_mask |= TXMAC_INT_M;
do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
&bar0->mac_int_mask);
do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
flag, &bar0->mac_tmac_err_mask);
}
if (mask & TX_XGXS_INTR) {
gen_int_mask |= TXXGXS_INT_M;
do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
&bar0->xgxs_int_mask);
do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
flag, &bar0->xgxs_txgxs_err_mask);
}
if (mask & RX_DMA_INTR) {
gen_int_mask |= RXDMA_INT_M;
do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
flag, &bar0->rxdma_int_mask);
do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
&bar0->prc_pcix_err_mask);
do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
&bar0->rpa_err_mask);
do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
flag, &bar0->rda_err_mask);
do_s2io_write_bits(RTI_SM_ERR_ALARM |
RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
flag, &bar0->rti_err_mask);
}
if (mask & RX_MAC_INTR) {
gen_int_mask |= RXMAC_INT_M;
do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
&bar0->mac_int_mask);
interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
RMAC_DOUBLE_ECC_ERR;
if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
interruptible |= RMAC_LINK_STATE_CHANGE_INT;
do_s2io_write_bits(interruptible,
flag, &bar0->mac_rmac_err_mask);
}
if (mask & RX_XGXS_INTR)
{
gen_int_mask |= RXXGXS_INT_M;
do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
&bar0->xgxs_int_mask);
do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
&bar0->xgxs_rxgxs_err_mask);
}
if (mask & MC_INTR) {
gen_int_mask |= MC_INT_M;
do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
&bar0->mc_err_mask);
}
nic->general_int_mask = gen_int_mask;
/* Remove this line when alarm interrupts are enabled */
nic->general_int_mask = 0;
}
/**
* en_dis_able_nic_intrs - Enable or Disable the interrupts
* @nic: device private variable,
* @mask: A mask indicating which Intr block must be modified and,
* @flag: A flag indicating whether to enable or disable the Intrs.
* Description: This function will either disable or enable the interrupts
* depending on the flag argument. The mask argument can be used to
* enable/disable any Intr block.
* Return Value: NONE.
*/
static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 temp64 = 0, intr_mask = 0;
intr_mask = nic->general_int_mask;
/* Top level interrupt classification */
/* PIC Interrupts */
if (mask & TX_PIC_INTR) {
/* Enable PIC Intrs in the general intr mask register */
intr_mask |= TXPIC_INT_M;
if (flag == ENABLE_INTRS) {
/*
* If Hercules adapter enable GPIO otherwise
* disable all PCIX, Flash, MDIO, IIC and GPIO
* interrupts for now.
* TODO
*/
if (s2io_link_fault_indication(nic) ==
LINK_UP_DOWN_INTERRUPT ) {
do_s2io_write_bits(PIC_INT_GPIO, flag,
&bar0->pic_int_mask);
do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
&bar0->gpio_int_mask);
} else
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable PIC Intrs in the general
* intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
}
}
/* Tx traffic interrupts */
if (mask & TX_TRAFFIC_INTR) {
intr_mask |= TXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
/*
* Enable all the Tx side interrupts
* writing 0 Enables all 64 TX interrupt levels
*/
writeq(0x0, &bar0->tx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Tx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
}
}
/* Rx traffic interrupts */
if (mask & RX_TRAFFIC_INTR) {
intr_mask |= RXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
/* writing 0 Enables all 8 RX interrupt levels */
writeq(0x0, &bar0->rx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Rx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
}
}
temp64 = readq(&bar0->general_int_mask);
if (flag == ENABLE_INTRS)
temp64 &= ~((u64) intr_mask);
else
temp64 = DISABLE_ALL_INTRS;
writeq(temp64, &bar0->general_int_mask);
nic->general_int_mask = readq(&bar0->general_int_mask);
}
/**
* verify_pcc_quiescent- Checks for PCC quiescent state
* Return: 1 If PCC is quiescence
* 0 If PCC is not quiescence
*/
static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
{
int ret = 0, herc;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = readq(&bar0->adapter_status);
herc = (sp->device_type == XFRAME_II_DEVICE);
if (flag == FALSE) {
if ((!herc && (sp->pdev->revision >= 4)) || herc) {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
ret = 1;
} else {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
ret = 1;
}
} else {
if ((!herc && (sp->pdev->revision >= 4)) || herc) {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_IDLE))
ret = 1;
} else {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
ret = 1;
}
}
return ret;
}
/**
* verify_xena_quiescence - Checks whether the H/W is ready
* Description: Returns whether the H/W is ready to go or not. Depending
* on whether adapter enable bit was written or not the comparison
* differs and the calling function passes the input argument flag to
* indicate this.
* Return: 1 If xena is quiescence
* 0 If Xena is not quiescence
*/
static int verify_xena_quiescence(struct s2io_nic *sp)
{
int mode;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = readq(&bar0->adapter_status);
mode = s2io_verify_pci_mode(sp);
if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
return 0;
}
if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
return 0;
}
/*
* In PCI 33 mode, the P_PLL is not used, and therefore,
* the the P_PLL_LOCK bit in the adapter_status register will
* not be asserted.
*/
if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
sp->device_type == XFRAME_II_DEVICE && mode !=
PCI_MODE_PCI_33) {
DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
return 0;
}
if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
return 0;
}
return 1;
}
/**
* fix_mac_address - Fix for Mac addr problem on Alpha platforms
* @sp: Pointer to device specifc structure
* Description :
* New procedure to clear mac address reading problems on Alpha platforms
*
*/
static void fix_mac_address(struct s2io_nic * sp)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
int i = 0;
while (fix_mac[i] != END_SIGN) {
writeq(fix_mac[i++], &bar0->gpio_control);
udelay(10);
val64 = readq(&bar0->gpio_control);
}
}
/**
* start_nic - Turns the device on
* @nic : device private variable.
* Description:
* This function actually turns the device on. Before this function is
* called,all Registers are configured from their reset states
* and shared memory is allocated but the NIC is still quiescent. On
* calling this function, the device interrupts are cleared and the NIC is
* literally switched on by writing into the adapter control register.
* Return Value:
* SUCCESS on success and -1 on failure.
*/
static int start_nic(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
u16 subid, i;
struct mac_info *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* PRC Initialization and configuration */
for (i = 0; i < config->rx_ring_num; i++) {
writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
&bar0->prc_rxd0_n[i]);
val64 = readq(&bar0->prc_ctrl_n[i]);
if (nic->rxd_mode == RXD_MODE_1)
val64 |= PRC_CTRL_RC_ENABLED;
else
val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
if (nic->device_type == XFRAME_II_DEVICE)
val64 |= PRC_CTRL_GROUP_READS;
val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
writeq(val64, &bar0->prc_ctrl_n[i]);
}
if (nic->rxd_mode == RXD_MODE_3B) {
/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
val64 = readq(&bar0->rx_pa_cfg);
val64 |= RX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->rx_pa_cfg);
}
if (vlan_tag_strip == 0) {
val64 = readq(&bar0->rx_pa_cfg);
val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
writeq(val64, &bar0->rx_pa_cfg);
nic->vlan_strip_flag = 0;
}
/*
* Enabling MC-RLDRAM. After enabling the device, we timeout
* for around 100ms, which is approximately the time required
* for the device to be ready for operation.
*/
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 = readq(&bar0->mc_rldram_mrs);
msleep(100); /* Delay by around 100 ms. */
/* Enabling ECC Protection. */
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
/*
* Verify if the device is ready to be enabled, if so enable
* it.
*/
val64 = readq(&bar0->adapter_status);
if (!verify_xena_quiescence(nic)) {
DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
(unsigned long long) val64);
return FAILURE;
}
/*
* With some switches, link might be already up at this point.
* Because of this weird behavior, when we enable laser,
* we may not get link. We need to handle this. We cannot
* figure out which switch is misbehaving. So we are forced to
* make a global change.
*/
/* Enabling Laser. */
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_EOI_TX_ON;
writeq(val64, &bar0->adapter_control);
if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
/*
* Dont see link state interrupts initally on some switches,
* so directly scheduling the link state task here.
*/
schedule_work(&nic->set_link_task);
}
/* SXE-002: Initialize link and activity LED */
subid = nic->pdev->subsystem_device;
if (((subid & 0xFF) >= 0x07) &&
(nic->device_type == XFRAME_I_DEVICE)) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *)bar0 + 0x2700);
}
return SUCCESS;
}
/**
* s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
*/
static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
TxD *txdlp, int get_off)
{
struct s2io_nic *nic = fifo_data->nic;
struct sk_buff *skb;
struct TxD *txds;
u16 j, frg_cnt;
txds = txdlp;
if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
pci_unmap_single(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer, sizeof(u64),
PCI_DMA_TODEVICE);
txds++;
}
skb = (struct sk_buff *) ((unsigned long)
txds->Host_Control);
if (!skb) {
memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
return NULL;
}
pci_unmap_single(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer,
skb->len - skb->data_len,
PCI_DMA_TODEVICE);
frg_cnt = skb_shinfo(skb)->nr_frags;
if (frg_cnt) {
txds++;
for (j = 0; j < frg_cnt; j++, txds++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
if (!txds->Buffer_Pointer)
break;
pci_unmap_page(nic->pdev, (dma_addr_t)
txds->Buffer_Pointer,
frag->size, PCI_DMA_TODEVICE);
}
}
memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
return(skb);
}
/**
* free_tx_buffers - Free all queued Tx buffers
* @nic : device private variable.
* Description:
* Free all queued Tx buffers.
* Return Value: void
*/
static void free_tx_buffers(struct s2io_nic *nic)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
struct TxD *txdp;
int i, j;
struct mac_info *mac_control;
struct config_param *config;
int cnt = 0;
mac_control = &nic->mac_control;
config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++) {
unsigned long flags;
spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
txdp = (struct TxD *) \
mac_control->fifos[i].list_info[j].list_virt_addr;
skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
if (skb) {
nic->mac_control.stats_info->sw_stat.mem_freed
+= skb->truesize;
dev_kfree_skb(skb);
cnt++;
}
}
DBG_PRINT(INTR_DBG,
"%s:forcibly freeing %d skbs on FIFO%d\n",
dev->name, cnt, i);
mac_control->fifos[i].tx_curr_get_info.offset = 0;
mac_control->fifos[i].tx_curr_put_info.offset = 0;
spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
}
}
/**
* stop_nic - To stop the nic
* @nic ; device private variable.
* Description:
* This function does exactly the opposite of what the start_nic()
* function does. This function is called to stop the device.
* Return Value:
* void.
*/
static void stop_nic(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
u16 interruptible;
struct mac_info *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Disable all interrupts */
en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
interruptible |= TX_PIC_INTR;
en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
val64 = readq(&bar0->adapter_control);
val64 &= ~(ADAPTER_CNTL_EN);
writeq(val64, &bar0->adapter_control);
}
/**
* fill_rx_buffers - Allocates the Rx side skbs
* @ring_info: per ring structure
* @from_card_up: If this is true, we will map the buffer to get
* the dma address for buf0 and buf1 to give it to the card.
* Else we will sync the already mapped buffer to give it to the card.
* Description:
* The function allocates Rx side skbs and puts the physical
* address of these buffers into the RxD buffer pointers, so that the NIC
* can DMA the received frame into these locations.
* The NIC supports 3 receive modes, viz
* 1. single buffer,
* 2. three buffer and
* 3. Five buffer modes.
* Each mode defines how many fragments the received frame will be split
* up into by the NIC. The frame is split into L3 header, L4 Header,
* L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
* is split into 3 fragments. As of now only single buffer mode is
* supported.
* Return Value:
* SUCCESS on success or an appropriate -ve value on failure.
*/
static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
int from_card_up)
{
struct sk_buff *skb;
struct RxD_t *rxdp;
int off, size, block_no, block_no1;
u32 alloc_tab = 0;
u32 alloc_cnt;
u64 tmp;
struct buffAdd *ba;
struct RxD_t *first_rxdp = NULL;
u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
int rxd_index = 0;
struct RxD1 *rxdp1;
struct RxD3 *rxdp3;
struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
block_no1 = ring->rx_curr_get_info.block_index;
while (alloc_tab < alloc_cnt) {
block_no = ring->rx_curr_put_info.block_index;
off = ring->rx_curr_put_info.offset;
rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
rxd_index = off + 1;
if (block_no)
rxd_index += (block_no * ring->rxd_count);
if ((block_no == block_no1) &&
(off == ring->rx_curr_get_info.offset) &&
(rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put",
ring->dev->name);
DBG_PRINT(INTR_DBG, " info equated\n");
goto end;
}
if (off && (off == ring->rxd_count)) {
ring->rx_curr_put_info.block_index++;
if (ring->rx_curr_put_info.block_index ==
ring->block_count)
ring->rx_curr_put_info.block_index = 0;
block_no = ring->rx_curr_put_info.block_index;
off = 0;
ring->rx_curr_put_info.offset = off;
rxdp = ring->rx_blocks[block_no].block_virt_addr;
DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
ring->dev->name, rxdp);
}
if ((rxdp->Control_1 & RXD_OWN_XENA) &&
((ring->rxd_mode == RXD_MODE_3B) &&
(rxdp->Control_2 & s2BIT(0)))) {
ring->rx_curr_put_info.offset = off;
goto end;
}
/* calculate size of skb based on ring mode */
size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
if (ring->rxd_mode == RXD_MODE_1)
size += NET_IP_ALIGN;
else
size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
/* allocate skb */
skb = dev_alloc_skb(size);
if(!skb) {
DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
stats->mem_alloc_fail_cnt++;
return -ENOMEM ;
}
stats->mem_allocated += skb->truesize;
if (ring->rxd_mode == RXD_MODE_1) {
/* 1 buffer mode - normal operation mode */
rxdp1 = (struct RxD1*)rxdp;
memset(rxdp, 0, sizeof(struct RxD1));
skb_reserve(skb, NET_IP_ALIGN);
rxdp1->Buffer0_ptr = pci_map_single
(ring->pdev, skb->data, size - NET_IP_ALIGN,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(nic->pdev,
rxdp1->Buffer0_ptr))
goto pci_map_failed;
rxdp->Control_2 =
SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
rxdp->Host_Control = (unsigned long) (skb);
} else if (ring->rxd_mode == RXD_MODE_3B) {
/*
* 2 buffer mode -
* 2 buffer mode provides 128
* byte aligned receive buffers.
*/
rxdp3 = (struct RxD3*)rxdp;
/* save buffer pointers to avoid frequent dma mapping */
Buffer0_ptr = rxdp3->Buffer0_ptr;
Buffer1_ptr = rxdp3->Buffer1_ptr;
memset(rxdp, 0, sizeof(struct RxD3));
/* restore the buffer pointers for dma sync*/
rxdp3->Buffer0_ptr = Buffer0_ptr;
rxdp3->Buffer1_ptr = Buffer1_ptr;
ba = &ring->ba[block_no][off];
skb_reserve(skb, BUF0_LEN);
tmp = (u64)(unsigned long) skb->data;
tmp += ALIGN_SIZE;
tmp &= ~ALIGN_SIZE;
skb->data = (void *) (unsigned long)tmp;
skb_reset_tail_pointer(skb);
if (from_card_up) {
rxdp3->Buffer0_ptr =
pci_map_single(ring->pdev, ba->ba_0,
BUF0_LEN, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(nic->pdev,
rxdp3->Buffer0_ptr))
goto pci_map_failed;
} else
pci_dma_sync_single_for_device(ring->pdev,
(dma_addr_t) rxdp3->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
if (ring->rxd_mode == RXD_MODE_3B) {
/* Two buffer mode */
/*
* Buffer2 will have L3/L4 header plus
* L4 payload
*/
rxdp3->Buffer2_ptr = pci_map_single
(ring->pdev, skb->data, ring->mtu + 4,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(nic->pdev,
rxdp3->Buffer2_ptr))
goto pci_map_failed;
if (from_card_up) {
rxdp3->Buffer1_ptr =
pci_map_single(ring->pdev,
ba->ba_1, BUF1_LEN,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(nic->pdev,
rxdp3->Buffer1_ptr)) {
pci_unmap_single
(ring->pdev,
(dma_addr_t)(unsigned long)
skb->data,
ring->mtu + 4,
PCI_DMA_FROMDEVICE);
goto pci_map_failed;
}
}
rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3
(ring->mtu + 4);
}
rxdp->Control_2 |= s2BIT(0);
rxdp->Host_Control = (unsigned long) (skb);
}
if (alloc_tab & ((1 << rxsync_frequency) - 1))
rxdp->Control_1 |= RXD_OWN_XENA;
off++;
if (off == (ring->rxd_count + 1))
off = 0;
ring->rx_curr_put_info.offset = off;
rxdp->Control_2 |= SET_RXD_MARKER;
if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
first_rxdp = rxdp;
}
ring->rx_bufs_left += 1;
alloc_tab++;
}
end:
/* Transfer ownership of first descriptor to adapter just before
* exiting. Before that, use memory barrier so that ownership
* and other fields are seen by adapter correctly.
*/
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA;
}
return SUCCESS;
pci_map_failed:
stats->pci_map_fail_cnt++;
stats->mem_freed += skb->truesize;
dev_kfree_skb_irq(skb);
return -ENOMEM;
}
static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
{
struct net_device *dev = sp->dev;
int j;
struct sk_buff *skb;
struct RxD_t *rxdp;
struct mac_info *mac_control;
struct buffAdd *ba;
struct RxD1 *rxdp1;
struct RxD3 *rxdp3;
mac_control = &sp->mac_control;
for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
rxdp = mac_control->rings[ring_no].
rx_blocks[blk].rxds[j].virt_addr;
skb = (struct sk_buff *)
((unsigned long) rxdp->Host_Control);
if (!skb) {
continue;
}
if (sp->rxd_mode == RXD_MODE_1) {
rxdp1 = (struct RxD1*)rxdp;
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp1->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE
+ HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(struct RxD1));
} else if(sp->rxd_mode == RXD_MODE_3B) {
rxdp3 = (struct RxD3*)rxdp;
ba = &mac_control->rings[ring_no].
ba[blk][j];
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp3->Buffer0_ptr,
BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp3->Buffer1_ptr,
BUF1_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp3->Buffer2_ptr,
dev->mtu + 4,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(struct RxD3));
}
sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
dev_kfree_skb(skb);
mac_control->rings[ring_no].rx_bufs_left -= 1;
}
}
/**
* free_rx_buffers - Frees all Rx buffers
* @sp: device private variable.
* Description:
* This function will free all Rx buffers allocated by host.
* Return Value:
* NONE.
*/
static void free_rx_buffers(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
int i, blk = 0, buf_cnt = 0;
struct mac_info *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
for (blk = 0; blk < rx_ring_sz[i]; blk++)
free_rxd_blk(sp,i,blk);
mac_control->rings[i].rx_curr_put_info.block_index = 0;
mac_control->rings[i].rx_curr_get_info.block_index = 0;
mac_control->rings[i].rx_curr_put_info.offset = 0;
mac_control->rings[i].rx_curr_get_info.offset = 0;
mac_control->rings[i].rx_bufs_left = 0;
DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
dev->name, buf_cnt, i);
}
}
static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
{
if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
}
return 0;
}
/**
* s2io_poll - Rx interrupt handler for NAPI support
* @napi : pointer to the napi structure.
* @budget : The number of packets that were budgeted to be processed
* during one pass through the 'Poll" function.
* Description:
* Comes into picture only if NAPI support has been incorporated. It does
* the same thing that rx_intr_handler does, but not in a interrupt context
* also It will process only a given number of packets.
* Return value:
* 0 on success and 1 if there are No Rx packets to be processed.
*/
static int s2io_poll_msix(struct napi_struct *napi, int budget)
{
struct ring_info *ring = container_of(napi, struct ring_info, napi);
struct net_device *dev = ring->dev;
struct config_param *config;
struct mac_info *mac_control;
int pkts_processed = 0;
u8 __iomem *addr = NULL;
u8 val8 = 0;
struct s2io_nic *nic = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = nic->bar0;
int budget_org = budget;
config = &nic->config;
mac_control = &nic->mac_control;
if (unlikely(!is_s2io_card_up(nic)))
return 0;
pkts_processed = rx_intr_handler(ring, budget);
s2io_chk_rx_buffers(nic, ring);
if (pkts_processed < budget_org) {
napi_complete(napi);
/*Re Enable MSI-Rx Vector*/
addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
addr += 7 - ring->ring_no;
val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
writeb(val8, addr);
val8 = readb(addr);
}
return pkts_processed;
}
static int s2io_poll_inta(struct napi_struct *napi, int budget)
{
struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
struct ring_info *ring;
struct config_param *config;
struct mac_info *mac_control;
int pkts_processed = 0;
int ring_pkts_processed, i;
struct XENA_dev_config __iomem *bar0 = nic->bar0;
int budget_org = budget;
config = &nic->config;
mac_control = &nic->mac_control;
if (unlikely(!is_s2io_card_up(nic)))
return 0;
for (i = 0; i < config->rx_ring_num; i++) {
ring = &mac_control->rings[i];
ring_pkts_processed = rx_intr_handler(ring, budget);
s2io_chk_rx_buffers(nic, ring);
pkts_processed += ring_pkts_processed;
budget -= ring_pkts_processed;
if (budget <= 0)
break;
}
if (pkts_processed < budget_org) {
napi_complete(napi);
/* Re enable the Rx interrupts for the ring */
writeq(0, &bar0->rx_traffic_mask);
readl(&bar0->rx_traffic_mask);
}
return pkts_processed;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* s2io_netpoll - netpoll event handler entry point
* @dev : pointer to the device structure.
* Description:
* This function will be called by upper layer to check for events on the
* interface in situations where interrupts are disabled. It is used for
* specific in-kernel networking tasks, such as remote consoles and kernel
* debugging over the network (example netdump in RedHat).
*/
static void s2io_netpoll(struct net_device *dev)
{
struct s2io_nic *nic = netdev_priv(dev);
struct mac_info *mac_control;
struct config_param *config;
struct XENA_dev_config __iomem *bar0 = nic->bar0;
u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
int i;
if (pci_channel_offline(nic->pdev))
return;
disable_irq(dev->irq);
mac_control = &nic->mac_control;
config = &nic->config;
writeq(val64, &bar0->rx_traffic_int);
writeq(val64, &bar0->tx_traffic_int);
/* we need to free up the transmitted skbufs or else netpoll will
* run out of skbs and will fail and eventually netpoll application such
* as netdump will fail.
*/
for (i = 0; i < config->tx_fifo_num; i++)
tx_intr_handler(&mac_control->fifos[i]);
/* check for received packet and indicate up to network */
for (i = 0; i < config->rx_ring_num; i++)
rx_intr_handler(&mac_control->rings[i], 0);
for (i = 0; i < config->rx_ring_num; i++) {
if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
-ENOMEM) {
DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
break;
}
}
enable_irq(dev->irq);
return;
}
#endif
/**
* rx_intr_handler - Rx interrupt handler
* @ring_info: per ring structure.
* @budget: budget for napi processing.
* Description:
* If the interrupt is because of a received frame or if the
* receive ring contains fresh as yet un-processed frames,this function is
* called. It picks out the RxD at which place the last Rx processing had
* stopped and sends the skb to the OSM's Rx handler and then increments
* the offset.
* Return Value:
* No. of napi packets processed.
*/
static int rx_intr_handler(struct ring_info *ring_data, int budget)
{
int get_block, put_block;
struct rx_curr_get_info get_info, put_info;
struct RxD_t *rxdp;
struct sk_buff *skb;
int pkt_cnt = 0, napi_pkts = 0;
int i;
struct RxD1* rxdp1;
struct RxD3* rxdp3;
get_info = ring_data->rx_curr_get_info;
get_block = get_info.block_index;
memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
put_block = put_info.block_index;
rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
while (RXD_IS_UP2DT(rxdp)) {
/*
* If your are next to put index then it's
* FIFO full condition
*/
if ((get_block == put_block) &&
(get_info.offset + 1) == put_info.offset) {
DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
ring_data->dev->name);
break;
}
skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
ring_data->dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
return 0;
}
if (ring_data->rxd_mode == RXD_MODE_1) {
rxdp1 = (struct RxD1*)rxdp;
pci_unmap_single(ring_data->pdev, (dma_addr_t)
rxdp1->Buffer0_ptr,
ring_data->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
} else if (ring_data->rxd_mode == RXD_MODE_3B) {
rxdp3 = (struct RxD3*)rxdp;
pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
rxdp3->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(ring_data->pdev, (dma_addr_t)
rxdp3->Buffer2_ptr,
ring_data->mtu + 4,
PCI_DMA_FROMDEVICE);
}
prefetch(skb->data);
rx_osm_handler(ring_data, rxdp);
get_info.offset++;
ring_data->rx_curr_get_info.offset = get_info.offset;
rxdp = ring_data->rx_blocks[get_block].
rxds[get_info.offset].virt_addr;
if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
get_info.offset = 0;
ring_data->rx_curr_get_info.offset = get_info.offset;
get_block++;
if (get_block == ring_data->block_count)
get_block = 0;
ring_data->rx_curr_get_info.block_index = get_block;
rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
}
if (ring_data->nic->config.napi) {
budget--;
napi_pkts++;
if (!budget)
break;
}
pkt_cnt++;
if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
break;
}
if (ring_data->lro) {
/* Clear all LRO sessions before exiting */
for (i=0; i<MAX_LRO_SESSIONS; i++) {
struct lro *lro = &ring_data->lro0_n[i];
if (lro->in_use) {
update_L3L4_header(ring_data->nic, lro);
queue_rx_frame(lro->parent, lro->vlan_tag);
clear_lro_session(lro);
}
}
}
return(napi_pkts);
}
/**
* tx_intr_handler - Transmit interrupt handler
* @nic : device private variable
* Description:
* If an interrupt was raised to indicate DMA complete of the
* Tx packet, this function is called. It identifies the last TxD
* whose buffer was freed and frees all skbs whose data have already
* DMA'ed into the NICs internal memory.
* Return Value:
* NONE
*/
static void tx_intr_handler(struct fifo_info *fifo_data)
{
struct s2io_nic *nic = fifo_data->nic;
struct tx_curr_get_info get_info, put_info;
struct sk_buff *skb = NULL;
struct TxD *txdlp;
int pkt_cnt = 0;
unsigned long flags = 0;
u8 err_mask;
if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
return;
get_info = fifo_data->tx_curr_get_info;
memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
list_virt_addr;
while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
(get_info.offset != put_info.offset) &&
(txdlp->Host_Control)) {
/* Check for TxD errors */
if (txdlp->Control_1 & TXD_T_CODE) {
unsigned long long err;
err = txdlp->Control_1 & TXD_T_CODE;
if (err & 0x1) {
nic->mac_control.stats_info->sw_stat.
parity_err_cnt++;
}
/* update t_code statistics */
err_mask = err >> 48;
switch(err_mask) {
case 2:
nic->mac_control.stats_info->sw_stat.
tx_buf_abort_cnt++;
break;
case 3:
nic->mac_control.stats_info->sw_stat.
tx_desc_abort_cnt++;
break;
case 7:
nic->mac_control.stats_info->sw_stat.
tx_parity_err_cnt++;
break;
case 10:
nic->mac_control.stats_info->sw_stat.
tx_link_loss_cnt++;
break;
case 15:
nic->mac_control.stats_info->sw_stat.
tx_list_proc_err_cnt++;
break;
}
}
skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
if (skb == NULL) {
spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
DBG_PRINT(ERR_DBG, "%s: Null skb ",
__func__);
DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
return;
}
pkt_cnt++;
/* Updating the statistics block */
nic->dev->stats.tx_bytes += skb->len;
nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
dev_kfree_skb_irq(skb);
get_info.offset++;
if (get_info.offset == get_info.fifo_len + 1)
get_info.offset = 0;
txdlp = (struct TxD *) fifo_data->list_info
[get_info.offset].list_virt_addr;
fifo_data->tx_curr_get_info.offset =
get_info.offset;
}
s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
}
/**
* s2io_mdio_write - Function to write in to MDIO registers
* @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
* @addr : address value
* @value : data value
* @dev : pointer to net_device structure
* Description:
* This function is used to write values to the MDIO registers
* NONE
*/
static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
{
u64 val64 = 0x0;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
//address transaction
val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
| MDIO_MMD_DEV_ADDR(mmd_type)
| MDIO_MMS_PRT_ADDR(0x0);
writeq(val64, &bar0->mdio_control);
val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
writeq(val64, &bar0->mdio_control);
udelay(100);
//Data transaction
val64 = 0x0;
val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
| MDIO_MMD_DEV_ADDR(mmd_type)
| MDIO_MMS_PRT_ADDR(0x0)
| MDIO_MDIO_DATA(value)
| MDIO_OP(MDIO_OP_WRITE_TRANS);
writeq(val64, &bar0->mdio_control);
val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
writeq(val64, &bar0->mdio_control);
udelay(100);
val64 = 0x0;
val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
| MDIO_MMD_DEV_ADDR(mmd_type)
| MDIO_MMS_PRT_ADDR(0x0)
| MDIO_OP(MDIO_OP_READ_TRANS);
writeq(val64, &bar0->mdio_control);
val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
writeq(val64, &bar0->mdio_control);
udelay(100);
}
/**
* s2io_mdio_read - Function to write in to MDIO registers
* @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
* @addr : address value
* @dev : pointer to net_device structure
* Description:
* This function is used to read values to the MDIO registers
* NONE
*/
static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
{
u64 val64 = 0x0;
u64 rval64 = 0x0;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
/* address transaction */
val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
| MDIO_MMD_DEV_ADDR(mmd_type)
| MDIO_MMS_PRT_ADDR(0x0);
writeq(val64, &bar0->mdio_control);
val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
writeq(val64, &bar0->mdio_control);
udelay(100);
/* Data transaction */
val64 = 0x0;
val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
| MDIO_MMD_DEV_ADDR(mmd_type)
| MDIO_MMS_PRT_ADDR(0x0)
| MDIO_OP(MDIO_OP_READ_TRANS);
writeq(val64, &bar0->mdio_control);
val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
writeq(val64, &bar0->mdio_control);
udelay(100);
/* Read the value from regs */
rval64 = readq(&bar0->mdio_control);
rval64 = rval64 & 0xFFFF0000;
rval64 = rval64 >> 16;
return rval64;
}
/**
* s2io_chk_xpak_counter - Function to check the status of the xpak counters
* @counter : couter value to be updated
* @flag : flag to indicate the status
* @type : counter type
* Description:
* This function is to check the status of the xpak counters value
* NONE
*/
static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
{
u64 mask = 0x3;
u64 val64;
int i;
for(i = 0; i <index; i++)
mask = mask << 0x2;
if(flag > 0)
{
*counter = *counter + 1;
val64 = *regs_stat & mask;
val64 = val64 >> (index * 0x2);
val64 = val64 + 1;
if(val64 == 3)
{
switch(type)
{
case 1:
DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
"service. Excessive temperatures may "
"result in premature transceiver "
"failure \n");
break;
case 2:
DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
"service Excessive bias currents may "
"indicate imminent laser diode "
"failure \n");
break;
case 3:
DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
"service Excessive laser output "
"power may saturate far-end "
"receiver\n");
break;
default:
DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
"type \n");
}
val64 = 0x0;
}
val64 = val64 << (index * 0x2);
*regs_stat = (*regs_stat & (~mask)) | (val64);
} else {
*regs_stat = *regs_stat & (~mask);
}
}
/**
* s2io_updt_xpak_counter - Function to update the xpak counters
* @dev : pointer to net_device struct
* Description:
* This function is to upate the status of the xpak counters value
* NONE
*/
static void s2io_updt_xpak_counter(struct net_device *dev)
{
u16 flag = 0x0;
u16 type = 0x0;
u16 val16 = 0x0;
u64 val64 = 0x0;
u64 addr = 0x0;
struct s2io_nic *sp = netdev_priv(dev);
struct stat_block *stat_info = sp->mac_control.stats_info;
/* Check the communication with the MDIO slave */
addr = MDIO_CTRL1;
val64 = 0x0;
val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
if((val64 == 0xFFFF) || (val64 == 0x0000))
{
DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
"Returned %llx\n", (unsigned long long)val64);
return;
}
/* Check for the expected value of control reg 1 */
if(val64 != MDIO_CTRL1_SPEED10G)
{
DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
(unsigned long long)val64, MDIO_CTRL1_SPEED10G);
return;
}
/* Loading the DOM register to MDIO register */
addr = 0xA100;
s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
/* Reading the Alarm flags */
addr = 0xA070;
val64 = 0x0;
val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
flag = CHECKBIT(val64, 0x7);
type = 1;
s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
&stat_info->xpak_stat.xpak_regs_stat,
0x0, flag, type);
if(CHECKBIT(val64, 0x6))
stat_info->xpak_stat.alarm_transceiver_temp_low++;
flag = CHECKBIT(val64, 0x3);
type = 2;
s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
&stat_info->xpak_stat.xpak_regs_stat,
0x2, flag, type);
if(CHECKBIT(val64, 0x2))
stat_info->xpak_stat.alarm_laser_bias_current_low++;
flag = CHECKBIT(val64, 0x1);
type = 3;
s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
&stat_info->xpak_stat.xpak_regs_stat,
0x4, flag, type);
if(CHECKBIT(val64, 0x0))
stat_info->xpak_stat.alarm_laser_output_power_low++;
/* Reading the Warning flags */
addr = 0xA074;
val64 = 0x0;
val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
if(CHECKBIT(val64, 0x7))
stat_info->xpak_stat.warn_transceiver_temp_high++;
if(CHECKBIT(val64, 0x6))
stat_info->xpak_stat.warn_transceiver_temp_low++;
if(CHECKBIT(val64, 0x3))
stat_info->xpak_stat.warn_laser_bias_current_high++;
if(CHECKBIT(val64, 0x2))
stat_info->xpak_stat.warn_laser_bias_current_low++;
if(CHECKBIT(val64, 0x1))
stat_info->xpak_stat.warn_laser_output_power_high++;
if(CHECKBIT(val64, 0x0))
stat_info->xpak_stat.warn_laser_output_power_low++;
}
/**
* wait_for_cmd_complete - waits for a command to complete.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description: Function that waits for a command to Write into RMAC
* ADDR DATA registers to be completed and returns either success or
* error depending on whether the command was complete or not.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
int bit_state)
{
int ret = FAILURE, cnt = 0, delay = 1;
u64 val64;
if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
return FAILURE;
do {
val64 = readq(addr);
if (bit_state == S2IO_BIT_RESET) {
if (!(val64 & busy_bit)) {
ret = SUCCESS;
break;
}
} else {
if (!(val64 & busy_bit)) {
ret = SUCCESS;
break;
}
}
if(in_interrupt())
mdelay(delay);
else
msleep(delay);
if (++cnt >= 10)
delay = 50;
} while (cnt < 20);
return ret;
}
/*
* check_pci_device_id - Checks if the device id is supported
* @id : device id
* Description: Function to check if the pci device id is supported by driver.
* Return value: Actual device id if supported else PCI_ANY_ID
*/
static u16 check_pci_device_id(u16 id)
{
switch (id) {
case PCI_DEVICE_ID_HERC_WIN:
case PCI_DEVICE_ID_HERC_UNI:
return XFRAME_II_DEVICE;
case PCI_DEVICE_ID_S2IO_UNI:
case PCI_DEVICE_ID_S2IO_WIN:
return XFRAME_I_DEVICE;
default:
return PCI_ANY_ID;
}
}
/**
* s2io_reset - Resets the card.
* @sp : private member of the device structure.
* Description: Function to Reset the card. This function then also
* restores the previously saved PCI configuration space registers as
* the card reset also resets the configuration space.
* Return value:
* void.
*/
static void s2io_reset(struct s2io_nic * sp)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
u16 subid, pci_cmd;
int i;
u16 val16;
unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
__func__, sp->dev->name);
/* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
val64 = SW_RESET_ALL;
writeq(val64, &bar0->sw_reset);
if (strstr(sp->product_name, "CX4")) {
msleep(750);
}
msleep(250);
for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
/* Restore the PCI state saved during initialization. */
pci_restore_state(sp->pdev);
pci_read_config_word(sp->pdev, 0x2, &val16);
if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
break;
msleep(200);
}
if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
}
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
s2io_init_pci(sp);
/* Set swapper to enable I/O register access */
s2io_set_swapper(sp);
/* restore mac_addr entries */
do_s2io_restore_unicast_mc(sp);
/* Restore the MSIX table entries from local variables */
restore_xmsi_data(sp);
/* Clear certain PCI/PCI-X fields after reset */
if (sp->device_type == XFRAME_II_DEVICE) {
/* Clear "detected parity error" bit */
pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
/* Clearing PCIX Ecc status register */
pci_write_config_dword(sp->pdev, 0x68, 0x7C);
/* Clearing PCI_STATUS error reflected here */
writeq(s2BIT(62), &bar0->txpic_int_reg);
}
/* Reset device statistics maintained by OS */
memset(&sp->stats, 0, sizeof (struct net_device_stats));
up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
/* save link up/down time/cnt, reset/memory/watchdog cnt */
memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
/* restore link up/down time/cnt, reset/memory/watchdog cnt */
sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
/* SXE-002: Configure link and activity LED to turn it off */
subid = sp->pdev->subsystem_device;
if (((subid & 0xFF) >= 0x07) &&
(sp->device_type == XFRAME_I_DEVICE)) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *)bar0 + 0x2700);
}
/*
* Clear spurious ECC interrupts that would have occured on
* XFRAME II cards after reset.
*/
if (sp->device_type == XFRAME_II_DEVICE) {
val64 = readq(&bar0->pcc_err_reg);
writeq(val64, &bar0->pcc_err_reg);
}
sp->device_enabled_once = FALSE;
}
/**
* s2io_set_swapper - to set the swapper controle on the card
* @sp : private member of the device structure,
* pointer to the s2io_nic structure.
* Description: Function to set the swapper control on the card
* correctly depending on the 'endianness' of the system.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int s2io_set_swapper(struct s2io_nic * sp)
{
struct net_device *dev = sp->dev;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64, valt, valr;
/*
* Set proper endian settings and verify the same by reading
* the PIF Feed-back register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
int i = 0;
u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
0x8100008181000081ULL, /* FE=1, SE=0 */
0x4200004242000042ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq(value[i], &bar0->swapper_ctrl);
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 == 0x0123456789ABCDEFULL)
break;
i++;
}
if (i == 4) {
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
valr = value[i];
} else {
valr = readq(&bar0->swapper_ctrl);
}
valt = 0x0123456789ABCDEFULL;
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 != valt) {
int i = 0;
u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
0x0081810000818100ULL, /* FE=1, SE=0 */
0x0042420000424200ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq((value[i] | valr), &bar0->swapper_ctrl);
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 == valt)
break;
i++;
}
if(i == 4) {
unsigned long long x = val64;
DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
return FAILURE;
}
}
val64 = readq(&bar0->swapper_ctrl);
val64 &= 0xFFFF000000000000ULL;
#ifdef __BIG_ENDIAN
/*
* The device by default set to a big endian format, so a
* big endian driver need not set anything.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
if (sp->config.intr_type == INTA)
val64 |= SWAPPER_CTRL_XMSI_SE;
writeq(val64, &bar0->swapper_ctrl);
#else
/*
* Initially we enable all bits to make it accessible by the
* driver, then we selectively enable only those bits that
* we want to set.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_R_SE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXD_W_SE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_R_SE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXD_W_SE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
if (sp->config.intr_type == INTA)
val64 |= SWAPPER_CTRL_XMSI_SE;
writeq(val64, &bar0->swapper_ctrl);
#endif
val64 = readq(&bar0->swapper_ctrl);
/*
* Verifying if endian settings are accurate by reading a
* feedback register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
/* Endian settings are incorrect, calls for another dekko. */
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
return SUCCESS;
}
static int wait_for_msix_trans(struct s2io_nic *nic, int i)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
u64 val64;
int ret = 0, cnt = 0;
do {
val64 = readq(&bar0->xmsi_access);
if (!(val64 & s2BIT(15)))
break;
mdelay(1);
cnt++;
} while(cnt < 5);
if (cnt == 5) {
DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
ret = 1;
}
return ret;
}
static void restore_xmsi_data(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
u64 val64;
int i, msix_index;
if (nic->device_type == XFRAME_I_DEVICE)
return;
for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
msix_index = (i) ? ((i-1) * 8 + 1): 0;
writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
writeq(nic->msix_info[i].data, &bar0->xmsi_data);
val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
writeq(val64, &bar0->xmsi_access);
if (wait_for_msix_trans(nic, msix_index)) {
DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
continue;
}
}
}
static void store_xmsi_data(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
u64 val64, addr, data;
int i, msix_index;
if (nic->device_type == XFRAME_I_DEVICE)
return;
/* Store and display */
for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
msix_index = (i) ? ((i-1) * 8 + 1): 0;
val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
writeq(val64, &bar0->xmsi_access);
if (wait_for_msix_trans(nic, msix_index)) {
DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
continue;
}
addr = readq(&bar0->xmsi_address);
data = readq(&bar0->xmsi_data);
if (addr && data) {
nic->msix_info[i].addr = addr;
nic->msix_info[i].data = data;
}
}
}
static int s2io_enable_msi_x(struct s2io_nic *nic)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
u64 rx_mat;
u16 msi_control; /* Temp variable */
int ret, i, j, msix_indx = 1;
nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
GFP_KERNEL);
if (!nic->entries) {
DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
__func__);
nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
return -ENOMEM;
}
nic->mac_control.stats_info->sw_stat.mem_allocated
+= (nic->num_entries * sizeof(struct msix_entry));
memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
nic->s2io_entries =
kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
GFP_KERNEL);
if (!nic->s2io_entries) {
DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
__func__);
nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
kfree(nic->entries);
nic->mac_control.stats_info->sw_stat.mem_freed
+= (nic->num_entries * sizeof(struct msix_entry));
return -ENOMEM;
}
nic->mac_control.stats_info->sw_stat.mem_allocated
+= (nic->num_entries * sizeof(struct s2io_msix_entry));
memset(nic->s2io_entries, 0,
nic->num_entries * sizeof(struct s2io_msix_entry));
nic->entries[0].entry = 0;
nic->s2io_entries[0].entry = 0;
nic->s2io_entries[0].in_use = MSIX_FLG;
nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
nic->s2io_entries[0].arg = &nic->mac_control.fifos;
for (i = 1; i < nic->num_entries; i++) {
nic->entries[i].entry = ((i - 1) * 8) + 1;
nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
nic->s2io_entries[i].arg = NULL;
nic->s2io_entries[i].in_use = 0;
}
rx_mat = readq(&bar0->rx_mat);
for (j = 0; j < nic->config.rx_ring_num; j++) {
rx_mat |= RX_MAT_SET(j, msix_indx);
nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
nic->s2io_entries[j+1].in_use = MSIX_FLG;
msix_indx += 8;
}
writeq(rx_mat, &bar0->rx_mat);
readq(&bar0->rx_mat);
ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
/* We fail init if error or we get less vectors than min required */
if (ret) {
DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
kfree(nic->entries);
nic->mac_control.stats_info->sw_stat.mem_freed
+= (nic->num_entries * sizeof(struct msix_entry));
kfree(nic->s2io_entries);
nic->mac_control.stats_info->sw_stat.mem_freed
+= (nic->num_entries * sizeof(struct s2io_msix_entry));
nic->entries = NULL;
nic->s2io_entries = NULL;
return -ENOMEM;
}
/*
* To enable MSI-X, MSI also needs to be enabled, due to a bug
* in the herc NIC. (Temp change, needs to be removed later)
*/
pci_read_config_word(nic->pdev, 0x42, &msi_control);
msi_control |= 0x1; /* Enable MSI */
pci_write_config_word(nic->pdev, 0x42, msi_control);
return 0;
}
/* Handle software interrupt used during MSI(X) test */
static irqreturn_t s2io_test_intr(int irq, void *dev_id)
{
struct s2io_nic *sp = dev_id;
sp->msi_detected = 1;
wake_up(&sp->msi_wait);
return IRQ_HANDLED;
}
/* Test interrupt path by forcing a a software IRQ */
static int s2io_test_msi(struct s2io_nic *sp)
{
struct pci_dev *pdev = sp->pdev;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
int err;
u64 val64, saved64;
err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
sp->name, sp);
if (err) {
DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
sp->dev->name, pci_name(pdev), pdev->irq);
return err;
}
init_waitqueue_head (&sp->msi_wait);
sp->msi_detected = 0;
saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
val64 |= SCHED_INT_CTRL_ONE_SHOT;
val64 |= SCHED_INT_CTRL_TIMER_EN;
val64 |= SCHED_INT_CTRL_INT2MSI(1);
writeq(val64, &bar0->scheduled_int_ctrl);
wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
if (!sp->msi_detected) {
/* MSI(X) test failed, go back to INTx mode */
DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
"using MSI(X) during test\n", sp->dev->name,
pci_name(pdev));
err = -EOPNOTSUPP;
}
free_irq(sp->entries[1].vector, sp);
writeq(saved64, &bar0->scheduled_int_ctrl);
return err;
}
static void remove_msix_isr(struct s2io_nic *sp)
{
int i;
u16 msi_control;
for (i = 0; i < sp->num_entries; i++) {
if (sp->s2io_entries[i].in_use ==
MSIX_REGISTERED_SUCCESS) {
int vector = sp->entries[i].vector;
void *arg = sp->s2io_entries[i].arg;
free_irq(vector, arg);
}
}
kfree(sp->entries);
kfree(sp->s2io_entries);
sp->entries = NULL;
sp->s2io_entries = NULL;
pci_read_config_word(sp->pdev, 0x42, &msi_control);
msi_control &= 0xFFFE; /* Disable MSI */
pci_write_config_word(sp->pdev, 0x42, msi_control);
pci_disable_msix(sp->pdev);
}
static void remove_inta_isr(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
free_irq(sp->pdev->irq, dev);
}
/* ********************************************************* *
* Functions defined below concern the OS part of the driver *
* ********************************************************* */
/**
* s2io_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver. It mainly calls a
* function to allocate Rx buffers and inserts them into the buffer
* descriptors and then enables the Rx part of the NIC.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_open(struct net_device *dev)
{
struct s2io_nic *sp = netdev_priv(dev);
int err = 0;
/*
* Make sure you have link off by default every time
* Nic is initialized
*/
netif_carrier_off(dev);
sp->last_link_state = 0;
/* Initialize H/W and enable interrupts */
err = s2io_card_up(sp);
if (err) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
goto hw_init_failed;
}
if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
s2io_card_down(sp);
err = -ENODEV;
goto hw_init_failed;
}
s2io_start_all_tx_queue(sp);
return 0;
hw_init_failed:
if (sp->config.intr_type == MSI_X) {
if (sp->entries) {
kfree(sp->entries);
sp->mac_control.stats_info->sw_stat.mem_freed
+= (sp->num_entries * sizeof(struct msix_entry));
}
if (sp->s2io_entries) {
kfree(sp->s2io_entries);
sp->mac_control.stats_info->sw_stat.mem_freed
+= (sp->num_entries * sizeof(struct s2io_msix_entry));
}
}
return err;
}
/**
* s2io_close -close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver. It needs to undo exactly
* whatever was done by the open entry point,thus it's usually referred to
* as the close function.Among other things this function mainly stops the
* Rx side of the NIC and frees all the Rx buffers in the Rx rings.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_close(struct net_device *dev)
{
struct s2io_nic *sp = netdev_priv(dev);
struct config_param *config = &sp->config;
u64 tmp64;
int offset;
/* Return if the device is already closed *
* Can happen when s2io_card_up failed in change_mtu *
*/
if (!is_s2io_card_up(sp))
return 0;
s2io_stop_all_tx_queue(sp);
/* delete all populated mac entries */
for (offset = 1; offset < config->max_mc_addr; offset++) {
tmp64 = do_s2io_read_unicast_mc(sp, offset);
if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
do_s2io_delete_unicast_mc(sp, tmp64);
}
s2io_card_down(sp);
return 0;
}
/**
* s2io_xmit - Tx entry point of te driver
* @skb : the socket buffer containing the Tx data.
* @dev : device pointer.
* Description :
* This function is the Tx entry point of the driver. S2IO NIC supports
* certain protocol assist features on Tx side, namely CSO, S/G, LSO.
* NOTE: when device cant queue the pkt,just the trans_start variable will
* not be upadted.
* Return value:
* 0 on success & 1 on failure.
*/
static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct s2io_nic *sp = netdev_priv(dev);
u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
register u64 val64;
struct TxD *txdp;
struct TxFIFO_element __iomem *tx_fifo;
unsigned long flags = 0;
u16 vlan_tag = 0;
struct fifo_info *fifo = NULL;
struct mac_info *mac_control;
struct config_param *config;
int do_spin_lock = 1;
int offload_type;
int enable_per_list_interrupt = 0;
struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
mac_control = &sp->mac_control;
config = &sp->config;
DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
if (unlikely(skb->len <= 0)) {
DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
dev_kfree_skb_any(skb);
return 0;
}
if (!is_s2io_card_up(sp)) {
DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
dev->name);
dev_kfree_skb(skb);
return 0;
}
queue = 0;
if (sp->vlgrp && vlan_tx_tag_present(skb))
vlan_tag = vlan_tx_tag_get(skb);
if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip;
struct tcphdr *th;
ip = ip_hdr(skb);
if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
th = (struct tcphdr *)(((unsigned char *)ip) +
ip->ihl*4);
if (ip->protocol == IPPROTO_TCP) {
queue_len = sp->total_tcp_fifos;
queue = (ntohs(th->source) +
ntohs(th->dest)) &
sp->fifo_selector[queue_len - 1];
if (queue >= queue_len)
queue = queue_len - 1;
} else if (ip->protocol == IPPROTO_UDP) {
queue_len = sp->total_udp_fifos;
queue = (ntohs(th->source) +
ntohs(th->dest)) &
sp->fifo_selector[queue_len - 1];
if (queue >= queue_len)
queue = queue_len - 1;
queue += sp->udp_fifo_idx;
if (skb->len > 1024)
enable_per_list_interrupt = 1;
do_spin_lock = 0;
}
}
}
} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
/* get fifo number based on skb->priority value */
queue = config->fifo_mapping
[skb->priority & (MAX_TX_FIFOS - 1)];
fifo = &mac_control->fifos[queue];
if (do_spin_lock)
spin_lock_irqsave(&fifo->tx_lock, flags);
else {
if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
return NETDEV_TX_LOCKED;
}
if (sp->config.multiq) {
if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return NETDEV_TX_BUSY;
}
} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
if (netif_queue_stopped(dev)) {
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return NETDEV_TX_BUSY;
}
}
put_off = (u16) fifo->tx_curr_put_info.offset;
get_off = (u16) fifo->tx_curr_get_info.offset;
txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
queue_len = fifo->tx_curr_put_info.fifo_len + 1;
/* Avoid "put" pointer going beyond "get" pointer */
if (txdp->Host_Control ||
((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
s2io_stop_tx_queue(sp, fifo->fifo_no);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return 0;
}
offload_type = s2io_offload_type(skb);
if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
txdp->Control_1 |= TXD_TCP_LSO_EN;
txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
txdp->Control_2 |=
(TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
TXD_TX_CKO_UDP_EN);
}
txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
txdp->Control_1 |= TXD_LIST_OWN_XENA;
txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
if (enable_per_list_interrupt)
if (put_off & (queue_len >> 5))
txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
if (vlan_tag) {
txdp->Control_2 |= TXD_VLAN_ENABLE;
txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
}
frg_len = skb->len - skb->data_len;
if (offload_type == SKB_GSO_UDP) {
int ufo_size;
ufo_size = s2io_udp_mss(skb);
ufo_size &= ~7;
txdp->Control_1 |= TXD_UFO_EN;
txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
#ifdef __BIG_ENDIAN
/* both variants do cpu_to_be64(be32_to_cpu(...)) */
fifo->ufo_in_band_v[put_off] =
(__force u64)skb_shinfo(skb)->ip6_frag_id;
#else
fifo->ufo_in_band_v[put_off] =
(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
#endif
txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
txdp->Buffer_Pointer = pci_map_single(sp->pdev,
fifo->ufo_in_band_v,
sizeof(u64), PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
goto pci_map_failed;
txdp++;
}
txdp->Buffer_Pointer = pci_map_single
(sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
goto pci_map_failed;
txdp->Host_Control = (unsigned long) skb;
txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
if (offload_type == SKB_GSO_UDP)
txdp->Control_1 |= TXD_UFO_EN;
frg_cnt = skb_shinfo(skb)->nr_frags;
/* For fragmented SKB. */
for (i = 0; i < frg_cnt; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
/* A '0' length fragment will be ignored */
if (!frag->size)
continue;
txdp++;
txdp->Buffer_Pointer = (u64) pci_map_page
(sp->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
if (offload_type == SKB_GSO_UDP)
txdp->Control_1 |= TXD_UFO_EN;
}
txdp->Control_1 |= TXD_GATHER_CODE_LAST;
if (offload_type == SKB_GSO_UDP)
frg_cnt++; /* as Txd0 was used for inband header */
tx_fifo = mac_control->tx_FIFO_start[queue];
val64 = fifo->list_info[put_off].list_phy_addr;
writeq(val64, &tx_fifo->TxDL_Pointer);
val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
TX_FIFO_LAST_LIST);
if (offload_type)
val64 |= TX_FIFO_SPECIAL_FUNC;
writeq(val64, &tx_fifo->List_Control);
mmiowb();
put_off++;
if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
put_off = 0;
fifo->tx_curr_put_info.offset = put_off;
/* Avoid "put" pointer going beyond "get" pointer */
if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
DBG_PRINT(TX_DBG,
"No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
put_off, get_off);
s2io_stop_tx_queue(sp, fifo->fifo_no);
}
mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
spin_unlock_irqrestore(&fifo->tx_lock, flags);
if (sp->config.intr_type == MSI_X)
tx_intr_handler(fifo);
return 0;
pci_map_failed:
stats->pci_map_fail_cnt++;
s2io_stop_tx_queue(sp, fifo->fifo_no);
stats->mem_freed += skb->truesize;
dev_kfree_skb(skb);
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return 0;
}
static void
s2io_alarm_handle(unsigned long data)
{
struct s2io_nic *sp = (struct s2io_nic *)data;
struct net_device *dev = sp->dev;
s2io_handle_errors(dev);
mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
}
static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
{
struct ring_info *ring = (struct ring_info *)dev_id;
struct s2io_nic *sp = ring->nic;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
if (unlikely(!is_s2io_card_up(sp)))
return IRQ_HANDLED;
if (sp->config.napi) {
u8 __iomem *addr = NULL;
u8 val8 = 0;
addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
addr += (7 - ring->ring_no);
val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
writeb(val8, addr);
val8 = readb(addr);
napi_schedule(&ring->napi);
} else {
rx_intr_handler(ring, 0);
s2io_chk_rx_buffers(sp, ring);
}
return IRQ_HANDLED;
}
static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
{
int i;
struct fifo_info *fifos = (struct fifo_info *)dev_id;
struct s2io_nic *sp = fifos->nic;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
struct config_param *config = &sp->config;
u64 reason;
if (unlikely(!is_s2io_card_up(sp)))
return IRQ_NONE;
reason = readq(&bar0->general_int_status);
if (unlikely(reason == S2IO_MINUS_ONE))
/* Nothing much can be done. Get out */
return IRQ_HANDLED;
if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
if (reason & GEN_INTR_TXPIC)
s2io_txpic_intr_handle(sp);
if (reason & GEN_INTR_TXTRAFFIC)
writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
for (i = 0; i < config->tx_fifo_num; i++)
tx_intr_handler(&fifos[i]);
writeq(sp->general_int_mask, &bar0->general_int_mask);
readl(&bar0->general_int_status);
return IRQ_HANDLED;
}
/* The interrupt was not raised by us */
return IRQ_NONE;
}
static void s2io_txpic_intr_handle(struct s2io_nic *sp)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
val64 = readq(&bar0->pic_int_status);
if (val64 & PIC_INT_GPIO) {
val64 = readq(&bar0->gpio_int_reg);
if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
(val64 & GPIO_INT_REG_LINK_UP)) {
/*
* This is unstable state so clear both up/down
* interrupt and adapter to re-evaluate the link state.
*/
val64 |= GPIO_INT_REG_LINK_DOWN;
val64 |= GPIO_INT_REG_LINK_UP;
writeq(val64, &bar0->gpio_int_reg);
val64 = readq(&bar0->gpio_int_mask);
val64 &= ~(GPIO_INT_MASK_LINK_UP |
GPIO_INT_MASK_LINK_DOWN);
writeq(val64, &bar0->gpio_int_mask);
}
else if (val64 & GPIO_INT_REG_LINK_UP) {
val64 = readq(&bar0->adapter_status);
/* Enable Adapter */
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_CNTL_EN;
writeq(val64, &bar0->adapter_control);
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
if (!sp->device_enabled_once)
sp->device_enabled_once = 1;
s2io_link(sp, LINK_UP);
/*
* unmask link down interrupt and mask link-up
* intr
*/
val64 = readq(&bar0->gpio_int_mask);
val64 &= ~GPIO_INT_MASK_LINK_DOWN;
val64 |= GPIO_INT_MASK_LINK_UP;
writeq(val64, &bar0->gpio_int_mask);
}else if (val64 & GPIO_INT_REG_LINK_DOWN) {
val64 = readq(&bar0->adapter_status);
s2io_link(sp, LINK_DOWN);
/* Link is down so unmaks link up interrupt */
val64 = readq(&bar0->gpio_int_mask);
val64 &= ~GPIO_INT_MASK_LINK_UP;
val64 |= GPIO_INT_MASK_LINK_DOWN;
writeq(val64, &bar0->gpio_int_mask);
/* turn off LED */
val64 = readq(&bar0->adapter_control);
val64 = val64 &(~ADAPTER_LED_ON);
writeq(val64, &bar0->adapter_control);
}
}
val64 = readq(&bar0->gpio_int_mask);
}
/**
* do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
* @value: alarm bits
* @addr: address value
* @cnt: counter variable
* Description: Check for alarm and increment the counter
* Return Value:
* 1 - if alarm bit set
* 0 - if alarm bit is not set
*/
static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
unsigned long long *cnt)
{
u64 val64;
val64 = readq(addr);
if ( val64 & value ) {
writeq(val64, addr);
(*cnt)++;
return 1;
}
return 0;
}
/**
* s2io_handle_errors - Xframe error indication handler
* @nic: device private variable
* Description: Handle alarms such as loss of link, single or
* double ECC errors, critical and serious errors.
* Return Value:
* NONE
*/
static void s2io_handle_errors(void * dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 temp64 = 0,val64=0;
int i = 0;
struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
if (!is_s2io_card_up(sp))
return;
if (pci_channel_offline(sp->pdev))
return;
memset(&sw_stat->ring_full_cnt, 0,
sizeof(sw_stat->ring_full_cnt));
/* Handling the XPAK counters update */
if(stats->xpak_timer_count < 72000) {
/* waiting for an hour */
stats->xpak_timer_count++;
} else {
s2io_updt_xpak_counter(dev);
/* reset the count to zero */
stats->xpak_timer_count = 0;
}
/* Handling link status change error Intr */
if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
val64 = readq(&bar0->mac_rmac_err_reg);
writeq(val64, &bar0->mac_rmac_err_reg);
if (val64 & RMAC_LINK_STATE_CHANGE_INT)
schedule_work(&sp->set_link_task);
}
/* In case of a serious error, the device will be Reset. */
if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
&sw_stat->serious_err_cnt))
goto reset;
/* Check for data parity error */
if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
&sw_stat->parity_err_cnt))
goto reset;
/* Check for ring full counter */
if (sp->device_type == XFRAME_II_DEVICE) {
val64 = readq(&bar0->ring_bump_counter1);
for (i=0; i<4; i++) {
temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
temp64 >>= 64 - ((i+1)*16);
sw_stat->ring_full_cnt[i] += temp64;
}
val64 = readq(&bar0->ring_bump_counter2);
for (i=0; i<4; i++) {
temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
temp64 >>= 64 - ((i+1)*16);
sw_stat->ring_full_cnt[i+4] += temp64;
}
}
val64 = readq(&bar0->txdma_int_status);
/*check for pfc_err*/
if (val64 & TXDMA_PFC_INT) {
if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
PFC_MISC_0_ERR | PFC_MISC_1_ERR|
PFC_PCIX_ERR, &bar0->pfc_err_reg,
&sw_stat->pfc_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
&sw_stat->pfc_err_cnt);
}
/*check for tda_err*/
if (val64 & TXDMA_TDA_INT) {
if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
&sw_stat->tda_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
&bar0->tda_err_reg, &sw_stat->tda_err_cnt);
}
/*check for pcc_err*/
if (val64 & TXDMA_PCC_INT) {
if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
| PCC_N_SERR | PCC_6_COF_OV_ERR
| PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
| PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
&sw_stat->pcc_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
&bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
}
/*check for tti_err*/
if (val64 & TXDMA_TTI_INT) {
if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
&sw_stat->tti_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
&bar0->tti_err_reg, &sw_stat->tti_err_cnt);
}
/*check for lso_err*/
if (val64 & TXDMA_LSO_INT) {
if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
| LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
&bar0->lso_err_reg, &sw_stat->lso_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
&bar0->lso_err_reg, &sw_stat->lso_err_cnt);
}
/*check for tpa_err*/
if (val64 & TXDMA_TPA_INT) {
if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
&sw_stat->tpa_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
&sw_stat->tpa_err_cnt);
}
/*check for sm_err*/
if (val64 & TXDMA_SM_INT) {
if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
&sw_stat->sm_err_cnt))
goto reset;
}
val64 = readq(&bar0->mac_int_status);
if (val64 & MAC_INT_STATUS_TMAC_INT) {
if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
&bar0->mac_tmac_err_reg,
&sw_stat->mac_tmac_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
| TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
&bar0->mac_tmac_err_reg,
&sw_stat->mac_tmac_err_cnt);
}
val64 = readq(&bar0->xgxs_int_status);
if (val64 & XGXS_INT_STATUS_TXGXS) {
if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
&bar0->xgxs_txgxs_err_reg,
&sw_stat->xgxs_txgxs_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
&bar0->xgxs_txgxs_err_reg,
&sw_stat->xgxs_txgxs_err_cnt);
}
val64 = readq(&bar0->rxdma_int_status);
if (val64 & RXDMA_INT_RC_INT_M) {
if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
| RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
&bar0->rc_err_reg, &sw_stat->rc_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
| RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
&sw_stat->rc_err_cnt);
if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
| PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
&sw_stat->prc_pcix_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
&sw_stat->prc_pcix_err_cnt);
}
if (val64 & RXDMA_INT_RPA_INT_M) {
if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
&bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
&bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
}
if (val64 & RXDMA_INT_RDA_INT_M) {
if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
&bar0->rda_err_reg, &sw_stat->rda_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR | RDA_PCIX_ERR,
&bar0->rda_err_reg, &sw_stat->rda_err_cnt);
}
if (val64 & RXDMA_INT_RTI_INT_M) {
if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
&sw_stat->rti_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
&bar0->rti_err_reg, &sw_stat->rti_err_cnt);
}
val64 = readq(&bar0->mac_int_status);
if (val64 & MAC_INT_STATUS_RMAC_INT) {
if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
&bar0->mac_rmac_err_reg,
&sw_stat->mac_rmac_err_cnt))
goto reset;
do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
&sw_stat->mac_rmac_err_cnt);
}
val64 = readq(&bar0->xgxs_int_status);
if (val64 & XGXS_INT_STATUS_RXGXS) {
if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
&bar0->xgxs_rxgxs_err_reg,
&sw_stat->xgxs_rxgxs_err_cnt))
goto reset;
}
val64 = readq(&bar0->mc_int_status);
if(val64 & MC_INT_STATUS_MC_INT) {
if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
&sw_stat->mc_err_cnt))
goto reset;
/* Handling Ecc errors */
if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
writeq(val64, &bar0->mc_err_reg);
if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
sw_stat->double_ecc_errs++;
if (sp->device_type != XFRAME_II_DEVICE) {
/*
* Reset XframeI only if critical error
*/
if (val64 &
(MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
MC_ERR_REG_MIRI_ECC_DB_ERR_1))
goto reset;
}
} else
sw_stat->single_ecc_errs++;
}
}
return;
reset:
s2io_stop_all_tx_queue(sp);
schedule_work(&sp->rst_timer_task);
sw_stat->soft_reset_cnt++;
return;
}
/**
* s2io_isr - ISR handler of the device .
* @irq: the irq of the device.
* @dev_id: a void pointer to the dev structure of the NIC.
* Description: This function is the ISR handler of the device. It
* identifies the reason for the interrupt and calls the relevant
* service routines. As a contongency measure, this ISR allocates the
* recv buffers, if their numbers are below the panic value which is
* presently set to 25% of the original number of rcv buffers allocated.
* Return value:
* IRQ_HANDLED: will be returned if IRQ was handled by this routine
* IRQ_NONE: will be returned if interrupt is not from our device
*/
static irqreturn_t s2io_isr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
int i;
u64 reason = 0;
struct mac_info *mac_control;
struct config_param *config;
/* Pretend we handled any irq's from a disconnected card */
if (pci_channel_offline(sp->pdev))
return IRQ_NONE;
if (!is_s2io_card_up(sp))
return IRQ_NONE;
mac_control = &sp->mac_control;
config = &sp->config;
/*
* Identify the cause for interrupt and call the appropriate
* interrupt handler. Causes for the interrupt could be;
* 1. Rx of packet.
* 2. Tx complete.
* 3. Link down.
*/
reason = readq(&bar0->general_int_status);
if (unlikely(reason == S2IO_MINUS_ONE) ) {
/* Nothing much can be done. Get out */
return IRQ_HANDLED;
}
if (reason & (GEN_INTR_RXTRAFFIC |
GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
{
writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
if (config->napi) {
if (reason & GEN_INTR_RXTRAFFIC) {
napi_schedule(&sp->napi);
writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
readl(&bar0->rx_traffic_int);
}
} else {
/*
* rx_traffic_int reg is an R1 register, writing all 1's
* will ensure that the actual interrupt causing bit
* get's cleared and hence a read can be avoided.
*/
if (reason & GEN_INTR_RXTRAFFIC)
writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
for (i = 0; i < config->rx_ring_num; i++)
rx_intr_handler(&mac_control->rings[i], 0);
}
/*
* tx_traffic_int reg is an R1 register, writing all 1's
* will ensure that the actual interrupt causing bit get's
* cleared and hence a read can be avoided.
*/
if (reason & GEN_INTR_TXTRAFFIC)
writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
for (i = 0; i < config->tx_fifo_num; i++)
tx_intr_handler(&mac_control->fifos[i]);
if (reason & GEN_INTR_TXPIC)
s2io_txpic_intr_handle(sp);
/*
* Reallocate the buffers from the interrupt handler itself.
*/
if (!config->napi) {
for (i = 0; i < config->rx_ring_num; i++)
s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
}
writeq(sp->general_int_mask, &bar0->general_int_mask);
readl(&bar0->general_int_status);
return IRQ_HANDLED;
}
else if (!reason) {
/* The interrupt was not raised by us */
return IRQ_NONE;
}
return IRQ_HANDLED;
}
/**
* s2io_updt_stats -
*/
static void s2io_updt_stats(struct s2io_nic *sp)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
int cnt = 0;
if (is_s2io_card_up(sp)) {
/* Apprx 30us on a 133 MHz bus */
val64 = SET_UPDT_CLICKS(10) |
STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
writeq(val64, &bar0->stat_cfg);
do {
udelay(100);
val64 = readq(&bar0->stat_cfg);
if (!(val64 & s2BIT(0)))
break;
cnt++;
if (cnt == 5)
break; /* Updt failed */
} while(1);
}
}
/**
* s2io_get_stats - Updates the device statistics structure.
* @dev : pointer to the device structure.
* Description:
* This function updates the device statistics structure in the s2io_nic
* structure and returns a pointer to the same.
* Return value:
* pointer to the updated net_device_stats structure.
*/
static struct net_device_stats *s2io_get_stats(struct net_device *dev)
{
struct s2io_nic *sp = netdev_priv(dev);
struct mac_info *mac_control;
struct config_param *config;
int i;
mac_control = &sp->mac_control;
config = &sp->config;
/* Configure Stats for immediate updt */
s2io_updt_stats(sp);
/* Using sp->stats as a staging area, because reset (due to mtu
change, for example) will clear some hardware counters */
dev->stats.tx_packets +=
le32_to_cpu(mac_control->stats_info->tmac_frms) -
sp->stats.tx_packets;
sp->stats.tx_packets =
le32_to_cpu(mac_control->stats_info->tmac_frms);
dev->stats.tx_errors +=
le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
sp->stats.tx_errors;
sp->stats.tx_errors =
le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
dev->stats.rx_errors +=
le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
sp->stats.rx_errors;
sp->stats.rx_errors =
le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
dev->stats.multicast =
le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
sp->stats.multicast;
sp->stats.multicast =
le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
dev->stats.rx_length_errors =
le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
sp->stats.rx_length_errors;
sp->stats.rx_length_errors =
le64_to_cpu(mac_control->stats_info->rmac_long_frms);
/* collect per-ring rx_packets and rx_bytes */
dev->stats.rx_packets = dev->stats.rx_bytes = 0;
for (i = 0; i < config->rx_ring_num; i++) {
dev->stats.rx_packets += mac_control->rings[i].rx_packets;
dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
}
return (&dev->stats);
}
/**
* s2io_set_multicast - entry point for multicast address enable/disable.
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled. This also gets
* called to set/reset promiscuous mode. Depending on the deivce flag, we
* determine, if multicast address must be enabled or if promiscuous mode
* is to be disabled etc.
* Return value:
* void.
*/
static void s2io_set_multicast(struct net_device *dev)
{
int i, j, prev_cnt;
struct dev_mc_list *mclist;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
0xfeffffffffffULL;
u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
void __iomem *add;
struct config_param *config = &sp->config;
if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
/* Enable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET);
sp->m_cast_flg = 1;
sp->all_multi_pos = config->max_mc_addr - 1;
} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
/* Disable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET);
sp->m_cast_flg = 0;
sp->all_multi_pos = 0;
}
if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
/* Put the NIC into promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
if (vlan_tag_strip != 1) {
val64 = readq(&bar0->rx_pa_cfg);
val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
writeq(val64, &bar0->rx_pa_cfg);
sp->vlan_strip_flag = 0;
}
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 1;
DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
dev->name);
} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
/* Remove the NIC from promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
if (vlan_tag_strip != 0) {
val64 = readq(&bar0->rx_pa_cfg);
val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
writeq(val64, &bar0->rx_pa_cfg);
sp->vlan_strip_flag = 1;
}
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 0;
DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
dev->name);
}
/* Update individual M_CAST address list */
if ((!sp->m_cast_flg) && dev->mc_count) {
if (dev->mc_count >
(config->max_mc_addr - config->max_mac_addr)) {
DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
dev->name);
DBG_PRINT(ERR_DBG, "can be added, please enable ");
DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
return;
}
prev_cnt = sp->mc_addr_count;
sp->mc_addr_count = dev->mc_count;
/* Clear out the previous list of Mc in the H/W. */
for (i = 0; i < prev_cnt; i++) {
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(config->mc_start_offset + i);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
/* Create the new Rx filter list and update the same in H/W. */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
ETH_ALEN);
mac_addr = 0;
for (j = 0; j < ETH_ALEN; j++) {
mac_addr |= mclist->dmi_addr[j];
mac_addr <<= 8;
}
mac_addr >>= 8;
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(i + config->mc_start_offset);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
}
}
/* read from CAM unicast & multicast addresses and store it in
* def_mac_addr structure
*/
static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
{
int offset;
u64 mac_addr = 0x0;
struct config_param *config = &sp->config;
/* store unicast & multicast mac addresses */
for (offset = 0; offset < config->max_mc_addr; offset++) {
mac_addr = do_s2io_read_unicast_mc(sp, offset);
/* if read fails disable the entry */
if (mac_addr == FAILURE)
mac_addr = S2IO_DISABLE_MAC_ENTRY;
do_s2io_copy_mac_addr(sp, offset, mac_addr);
}
}
/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
{
int offset;
struct config_param *config = &sp->config;
/* restore unicast mac address */
for (offset = 0; offset < config->max_mac_addr; offset++)
do_s2io_prog_unicast(sp->dev,
sp->def_mac_addr[offset].mac_addr);
/* restore multicast mac address */
for (offset = config->mc_start_offset;
offset < config->max_mc_addr; offset++)
do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
}
/* add a multicast MAC address to CAM */
static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
{
int i;
u64 mac_addr = 0;
struct config_param *config = &sp->config;
for (i = 0; i < ETH_ALEN; i++) {
mac_addr <<= 8;
mac_addr |= addr[i];
}
if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
return SUCCESS;
/* check if the multicast mac already preset in CAM */
for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
u64 tmp64;
tmp64 = do_s2io_read_unicast_mc(sp, i);
if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
break;
if (tmp64 == mac_addr)
return SUCCESS;
}
if (i == config->max_mc_addr) {
DBG_PRINT(ERR_DBG,
"CAM full no space left for multicast MAC\n");
return FAILURE;
}
/* Update the internal structure with this new mac address */
do_s2io_copy_mac_addr(sp, i, mac_addr);
return (do_s2io_add_mac(sp, mac_addr, i));
}
/* add MAC address to CAM */
static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
{
u64 val64;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
&bar0->rmac_addr_data0_mem);
val64 =
RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(off);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET)) {
DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
return FAILURE;
}
return SUCCESS;
}
/* deletes a specified unicast/multicast mac entry from CAM */
static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
{
int offset;
u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
struct config_param *config = &sp->config;
for (offset = 1;
offset < config->max_mc_addr; offset++) {
tmp64 = do_s2io_read_unicast_mc(sp, offset);
if (tmp64 == addr) {
/* disable the entry by writing 0xffffffffffffULL */
if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
return FAILURE;
/* store the new mac list from CAM */
do_s2io_store_unicast_mc(sp);
return SUCCESS;
}
}
DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
(unsigned long long)addr);
return FAILURE;
}
/* read mac entries from CAM */
static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
{
u64 tmp64 = 0xffffffffffff0000ULL, val64;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
/* read mac addr */
val64 =
RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(offset);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
S2IO_BIT_RESET)) {
DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
return FAILURE;
}
tmp64 = readq(&bar0->rmac_addr_data0_mem);
return (tmp64 >> 16);
}
/**
* s2io_set_mac_addr driver entry point
*/
static int s2io_set_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* store the MAC address in CAM */
return (do_s2io_prog_unicast(dev, dev->dev_addr));
}
/**
* do_s2io_prog_unicast - Programs the Xframe mac address
* @dev : pointer to the device structure.
* @addr: a uchar pointer to the new mac address which is to be set.
* Description : This procedure will program the Xframe to receive
* frames with new Mac Address
* Return value: SUCCESS on success and an appropriate (-)ve integer
* as defined in errno.h file on failure.
*/
static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
{
struct s2io_nic *sp = netdev_priv(dev);
register u64 mac_addr = 0, perm_addr = 0;
int i;
u64 tmp64;
struct config_param *config = &sp->config;
/*
* Set the new MAC address as the new unicast filter and reflect this
* change on the device address registered with the OS. It will be
* at offset 0.
*/
for (i = 0; i < ETH_ALEN; i++) {
mac_addr <<= 8;
mac_addr |= addr[i];
perm_addr <<= 8;
perm_addr |= sp->def_mac_addr[0].mac_addr[i];
}
/* check if the dev_addr is different than perm_addr */
if (mac_addr == perm_addr)
return SUCCESS;
/* check if the mac already preset in CAM */
for (i = 1; i < config->max_mac_addr; i++) {
tmp64 = do_s2io_read_unicast_mc(sp, i);
if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
break;
if (tmp64 == mac_addr) {
DBG_PRINT(INFO_DBG,
"MAC addr:0x%llx already present in CAM\n",
(unsigned long long)mac_addr);
return SUCCESS;
}
}
if (i == config->max_mac_addr) {
DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
return FAILURE;
}
/* Update the internal structure with this new mac address */
do_s2io_copy_mac_addr(sp, i, mac_addr);
return (do_s2io_add_mac(sp, mac_addr, i));
}
/**
* s2io_ethtool_sset - Sets different link parameters.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @info: pointer to the structure with parameters given by ethtool to set
* link information.
* Description:
* The function sets different link parameters provided by the user onto
* the NIC.
* Return value:
* 0 on success.
*/
static int s2io_ethtool_sset(struct net_device *dev,
struct ethtool_cmd *info)
{
struct s2io_nic *sp = netdev_priv(dev);
if ((info->autoneg == AUTONEG_ENABLE) ||
(info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
return -EINVAL;
else {
s2io_close(sp->dev);
s2io_open(sp->dev);
}
return 0;
}
/**
* s2io_ethtol_gset - Return link specific information.
* @sp : private member of the device structure, pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool
* to return link information.
* Description:
* Returns link specific information like speed, duplex etc.. to ethtool.
* Return value :
* return 0 on success.
*/
static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
struct s2io_nic *sp = netdev_priv(dev);
info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->port = PORT_FIBRE;
/* info->transceiver */
info->transceiver = XCVR_EXTERNAL;
if (netif_carrier_ok(sp->dev)) {
info->speed = 10000;
info->duplex = DUPLEX_FULL;
} else {
info->speed = -1;
info->duplex = -1;
}
info->autoneg = AUTONEG_DISABLE;
return 0;
}
/**
* s2io_ethtool_gdrvinfo - Returns driver specific information.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool to
* return driver information.
* Description:
* Returns driver specefic information like name, version etc.. to ethtool.
* Return value:
* void
*/
static void s2io_ethtool_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct s2io_nic *sp = netdev_priv(dev);
strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
strncpy(info->version, s2io_driver_version, sizeof(info->version));
strncpy(info->fw_version, "", sizeof(info->fw_version));
strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
info->regdump_len = XENA_REG_SPACE;
info->eedump_len = XENA_EEPROM_SPACE;
}
/**
* s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
* @sp: private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @regs : pointer to the structure with parameters given by ethtool for
* dumping the registers.
* @reg_space: The input argumnet into which all the registers are dumped.
* Description:
* Dumps the entire register space of xFrame NIC into the user given
* buffer area.
* Return value :
* void .
*/
static void s2io_ethtool_gregs(struct net_device *dev,
struct ethtool_regs *regs, void *space)
{
int i;
u64 reg;
u8 *reg_space = (u8 *) space;
struct s2io_nic *sp = netdev_priv(dev);
regs->len = XENA_REG_SPACE;
regs->version = sp->pdev->subsystem_device;
for (i = 0; i < regs->len; i += 8) {
reg = readq(sp->bar0 + i);
memcpy((reg_space + i), &reg, 8);
}
}
/**
* s2io_phy_id - timer function that alternates adapter LED.
* @data : address of the private member of the device structure, which
* is a pointer to the s2io_nic structure, provided as an u32.
* Description: This is actually the timer function that alternates the
* adapter LED bit of the adapter control bit to set/reset every time on
* invocation. The timer is set for 1/2 a second, hence tha NIC blinks
* once every second.
*/
static void s2io_phy_id(unsigned long data)
{
struct s2io_nic *sp = (struct s2io_nic *) data;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = 0;
u16 subid;
subid = sp->pdev->subsystem_device;
if ((sp->device_type == XFRAME_II_DEVICE) ||
((subid & 0xFF) >= 0x07)) {
val64 = readq(&bar0->gpio_control);
val64 ^= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
} else {
val64 = readq(&bar0->adapter_control);
val64 ^= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
mod_timer(&sp->id_timer, jiffies + HZ / 2);
}
/**
* s2io_ethtool_idnic - To physically identify the nic on the system.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @id : pointer to the structure with identification parameters given by
* ethtool.
* Description: Used to physically identify the NIC on the system.
* The Link LED will blink for a time specified by the user for
* identification.
* NOTE: The Link has to be Up to be able to blink the LED. Hence
* identification is possible only if it's link is up.
* Return value:
* int , returns 0 on success
*/
static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
u64 val64 = 0, last_gpio_ctrl_val;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u16 subid;
subid = sp->pdev->subsystem_device;
last_gpio_ctrl_val = readq(&bar0->gpio_control);
if ((sp->device_type == XFRAME_I_DEVICE) &&
((subid & 0xFF) < 0x07)) {
val64 = readq(&bar0->adapter_control);
if (!(val64 & ADAPTER_CNTL_EN)) {
printk(KERN_ERR
"Adapter Link down, cannot blink LED\n");
return -EFAULT;
}
}
if (sp->id_timer.function == NULL) {
init_timer(&sp->id_timer);
sp->id_timer.function = s2io_phy_id;
sp->id_timer.data = (unsigned long) sp;
}
mod_timer(&sp->id_timer, jiffies);
if (data)
msleep_interruptible(data * HZ);
else
msleep_interruptible(MAX_FLICKER_TIME);
del_timer_sync(&sp->id_timer);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
writeq(last_gpio_ctrl_val, &bar0->gpio_control);
last_gpio_ctrl_val = readq(&bar0->gpio_control);
}
return 0;
}
static void s2io_ethtool_gringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct s2io_nic *sp = netdev_priv(dev);
int i,tx_desc_count=0,rx_desc_count=0;
if (sp->rxd_mode == RXD_MODE_1)
ering->rx_max_pending = MAX_RX_DESC_1;
else if (sp->rxd_mode == RXD_MODE_3B)
ering->rx_max_pending = MAX_RX_DESC_2;
ering->tx_max_pending = MAX_TX_DESC;
for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
tx_desc_count += sp->config.tx_cfg[i].fifo_len;
DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
ering->tx_pending = tx_desc_count;
rx_desc_count = 0;
for (i = 0 ; i < sp->config.rx_ring_num ; i++)
rx_desc_count += sp->config.rx_cfg[i].num_rxd;
ering->rx_pending = rx_desc_count;
ering->rx_mini_max_pending = 0;
ering->rx_mini_pending = 0;
if(sp->rxd_mode == RXD_MODE_1)
ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
else if (sp->rxd_mode == RXD_MODE_3B)
ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
ering->rx_jumbo_pending = rx_desc_count;
}
/**
* s2io_ethtool_getpause_data -Pause frame frame generation and reception.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* Returns the Pause frame generation and reception capability of the NIC.
* Return value:
* void
*/
static void s2io_ethtool_getpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 & RMAC_PAUSE_GEN_ENABLE)
ep->tx_pause = TRUE;
if (val64 & RMAC_PAUSE_RX_ENABLE)
ep->rx_pause = TRUE;
ep->autoneg = FALSE;
}
/**
* s2io_ethtool_setpause_data - set/reset pause frame generation.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* It can be used to set or reset Pause frame generation or reception
* support of the NIC.
* Return value:
* int, returns 0 on Success
*/
static int s2io_ethtool_setpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
struct s2io_nic *sp = netdev_priv(dev);
struct XENA_dev_config __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (ep->tx_pause)
val64 |= RMAC_PAUSE_GEN_ENABLE;
else
val64 &= ~RMAC_PAUSE_GEN_ENABLE;
if (ep->rx_pause)
val64 |= RMAC_PAUSE_RX_ENABLE;
else
val64 &= ~RMAC_PAUSE_RX_ENABLE;
writeq(val64, &bar0->rmac_pause_cfg);
return 0;
}
/**
* read_eeprom - reads 4 bytes of data from user given offset.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : Its an output parameter where the data read at the given
* offset is stored.
* Description:
* Will read 4 bytes of data from the user given offset and return the
* read data.
* NOTE: Will allow to read only part of the EEPROM visible through the
* I2C bus.
* Return value:
* -1 on failure and 0 on success.
*/
#define S2IO_DEV_ID 5
static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
{
int ret = -1;
u32 exit_cnt = 0;
u64 val64;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
if (sp->device_type == XFRAME_I_DEVICE) {
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
*data = I2C_CONTROL_GET_DATA(val64);
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
if (sp->device_type == XFRAME_II_DEVICE) {
val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
SPI_CONTROL_BYTECNT(0x3) |
SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
val64 |= SPI_CONTROL_REQ;
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->spi_control);
if (val64 & SPI_CONTROL_NACK) {
ret = 1;
break;
} else if (val64 & SPI_CONTROL_DONE) {
*data = readq(&bar0->spi_data);
*data &= 0xffffff;
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
return ret;
}
/**
* write_eeprom - actually writes the relevant part of the data value.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : The data that is to be written
* @cnt : Number of bytes of the data that are actually to be written into
* the Eeprom. (max of 3)
* Description:
* Actually writes the relevant part of the data value into the Eeprom
* through the I2C bus.
* Return value:
* 0 on success, -1 on failure.
*/
static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
{
int exit_cnt = 0, ret = -1;
u64 val64;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
if (sp->device_type == XFRAME_I_DEVICE) {
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
if (!(val64 & I2C_CONTROL_NACK))
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
if (sp->device_type == XFRAME_II_DEVICE) {
int write_cnt = (cnt == 8) ? 0 : cnt;
writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
SPI_CONTROL_BYTECNT(write_cnt) |
SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
val64 |= SPI_CONTROL_REQ;
SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->spi_control);
if (val64 & SPI_CONTROL_NACK) {
ret = 1;
break;
} else if (val64 & SPI_CONTROL_DONE) {
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
}
return ret;
}
static void s2io_vpd_read(struct s2io_nic *nic)
{
u8 *vpd_data;
u8 data;
int i=0, cnt, fail = 0;
int vpd_addr = 0x80;
if (nic->device_type == XFRAME_II_DEVICE) {
strcpy(nic->product_name, "Xframe II 10GbE network adapter");
vpd_addr = 0x80;
}
else {
strcpy(nic->product_name, "Xframe I 10GbE network adapter");
vpd_addr = 0x50;
}
strcpy(nic->serial_num, "NOT AVAILABLE");
vpd_data = kmalloc(256, GFP_KERNEL);
if (!vpd_data) {
nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
return;
}
nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
for (i = 0; i < 256; i +=4 ) {
pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
for (cnt = 0; cnt <5; cnt++) {
msleep(2);
pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
if (data == 0x80)
break;
}
if (cnt >= 5) {
DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
fail = 1;
break;
}
pci_read_config_dword(nic->pdev, (vpd_addr + 4),
(u32 *)&vpd_data[i]);
}
if(!fail) {
/* read serial number of adapter */
for (cnt = 0; cnt < 256; cnt++) {
if ((vpd_data[cnt] == 'S') &&
(vpd_data[cnt+1] == 'N') &&
(vpd_data[cnt+2] < VPD_STRING_LEN)) {
memset(nic->serial_num, 0, VPD_STRING_LEN);
memcpy(nic->serial_num, &vpd_data[cnt + 3],
vpd_data[cnt+2]);
break;
}
}
}
if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
memset(nic->product_name, 0, vpd_data[1]);
memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
}
kfree(vpd_data);
nic->mac_control.stats_info->sw_stat.mem_freed += 256;
}
/**
* s2io_ethtool_geeprom - reads the value stored in the Eeprom.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf : user defined value to be written into Eeprom.
* Description: Reads the values stored in the Eeprom at given offset
* for a given length. Stores these values int the input argument data
* buffer 'data_buf' and returns these to the caller (ethtool.)
* Return value:
* int 0 on success
*/
static int s2io_ethtool_geeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * data_buf)
{
u32 i, valid;
u64 data;
struct s2io_nic *sp = netdev_priv(dev);
eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
for (i = 0; i < eeprom->len; i += 4) {
if (read_eeprom(sp, (eeprom->offset + i), &data)) {
DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
return -EFAULT;
}
valid = INV(data);
memcpy((data_buf + i), &valid, 4);
}
return 0;
}
/**
* s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf ; user defined value to be written into Eeprom.
* Description:
* Tries to write the user provided value in the Eeprom, at the offset
* given by the user.
* Return value:
* 0 on success, -EFAULT on failure.
*/
static int s2io_ethtool_seeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom,
u8 * data_buf)
{
int len = eeprom->len, cnt = 0;
u64 valid = 0, data;
struct s2io_nic *sp = netdev_priv(dev);
if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Magic value ");
DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
eeprom->magic);
return -EFAULT;
}
while (len) {
data = (u32) data_buf[cnt] & 0x000000FF;
if (data) {
valid = (u32) (data << 24);
} else
valid = data;
if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Cannot ");
DBG_PRINT(ERR_DBG,
"write into the specified offset\n");
return -EFAULT;
}
cnt++;
len--;
}
return 0;
}
/**
* s2io_register_test - reads and writes into all clock domains.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data : variable that returns the result of each of the test conducted b
* by the driver.
* Description:
* Read and write into all clock domains. The NIC has 3 clock domains,
* see that registers in all the three regions are accessible.
* Return value:
* 0 on success.
*/
static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = 0, exp_val;
int fail = 0;
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x123456789abcdefULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
}
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 != 0xc000ffff00000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
}
val64 = readq(&bar0->rx_queue_cfg);
if (sp->device_type == XFRAME_II_DEVICE)
exp_val = 0x0404040404040404ULL;
else
exp_val = 0x0808080808080808ULL;
if (val64 != exp_val) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
}
val64 = readq(&bar0->xgxs_efifo_cfg);
if (val64 != 0x000000001923141EULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
}
val64 = 0x5A5A5A5A5A5A5A5AULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
}
val64 = 0xA5A5A5A5A5A5A5A5ULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
}
*data = fail;
return fail;
}
/**
* s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* Verify that EEPROM in the xena can be programmed using I2C_CONTROL
* register.
* Return value:
* 0 on success.
*/
static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
{
int fail = 0;
u64 ret_data, org_4F0, org_7F0;
u8 saved_4F0 = 0, saved_7F0 = 0;
struct net_device *dev = sp->dev;
/* Test Write Error at offset 0 */
/* Note that SPI interface allows write access to all areas
* of EEPROM. Hence doing all negative testing only for Xframe I.
*/
if (sp->device_type == XFRAME_I_DEVICE)
if (!write_eeprom(sp, 0, 0, 3))
fail = 1;
/* Save current values at offsets 0x4F0 and 0x7F0 */
if (!read_eeprom(sp, 0x4F0, &org_4F0))
saved_4F0 = 1;
if (!read_eeprom(sp, 0x7F0, &org_7F0))
saved_7F0 = 1;
/* Test Write at offset 4f0 */
if (write_eeprom(sp, 0x4F0, 0x012345, 3))
fail = 1;
if (read_eeprom(sp, 0x4F0, &ret_data))
fail = 1;
if (ret_data != 0x012345) {
DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
"Data written %llx Data read %llx\n",
dev->name, (unsigned long long)0x12345,
(unsigned long long)ret_data);
fail = 1;
}
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
/* Test Write Request Error at offset 0x7c */
if (sp->device_type == XFRAME_I_DEVICE)
if (!write_eeprom(sp, 0x07C, 0, 3))
fail = 1;
/* Test Write Request at offset 0x7f0 */
if (write_eeprom(sp, 0x7F0, 0x012345, 3))
fail = 1;
if (read_eeprom(sp, 0x7F0, &ret_data))
fail = 1;
if (ret_data != 0x012345) {
DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
"Data written %llx Data read %llx\n",
dev->name, (unsigned long long)0x12345,
(unsigned long long)ret_data);
fail = 1;
}
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
if (sp->device_type == XFRAME_I_DEVICE) {
/* Test Write Error at offset 0x80 */
if (!write_eeprom(sp, 0x080, 0, 3))
fail = 1;
/* Test Write Error at offset 0xfc */
if (!write_eeprom(sp, 0x0FC, 0, 3))
fail = 1;
/* Test Write Error at offset 0x100 */
if (!write_eeprom(sp, 0x100, 0, 3))
fail = 1;
/* Test Write Error at offset 4ec */
if (!write_eeprom(sp, 0x4EC, 0, 3))
fail = 1;
}
/* Restore values at offsets 0x4F0 and 0x7F0 */
if (saved_4F0)
write_eeprom(sp, 0x4F0, org_4F0, 3);
if (saved_7F0)
write_eeprom(sp, 0x7F0, org_7F0, 3);
*data = fail;
return fail;
}
/**
* s2io_bist_test - invokes the MemBist test of the card .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* This invokes the MemBist test of the card. We give around
* 2 secs time for the Test to complete. If it's still not complete
* within this peiod, we consider that the test failed.
* Return value:
* 0 on success and -1 on failure.
*/
static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
{
u8 bist = 0;
int cnt = 0, ret = -1;
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
bist |= PCI_BIST_START;
pci_write_config_word(sp->pdev, PCI_BIST, bist);
while (cnt < 20) {
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
if (!(bist & PCI_BIST_START)) {
*data = (bist & PCI_BIST_CODE_MASK);
ret = 0;
break;
}
msleep(100);
cnt++;
}
return ret;
}
/**
* s2io-link_test - verifies the link state of the nic
* @sp ; private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data: variable that returns the result of each of the test conducted by
* the driver.
* Description:
* The function verifies the link state of the NIC and updates the input
* argument 'data' appropriately.
* Return value:
* 0 on success.
*/
static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
val64 = readq(&bar0->adapter_status);
if(!(LINK_IS_UP(val64)))
*data = 1;
else
*data = 0;
return *data;
}
/**
* s2io_rldram_test - offline test for access to the RldRam chip on the NIC
* @sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data - variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This is one of the offline test that tests the read and write
* access to the RldRam chip on the NIC.
* Return value:
* 0 on success.
*/
static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
{
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64;
int cnt, iteration = 0, test_fail = 0;
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
val64 = readq(&bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 |= MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
while (iteration < 2) {
val64 = 0x55555555aaaa0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d0);
val64 = 0xaaaa5a5555550000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d1);
val64 = 0x55aaaaaaaa5a0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d2);
val64 = (u64) (0x0000003ffffe0100ULL);
writeq(val64, &bar0->mc_rldram_test_add);
val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
MC_RLDRAM_TEST_GO;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(200);
}
if (cnt == 5)
break;
val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(500);
}
if (cnt == 5)
break;
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (!(val64 & MC_RLDRAM_TEST_PASS))
test_fail = 1;
iteration++;
}
*data = test_fail;
/* Bring the adapter out of test mode */
SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
return test_fail;
}
/**
* s2io_ethtool_test - conducts 6 tsets to determine the health of card.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ethtest : pointer to a ethtool command specific structure that will be
* returned to the user.
* @data : variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This function conducts 6 tests ( 4 offline and 2 online) to determine
* the health of the card.
* Return value:
* void
*/
static void s2io_ethtool_test(struct net_device *dev,
struct ethtool_test *ethtest,
uint64_t * data)
{
struct s2io_nic *sp = netdev_priv(dev);
int orig_state = netif_running(sp->dev);
if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
/* Offline Tests. */
if (orig_state)
s2io_close(sp->dev);
if (s2io_register_test(sp, &data[0]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
if (s2io_rldram_test(sp, &data[3]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
if (s2io_eeprom_test(sp, &data[1]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (s2io_bist_test(sp, &data[4]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (orig_state)
s2io_open(sp->dev);
data[2] = 0;
} else {
/* Online Tests. */
if (!orig_state) {
DBG_PRINT(ERR_DBG,
"%s: is not up, cannot run test\n",
dev->name);
data[0] = -1;
data[1] = -1;
data[2] = -1;
data[3] = -1;
data[4] = -1;
}
if (s2io_link_test(sp, &data[2]))
ethtest->flags |= ETH_TEST_FL_FAILED;
data[0] = 0;
data[1] = 0;
data[3] = 0;
data[4] = 0;
}
}
static void s2io_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats,
u64 * tmp_stats)
{
int i = 0, k;
struct s2io_nic *sp = netdev_priv(dev);
struct stat_block *stat_info = sp->mac_control.stats_info;
s2io_updt_stats(sp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
le32_to_cpu(stat_info->tmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_mcst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_bcst_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
le32_to_cpu(stat_info->tmac_ttl_octets);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_ucst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_nucst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
le32_to_cpu(stat_info->tmac_any_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
le32_to_cpu(stat_info->tmac_vld_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
le32_to_cpu(stat_info->tmac_drop_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_icmp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_rst_tcp);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
le32_to_cpu(stat_info->tmac_udp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
le32_to_cpu(stat_info->rmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_mcst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_vld_bcst_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
le32_to_cpu(stat_info->rmac_ttl_octets);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
<< 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
<< 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_discarded_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
<< 32 | le32_to_cpu(stat_info->rmac_drop_events);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_usized_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_osized_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_frag_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
le32_to_cpu(stat_info->rmac_jabber_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_ip);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_drop_ip);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_icmp);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_udp);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
le32_to_cpu(stat_info->rmac_err_drp_udp);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
le32_to_cpu(stat_info->rmac_pause_cnt);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
tmp_stats[i++] =
(u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
le32_to_cpu(stat_info->rmac_accepted_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
/* Enhanced statistics exist only for Hercules */
if(sp->device_type == XFRAME_II_DEVICE) {
tmp_stats[i++] =
le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
tmp_stats[i++] =
le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
tmp_stats[i++] =
le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
}
tmp_stats[i++] = 0;
tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
for (k = 0; k < MAX_RX_RINGS; k++)
tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
tmp_stats[i++] = stat_info->sw_stat.sending_both;
tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
if (stat_info->sw_stat.num_aggregations) {
u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
int count = 0;
/*
* Since 64-bit divide does not work on all platforms,
* do repeated subtraction.
*/
while (tmp >= stat_info->sw_stat.num_aggregations) {
tmp -= stat_info->sw_stat.num_aggregations;
count++;
}
tmp_stats[i++] = count;
}
else
tmp_stats[i++] = 0;
tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
tmp_stats[i++] = stat_info->sw_stat.mem_freed;
tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
tmp_stats[i++] = stat_info->sw_stat.link_up_time;
tmp_stats[i++] = stat_info->sw_stat.link_down_time;
tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
}
static int s2io_ethtool_get_regs_len(struct net_device *dev)
{
return (XENA_REG_SPACE);
}
static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
{
struct s2io_nic *sp = netdev_priv(dev);
return (sp->rx_csum);
}
static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
{
struct s2io_nic *sp = netdev_priv(dev);
if (data)
sp->rx_csum = 1;
else
sp->rx_csum = 0;
return 0;
}
static int s2io_get_eeprom_len(struct net_device *dev)
{
return (XENA_EEPROM_SPACE);
}
static int s2io_get_sset_count(struct net_device *dev, int sset)
{
struct s2io_nic *sp = netdev_priv(dev);
switch (sset) {
case ETH_SS_TEST:
return S2IO_TEST_LEN;
case ETH_SS_STATS:
switch(sp->device_type) {
case XFRAME_I_DEVICE:
return XFRAME_I_STAT_LEN;
case XFRAME_II_DEVICE:
return XFRAME_II_STAT_LEN;
default:
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static void s2io_ethtool_get_strings(struct net_device *dev,
u32 stringset, u8 * data)
{
int stat_size = 0;
struct s2io_nic *sp = netdev_priv(dev);
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
break;
case ETH_SS_STATS:
stat_size = sizeof(ethtool_xena_stats_keys);
memcpy(data, &ethtool_xena_stats_keys,stat_size);
if(sp->device_type == XFRAME_II_DEVICE) {
memcpy(data + stat_size,
&ethtool_enhanced_stats_keys,
sizeof(ethtool_enhanced_stats_keys));
stat_size += sizeof(ethtool_enhanced_stats_keys);
}
memcpy(data + stat_size, &ethtool_driver_stats_keys,
sizeof(ethtool_driver_stats_keys));
}
}
static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
{
if (data)
dev->features |= NETIF_F_IP_CSUM;
else
dev->features &= ~NETIF_F_IP_CSUM;
return 0;
}
static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
{
return (dev->features & NETIF_F_TSO) != 0;
}
static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
{
if (data)
dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
else
dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
return 0;
}
static const struct ethtool_ops netdev_ethtool_ops = {
.get_settings = s2io_ethtool_gset,
.set_settings = s2io_ethtool_sset,
.get_drvinfo = s2io_ethtool_gdrvinfo,
.get_regs_len = s2io_ethtool_get_regs_len,
.get_regs = s2io_ethtool_gregs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = s2io_get_eeprom_len,
.get_eeprom = s2io_ethtool_geeprom,
.set_eeprom = s2io_ethtool_seeprom,
.get_ringparam = s2io_ethtool_gringparam,
.get_pauseparam = s2io_ethtool_getpause_data,
.set_pauseparam = s2io_ethtool_setpause_data,
.get_rx_csum = s2io_ethtool_get_rx_csum,
.set_rx_csum = s2io_ethtool_set_rx_csum,
.set_tx_csum = s2io_ethtool_op_set_tx_csum,
.set_sg = ethtool_op_set_sg,
.get_tso = s2io_ethtool_op_get_tso,
.set_tso = s2io_ethtool_op_set_tso,
.set_ufo = ethtool_op_set_ufo,
.self_test = s2io_ethtool_test,
.get_strings = s2io_ethtool_get_strings,
.phys_id = s2io_ethtool_idnic,
.get_ethtool_stats = s2io_get_ethtool_stats,
.get_sset_count = s2io_get_sset_count,
};
/**
* s2io_ioctl - Entry point for the Ioctl
* @dev : Device pointer.
* @ifr : An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd : This is used to distinguish between the different commands that
* can be passed to the IOCTL functions.
* Description:
* Currently there are no special functionality supported in IOCTL, hence
* function always return EOPNOTSUPPORTED
*/
static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/**
* s2io_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: A driver entry point to change MTU size for the device.
* Before changing the MTU the device must be stopped.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_change_mtu(struct net_device *dev, int new_mtu)
{
struct s2io_nic *sp = netdev_priv(dev);
int ret = 0;
if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
dev->name);
return -EPERM;
}
dev->mtu = new_mtu;
if (netif_running(dev)) {
s2io_stop_all_tx_queue(sp);
s2io_card_down(sp);
ret = s2io_card_up(sp);
if (ret) {
DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
__func__);
return ret;
}
s2io_wake_all_tx_queue(sp);
} else { /* Device is down */
struct XENA_dev_config __iomem *bar0 = sp->bar0;
u64 val64 = new_mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
}
return ret;
}
/**
* s2io_set_link - Set the LInk status
* @data: long pointer to device private structue
* Description: Sets the link status for the adapter
*/
static void s2io_set_link(struct work_struct *work)
{
struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
struct net_device *dev = nic->dev;
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64;
u16 subid;
rtnl_lock();
if (!netif_running(dev))
goto out_unlock;
if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
/* The card is being reset, no point doing anything */
goto out_unlock;
}
subid = nic->pdev->subsystem_device;
if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
/*
* Allow a small delay for the NICs self initiated
* cleanup to complete.
*/
msleep(100);
}
val64 = readq(&bar0->adapter_status);
if (LINK_IS_UP(val64)) {
if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
if (verify_xena_quiescence(nic)) {
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_CNTL_EN;
writeq(val64, &bar0->adapter_control);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(
nic->device_type, subid)) {
val64 = readq(&bar0->gpio_control);
val64 |= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
} else {
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
nic->device_enabled_once = TRUE;
} else {
DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
s2io_stop_all_tx_queue(nic);
}
}
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
s2io_link(nic, LINK_UP);
} else {
if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
subid)) {
val64 = readq(&bar0->gpio_control);
val64 &= ~GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
}
/* turn off LED */
val64 = readq(&bar0->adapter_control);
val64 = val64 &(~ADAPTER_LED_ON);
writeq(val64, &bar0->adapter_control);
s2io_link(nic, LINK_DOWN);
}
clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
out_unlock:
rtnl_unlock();
}
static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
struct buffAdd *ba,
struct sk_buff **skb, u64 *temp0, u64 *temp1,
u64 *temp2, int size)
{
struct net_device *dev = sp->dev;
struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
/* allocate skb */
if (*skb) {
DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
/*
* As Rx frame are not going to be processed,
* using same mapped address for the Rxd
* buffer pointer
*/
rxdp1->Buffer0_ptr = *temp0;
} else {
*skb = dev_alloc_skb(size);
if (!(*skb)) {
DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
DBG_PRINT(INFO_DBG, "memory to allocate ");
DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
sp->mac_control.stats_info->sw_stat. \
mem_alloc_fail_cnt++;
return -ENOMEM ;
}
sp->mac_control.stats_info->sw_stat.mem_allocated
+= (*skb)->truesize;
/* storing the mapped addr in a temp variable
* such it will be used for next rxd whose
* Host Control is NULL
*/
rxdp1->Buffer0_ptr = *temp0 =
pci_map_single( sp->pdev, (*skb)->data,
size - NET_IP_ALIGN,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
goto memalloc_failed;
rxdp->Host_Control = (unsigned long) (*skb);
}
} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
/* Two buffer Mode */
if (*skb) {
rxdp3->Buffer2_ptr = *temp2;
rxdp3->Buffer0_ptr = *temp0;
rxdp3->Buffer1_ptr = *temp1;
} else {
*skb = dev_alloc_skb(size);
if (!(*skb)) {
DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
DBG_PRINT(INFO_DBG, "memory to allocate ");
DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
sp->mac_control.stats_info->sw_stat. \
mem_alloc_fail_cnt++;
return -ENOMEM;
}
sp->mac_control.stats_info->sw_stat.mem_allocated
+= (*skb)->truesize;
rxdp3->Buffer2_ptr = *temp2 =
pci_map_single(sp->pdev, (*skb)->data,
dev->mtu + 4,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
goto memalloc_failed;
rxdp3->Buffer0_ptr = *temp0 =
pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(sp->pdev,
rxdp3->Buffer0_ptr)) {
pci_unmap_single (sp->pdev,
(dma_addr_t)rxdp3->Buffer2_ptr,
dev->mtu + 4, PCI_DMA_FROMDEVICE);
goto memalloc_failed;
}
rxdp->Host_Control = (unsigned long) (*skb);
/* Buffer-1 will be dummy buffer not used */
rxdp3->Buffer1_ptr = *temp1 =
pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(sp->pdev,
rxdp3->Buffer1_ptr)) {
pci_unmap_single (sp->pdev,
(dma_addr_t)rxdp3->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single (sp->pdev,
(dma_addr_t)rxdp3->Buffer2_ptr,
dev->mtu + 4, PCI_DMA_FROMDEVICE);
goto memalloc_failed;
}
}
}
return 0;
memalloc_failed:
stats->pci_map_fail_cnt++;
stats->mem_freed += (*skb)->truesize;
dev_kfree_skb(*skb);
return -ENOMEM;
}
static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
int size)
{
struct net_device *dev = sp->dev;
if (sp->rxd_mode == RXD_MODE_1) {
rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
} else if (sp->rxd_mode == RXD_MODE_3B) {
rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
}
}
static int rxd_owner_bit_reset(struct s2io_nic *sp)
{
int i, j, k, blk_cnt = 0, size;
struct mac_info * mac_control = &sp->mac_control;
struct config_param *config = &sp->config;
struct net_device *dev = sp->dev;
struct RxD_t *rxdp = NULL;
struct sk_buff *skb = NULL;
struct buffAdd *ba = NULL;
u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
/* Calculate the size based on ring mode */
size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
if (sp->rxd_mode == RXD_MODE_1)
size += NET_IP_ALIGN;
else if (sp->rxd_mode == RXD_MODE_3B)
size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = config->rx_cfg[i].num_rxd /
(rxd_count[sp->rxd_mode] +1);
for (j = 0; j < blk_cnt; j++) {
for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
rxdp = mac_control->rings[i].
rx_blocks[j].rxds[k].virt_addr;
if(sp->rxd_mode == RXD_MODE_3B)
ba = &mac_control->rings[i].ba[j][k];
if (set_rxd_buffer_pointer(sp, rxdp, ba,
&skb,(u64 *)&temp0_64,
(u64 *)&temp1_64,
(u64 *)&temp2_64,
size) == -ENOMEM) {
return 0;
}
set_rxd_buffer_size(sp, rxdp, size);
wmb();
/* flip the Ownership bit to Hardware */
rxdp->Control_1 |= RXD_OWN_XENA;
}
}
}
return 0;
}
static int s2io_add_isr(struct s2io_nic * sp)
{
int ret = 0;
struct net_device *dev = sp->dev;
int err = 0;
if (sp->config.intr_type == MSI_X)
ret = s2io_enable_msi_x(sp);
if (ret) {
DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
sp->config.intr_type = INTA;
}
/* Store the values of the MSIX table in the struct s2io_nic structure */
store_xmsi_data(sp);
/* After proper initialization of H/W, register ISR */
if (sp->config.intr_type == MSI_X) {
int i, msix_rx_cnt = 0;
for (i = 0; i < sp->num_entries; i++) {
if (sp->s2io_entries[i].in_use == MSIX_FLG) {
if (sp->s2io_entries[i].type ==
MSIX_RING_TYPE) {
sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
dev->name, i);
err = request_irq(sp->entries[i].vector,
s2io_msix_ring_handle, 0,
sp->desc[i],
sp->s2io_entries[i].arg);
} else if (sp->s2io_entries[i].type ==
MSIX_ALARM_TYPE) {
sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
dev->name, i);
err = request_irq(sp->entries[i].vector,
s2io_msix_fifo_handle, 0,
sp->desc[i],
sp->s2io_entries[i].arg);
}
/* if either data or addr is zero print it. */
if (!(sp->msix_info[i].addr &&
sp->msix_info[i].data)) {
DBG_PRINT(ERR_DBG,
"%s @Addr:0x%llx Data:0x%llx\n",
sp->desc[i],
(unsigned long long)
sp->msix_info[i].addr,
(unsigned long long)
ntohl(sp->msix_info[i].data));
} else
msix_rx_cnt++;
if (err) {
remove_msix_isr(sp);
DBG_PRINT(ERR_DBG,
"%s:MSI-X-%d registration "
"failed\n", dev->name, i);
DBG_PRINT(ERR_DBG,
"%s: Defaulting to INTA\n",
dev->name);
sp->config.intr_type = INTA;
break;
}
sp->s2io_entries[i].in_use =
MSIX_REGISTERED_SUCCESS;
}
}
if (!err) {
printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
--msix_rx_cnt);
DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
" through alarm vector\n");
}
}
if (sp->config.intr_type == INTA) {
err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
sp->name, dev);
if (err) {
DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
dev->name);
return -1;
}
}
return 0;
}
static void s2io_rem_isr(struct s2io_nic * sp)
{
if (sp->config.intr_type == MSI_X)
remove_msix_isr(sp);
else
remove_inta_isr(sp);
}
static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
{
int cnt = 0;
struct XENA_dev_config __iomem *bar0 = sp->bar0;
register u64 val64 = 0;
struct config_param *config;
config = &sp->config;
if (!is_s2io_card_up(sp))
return;
del_timer_sync(&sp->alarm_timer);
/* If s2io_set_link task is executing, wait till it completes. */
while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
msleep(50);
}
clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
/* Disable napi */
if (sp->config.napi) {
int off = 0;
if (config->intr_type == MSI_X) {
for (; off < sp->config.rx_ring_num; off++)
napi_disable(&sp->mac_control.rings[off].napi);
}
else
napi_disable(&sp->napi);
}
/* disable Tx and Rx traffic on the NIC */
if (do_io)
stop_nic(sp);
s2io_rem_isr(sp);
/* stop the tx queue, indicate link down */
s2io_link(sp, LINK_DOWN);
/* Check if the device is Quiescent and then Reset the NIC */
while(do_io) {
/* As per the HW requirement we need to replenish the
* receive buffer to avoid the ring bump. Since there is
* no intention of processing the Rx frame at this pointwe are
* just settting the ownership bit of rxd in Each Rx
* ring to HW and set the appropriate buffer size
* based on the ring mode
*/
rxd_owner_bit_reset(sp);
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(sp)) {
if(verify_pcc_quiescent(sp, sp->device_enabled_once))
break;
}
msleep(50);
cnt++;
if (cnt == 10) {
DBG_PRINT(ERR_DBG,
"s2io_close:Device not Quiescent ");
DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
(unsigned long long) val64);
break;
}
}
if (do_io)
s2io_reset(sp);
/* Free all Tx buffers */
free_tx_buffers(sp);
/* Free all Rx buffers */
free_rx_buffers(sp);
clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
}
static void s2io_card_down(struct s2io_nic * sp)
{
do_s2io_card_down(sp, 1);
}
static int s2io_card_up(struct s2io_nic * sp)
{
int i, ret = 0;
struct mac_info *mac_control;
struct config_param *config;
struct net_device *dev = (struct net_device *) sp->dev;
u16 interruptible;
/* Initialize the H/W I/O registers */
ret = init_nic(sp);
if (ret != 0) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
if (ret != -EIO)
s2io_reset(sp);
return ret;
}
/*
* Initializing the Rx buffers. For now we are considering only 1
* Rx ring and initializing buffers into 30 Rx blocks
*/
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
mac_control->rings[i].mtu = dev->mtu;
ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
if (ret) {
DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
dev->name);
s2io_reset(sp);
free_rx_buffers(sp);
return -ENOMEM;
}
DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
mac_control->rings[i].rx_bufs_left);
}
/* Initialise napi */
if (config->napi) {
if (config->intr_type == MSI_X) {
for (i = 0; i < sp->config.rx_ring_num; i++)
napi_enable(&sp->mac_control.rings[i].napi);
} else {
napi_enable(&sp->napi);
}
}
/* Maintain the state prior to the open */
if (sp->promisc_flg)
sp->promisc_flg = 0;
if (sp->m_cast_flg) {
sp->m_cast_flg = 0;
sp->all_multi_pos= 0;
}
/* Setting its receive mode */
s2io_set_multicast(dev);
if (sp->lro) {
/* Initialize max aggregatable pkts per session based on MTU */
sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
/* Check if we can use(if specified) user provided value */
if (lro_max_pkts < sp->lro_max_aggr_per_sess)
sp->lro_max_aggr_per_sess = lro_max_pkts;
}
/* Enable Rx Traffic and interrupts on the NIC */
if (start_nic(sp)) {
DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
s2io_reset(sp);
free_rx_buffers(sp);
return -ENODEV;
}
/* Add interrupt service routine */
if (s2io_add_isr(sp) != 0) {
if (sp->config.intr_type == MSI_X)
s2io_rem_isr(sp);
s2io_reset(sp);
free_rx_buffers(sp);
return -ENODEV;
}
S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
set_bit(__S2IO_STATE_CARD_UP, &sp->state);
/* Enable select interrupts */
en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
if (sp->config.intr_type != INTA) {
interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
} else {
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
interruptible |= TX_PIC_INTR;
en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
}
return 0;
}
/**
* s2io_restart_nic - Resets the NIC.
* @data : long pointer to the device private structure
* Description:
* This function is scheduled to be run by the s2io_tx_watchdog
* function after 0.5 secs to reset the NIC. The idea is to reduce
* the run time of the watch dog routine which is run holding a
* spin lock.
*/
static void s2io_restart_nic(struct work_struct *work)
{
struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
struct net_device *dev = sp->dev;
rtnl_lock();
if (!netif_running(dev))
goto out_unlock;
s2io_card_down(sp);
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
dev->name);
}
s2io_wake_all_tx_queue(sp);
DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
dev->name);
out_unlock:
rtnl_unlock();
}
/**
* s2io_tx_watchdog - Watchdog for transmit side.
* @dev : Pointer to net device structure
* Description:
* This function is triggered if the Tx Queue is stopped
* for a pre-defined amount of time when the Interface is still up.
* If the Interface is jammed in such a situation, the hardware is
* reset (by s2io_close) and restarted again (by s2io_open) to
* overcome any problem that might have been caused in the hardware.
* Return value:
* void
*/
static void s2io_tx_watchdog(struct net_device *dev)
{
struct s2io_nic *sp = netdev_priv(dev);
if (netif_carrier_ok(dev)) {
sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
schedule_work(&sp->rst_timer_task);
sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
}
}
/**
* rx_osm_handler - To perform some OS related operations on SKB.
* @sp: private member of the device structure,pointer to s2io_nic structure.
* @skb : the socket buffer pointer.
* @len : length of the packet
* @cksum : FCS checksum of the frame.
* @ring_no : the ring from which this RxD was extracted.
* Description:
* This function is called by the Rx interrupt serivce routine to perform
* some OS related operations on the SKB before passing it to the upper
* layers. It mainly checks if the checksum is OK, if so adds it to the
* SKBs cksum variable, increments the Rx packet count and passes the SKB
* to the upper layer. If the checksum is wrong, it increments the Rx
* packet error count, frees the SKB and returns error.
* Return value:
* SUCCESS on success and -1 on failure.
*/
static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
{
struct s2io_nic *sp = ring_data->nic;
struct net_device *dev = (struct net_device *) ring_data->dev;
struct sk_buff *skb = (struct sk_buff *)
((unsigned long) rxdp->Host_Control);
int ring_no = ring_data->ring_no;
u16 l3_csum, l4_csum;
unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
struct lro *uninitialized_var(lro);
u8 err_mask;
skb->dev = dev;
if (err) {
/* Check for parity error */
if (err & 0x1) {
sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
}
err_mask = err >> 48;
switch(err_mask) {
case 1:
sp->mac_control.stats_info->sw_stat.
rx_parity_err_cnt++;
break;
case 2:
sp->mac_control.stats_info->sw_stat.
rx_abort_cnt++;
break;
case 3:
sp->mac_control.stats_info->sw_stat.
rx_parity_abort_cnt++;
break;
case 4:
sp->mac_control.stats_info->sw_stat.
rx_rda_fail_cnt++;
break;
case 5:
sp->mac_control.stats_info->sw_stat.
rx_unkn_prot_cnt++;
break;
case 6:
sp->mac_control.stats_info->sw_stat.
rx_fcs_err_cnt++;
break;
case 7:
sp->mac_control.stats_info->sw_stat.
rx_buf_size_err_cnt++;
break;
case 8:
sp->mac_control.stats_info->sw_stat.
rx_rxd_corrupt_cnt++;
break;
case 15:
sp->mac_control.stats_info->sw_stat.
rx_unkn_err_cnt++;
break;
}
/*
* Drop the packet if bad transfer code. Exception being
* 0x5, which could be due to unsupported IPv6 extension header.
* In this case, we let stack handle the packet.
* Note that in this case, since checksum will be incorrect,
* stack will validate the same.
*/
if (err_mask != 0x5) {
DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
dev->name, err_mask);
dev->stats.rx_crc_errors++;
sp->mac_control.stats_info->sw_stat.mem_freed
+= skb->truesize;
dev_kfree_skb(skb);
ring_data->rx_bufs_left -= 1;
rxdp->Host_Control = 0;
return 0;
}
}
/* Updating statistics */
ring_data->rx_packets++;
rxdp->Host_Control = 0;
if (sp->rxd_mode == RXD_MODE_1) {
int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
ring_data->rx_bytes += len;
skb_put(skb, len);
} else if (sp->rxd_mode == RXD_MODE_3B) {
int get_block = ring_data->rx_curr_get_info.block_index;
int get_off = ring_data->rx_curr_get_info.offset;
int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
unsigned char *buff = skb_push(skb, buf0_len);
struct buffAdd *ba = &ring_data->ba[get_block][get_off];
ring_data->rx_bytes += buf0_len + buf2_len;
memcpy(buff, ba->ba_0, buf0_len);
skb_put(skb, buf2_len);
}
if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
(ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
(sp->rx_csum)) {
l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
/*
* NIC verifies if the Checksum of the received
* frame is Ok or not and accordingly returns
* a flag in the RxD.
*/
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (ring_data->lro) {
u32 tcp_len;
u8 *tcp;
int ret = 0;
ret = s2io_club_tcp_session(ring_data,
skb->data, &tcp, &tcp_len, &lro,
rxdp, sp);
switch (ret) {
case 3: /* Begin anew */
lro->parent = skb;
goto aggregate;
case 1: /* Aggregate */
{
lro_append_pkt(sp, lro,
skb, tcp_len);
goto aggregate;
}
case 4: /* Flush session */
{
lro_append_pkt(sp, lro,
skb, tcp_len);
queue_rx_frame(lro->parent,
lro->vlan_tag);
clear_lro_session(lro);
sp->mac_control.stats_info->
sw_stat.flush_max_pkts++;
goto aggregate;
}
case 2: /* Flush both */
lro->parent->data_len =
lro->frags_len;
sp->mac_control.stats_info->
sw_stat.sending_both++;
queue_rx_frame(lro->parent,
lro->vlan_tag);
clear_lro_session(lro);
goto send_up;
case 0: /* sessions exceeded */
case -1: /* non-TCP or not
* L2 aggregatable
*/
case 5: /*
* First pkt in session not
* L3/L4 aggregatable
*/
break;
default:
DBG_PRINT(ERR_DBG,
"%s: Samadhana!!\n",
__func__);
BUG();
}
}
} else {
/*
* Packet with erroneous checksum, let the
* upper layers deal with it.
*/
skb->ip_summed = CHECKSUM_NONE;
}
} else
skb->ip_summed = CHECKSUM_NONE;
sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
send_up:
skb_record_rx_queue(skb, ring_no);
queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
aggregate:
sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
return SUCCESS;
}
/**
* s2io_link - stops/starts the Tx queue.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @link : inidicates whether link is UP/DOWN.
* Description:
* This function stops/starts the Tx queue depending on whether the link
* status of the NIC is is down or up. This is called by the Alarm
* interrupt handler whenever a link change interrupt comes up.
* Return value:
* void.
*/
static void s2io_link(struct s2io_nic * sp, int link)
{
struct net_device *dev = (struct net_device *) sp->dev;
if (link != sp->last_link_state) {
init_tti(sp, link);
if (link == LINK_DOWN) {
DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
s2io_stop_all_tx_queue(sp);
netif_carrier_off(dev);
if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
sp->mac_control.stats_info->sw_stat.link_up_time =
jiffies - sp->start_time;
sp->mac_control.stats_info->sw_stat.link_down_cnt++;
} else {
DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
sp->mac_control.stats_info->sw_stat.link_down_time =
jiffies - sp->start_time;
sp->mac_control.stats_info->sw_stat.link_up_cnt++;
netif_carrier_on(dev);
s2io_wake_all_tx_queue(sp);
}
}
sp->last_link_state = link;
sp->start_time = jiffies;
}
/**
* s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description:
* This function initializes a few of the PCI and PCI-X configuration registers
* with recommended values.
* Return value:
* void
*/
static void s2io_init_pci(struct s2io_nic * sp)
{
u16 pci_cmd = 0, pcix_cmd = 0;
/* Enable Data Parity Error Recovery in PCI-X command register. */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(pcix_cmd));
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
(pcix_cmd | 1));
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(pcix_cmd));
/* Set the PErr Response bit in PCI command register. */
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(sp->pdev, PCI_COMMAND,
(pci_cmd | PCI_COMMAND_PARITY));
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
}
static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
u8 *dev_multiq)
{
if ((tx_fifo_num > MAX_TX_FIFOS) ||
(tx_fifo_num < 1)) {
DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
"(%d) not supported\n", tx_fifo_num);
if (tx_fifo_num < 1)
tx_fifo_num = 1;
else
tx_fifo_num = MAX_TX_FIFOS;
DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
DBG_PRINT(ERR_DBG, "tx fifos\n");
}
if (multiq)
*dev_multiq = multiq;
if (tx_steering_type && (1 == tx_fifo_num)) {
if (tx_steering_type != TX_DEFAULT_STEERING)
DBG_PRINT(ERR_DBG,
"s2io: Tx steering is not supported with "
"one fifo. Disabling Tx steering.\n");
tx_steering_type = NO_STEERING;
}
if ((tx_steering_type < NO_STEERING) ||
(tx_steering_type > TX_DEFAULT_STEERING)) {
DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
"supported\n");
DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
tx_steering_type = NO_STEERING;
}
if (rx_ring_num > MAX_RX_RINGS) {
DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
"supported\n");
DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
MAX_RX_RINGS);
rx_ring_num = MAX_RX_RINGS;
}
if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
"Defaulting to INTA\n");
*dev_intr_type = INTA;
}
if ((*dev_intr_type == MSI_X) &&
((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
(pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
"Defaulting to INTA\n");
*dev_intr_type = INTA;
}
if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
rx_ring_mode = 1;
}
return SUCCESS;
}
/**
* rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
* or Traffic class respectively.
* @nic: device private variable
* Description: The function configures the receive steering to
* desired receive ring.
* Return Value: SUCCESS on success and
* '-1' on failure (endian settings incorrect).
*/
static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
{
struct XENA_dev_config __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
if (ds_codepoint > 63)
return FAILURE;
val64 = RTS_DS_MEM_DATA(ring);
writeq(val64, &bar0->rts_ds_mem_data);
val64 = RTS_DS_MEM_CTRL_WE |
RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
writeq(val64, &bar0->rts_ds_mem_ctrl);
return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
S2IO_BIT_RESET);
}
static const struct net_device_ops s2io_netdev_ops = {
.ndo_open = s2io_open,
.ndo_stop = s2io_close,
.ndo_get_stats = s2io_get_stats,
.ndo_start_xmit = s2io_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_multicast_list = s2io_set_multicast,
.ndo_do_ioctl = s2io_ioctl,
.ndo_set_mac_address = s2io_set_mac_addr,
.ndo_change_mtu = s2io_change_mtu,
.ndo_vlan_rx_register = s2io_vlan_rx_register,
.ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
.ndo_tx_timeout = s2io_tx_watchdog,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = s2io_netpoll,
#endif
};
/**
* s2io_init_nic - Initialization of the adapter .
* @pdev : structure containing the PCI related information of the device.
* @pre: List of PCI devices supported by the driver listed in s2io_tbl.
* Description:
* The function initializes an adapter identified by the pci_dec structure.
* All OS related initialization including memory and device structure and
* initlaization of the device private variable is done. Also the swapper
* control register is initialized to enable read and write into the I/O
* registers of the device.
* Return value:
* returns 0 on success and negative on failure.
*/
static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
struct s2io_nic *sp;
struct net_device *dev;
int i, j, ret;
int dma_flag = FALSE;
u32 mac_up, mac_down;
u64 val64 = 0, tmp64 = 0;
struct XENA_dev_config __iomem *bar0 = NULL;
u16 subid;
struct mac_info *mac_control;
struct config_param *config;
int mode;
u8 dev_intr_type = intr_type;
u8 dev_multiq = 0;
ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
if (ret)
return ret;
if ((ret = pci_enable_device(pdev))) {
DBG_PRINT(ERR_DBG,
"s2io_init_nic: pci_enable_device failed\n");
return ret;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
dma_flag = TRUE;
if (pci_set_consistent_dma_mask
(pdev, DMA_BIT_MASK(64))) {
DBG_PRINT(ERR_DBG,
"Unable to obtain 64bit DMA for \
consistent allocations\n");
pci_disable_device(pdev);
return -ENOMEM;
}
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
} else {
pci_disable_device(pdev);
return -ENOMEM;
}
if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
pci_disable_device(pdev);
return -ENODEV;
}
if (dev_multiq)
dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
else
dev = alloc_etherdev(sizeof(struct s2io_nic));
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Device allocation failed\n");
pci_disable_device(pdev);
pci_release_regions(pdev);
return -ENODEV;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Private member variable initialized to s2io NIC structure */
sp = netdev_priv(dev);
memset(sp, 0, sizeof(struct s2io_nic));
sp->dev = dev;
sp->pdev = pdev;
sp->high_dma_flag = dma_flag;
sp->device_enabled_once = FALSE;
if (rx_ring_mode == 1)
sp->rxd_mode = RXD_MODE_1;
if (rx_ring_mode == 2)
sp->rxd_mode = RXD_MODE_3B;
sp->config.intr_type = dev_intr_type;
if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
(pdev->device == PCI_DEVICE_ID_HERC_UNI))
sp->device_type = XFRAME_II_DEVICE;
else
sp->device_type = XFRAME_I_DEVICE;
sp->lro = lro_enable;
/* Initialize some PCI/PCI-X fields of the NIC. */
s2io_init_pci(sp);
/*
* Setting the device configuration parameters.
* Most of these parameters can be specified by the user during
* module insertion as they are module loadable parameters. If
* these parameters are not not specified during load time, they
* are initialized with default values.
*/
mac_control = &sp->mac_control;
config = &sp->config;
config->napi = napi;
config->tx_steering_type = tx_steering_type;
/* Tx side parameters. */
if (config->tx_steering_type == TX_PRIORITY_STEERING)
config->tx_fifo_num = MAX_TX_FIFOS;
else
config->tx_fifo_num = tx_fifo_num;
/* Initialize the fifos used for tx steering */
if (config->tx_fifo_num < 5) {
if (config->tx_fifo_num == 1)
sp->total_tcp_fifos = 1;
else
sp->total_tcp_fifos = config->tx_fifo_num - 1;
sp->udp_fifo_idx = config->tx_fifo_num - 1;
sp->total_udp_fifos = 1;
sp->other_fifo_idx = sp->total_tcp_fifos - 1;
} else {
sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
FIFO_OTHER_MAX_NUM);
sp->udp_fifo_idx = sp->total_tcp_fifos;
sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
}
config->multiq = dev_multiq;
for (i = 0; i < config->tx_fifo_num; i++) {
config->tx_cfg[i].fifo_len = tx_fifo_len[i];
config->tx_cfg[i].fifo_priority = i;
}
/* mapping the QoS priority to the configured fifos */
for (i = 0; i < MAX_TX_FIFOS; i++)
config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
/* map the hashing selector table to the configured fifos */
for (i = 0; i < config->tx_fifo_num; i++)
sp->fifo_selector[i] = fifo_selector[i];
config->tx_intr_type = TXD_INT_TYPE_UTILZ;
for (i = 0; i < config->tx_fifo_num; i++) {
config->tx_cfg[i].f_no_snoop =
(NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
if (config->tx_cfg[i].fifo_len < 65) {
config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
break;
}
}
/* + 2 because one Txd for skb->data and one Txd for UFO */
config->max_txds = MAX_SKB_FRAGS + 2;
/* Rx side parameters. */
config->rx_ring_num = rx_ring_num;
for (i = 0; i < config->rx_ring_num; i++) {
config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
(rxd_count[sp->rxd_mode] + 1);
config->rx_cfg[i].ring_priority = i;
mac_control->rings[i].rx_bufs_left = 0;
mac_control->rings[i].rxd_mode = sp->rxd_mode;
mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
mac_control->rings[i].pdev = sp->pdev;
mac_control->rings[i].dev = sp->dev;
}
for (i = 0; i < rx_ring_num; i++) {
config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
config->rx_cfg[i].f_no_snoop =
(NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
}
/* Setting Mac Control parameters */
mac_control->rmac_pause_time = rmac_pause_time;
mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
/* initialize the shared memory used by the NIC and the host */
if (init_shared_mem(sp)) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
dev->name);
ret = -ENOMEM;
goto mem_alloc_failed;
}
sp->bar0 = pci_ioremap_bar(pdev, 0);
if (!sp->bar0) {
DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
dev->name);
ret = -ENOMEM;
goto bar0_remap_failed;
}
sp->bar1 = pci_ioremap_bar(pdev, 2);
if (!sp->bar1) {
DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
dev->name);
ret = -ENOMEM;
goto bar1_remap_failed;
}
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) sp->bar0;
/* Initializing the BAR1 address as the start of the FIFO pointer. */
for (j = 0; j < MAX_TX_FIFOS; j++) {
mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
(sp->bar1 + (j * 0x00020000));
}
/* Driver entry points */
dev->netdev_ops = &s2io_netdev_ops;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
if (sp->high_dma_flag == TRUE)
dev->features |= NETIF_F_HIGHDMA;
dev->features |= NETIF_F_TSO;
dev->features |= NETIF_F_TSO6;
if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
dev->features |= NETIF_F_UFO;
dev->features |= NETIF_F_HW_CSUM;
}
dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
INIT_WORK(&sp->set_link_task, s2io_set_link);
pci_save_state(sp->pdev);
/* Setting swapper control on the NIC, for proper reset operation */
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
dev->name);
ret = -EAGAIN;
goto set_swap_failed;
}
/* Verify if the Herc works on the slot its placed into */
if (sp->device_type & XFRAME_II_DEVICE) {
mode = s2io_verify_pci_mode(sp);
if (mode < 0) {
DBG_PRINT(ERR_DBG, "%s: ", __func__);
DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
ret = -EBADSLT;
goto set_swap_failed;
}
}
if (sp->config.intr_type == MSI_X) {
sp->num_entries = config->rx_ring_num + 1;
ret = s2io_enable_msi_x(sp);
if (!ret) {
ret = s2io_test_msi(sp);
/* rollback MSI-X, will re-enable during add_isr() */
remove_msix_isr(sp);
}
if (ret) {
DBG_PRINT(ERR_DBG,
"s2io: MSI-X requested but failed to enable\n");
sp->config.intr_type = INTA;
}
}
if (config->intr_type == MSI_X) {
for (i = 0; i < config->rx_ring_num ; i++)
netif_napi_add(dev, &mac_control->rings[i].napi,
s2io_poll_msix, 64);
} else {
netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
}
/* Not needed for Herc */
if (sp->device_type & XFRAME_I_DEVICE) {
/*
* Fix for all "FFs" MAC address problems observed on
* Alpha platforms
*/
fix_mac_address(sp);
s2io_reset(sp);
}
/*
* MAC address initialization.
* For now only one mac address will be read and used.
*/
bar0 = sp->bar0;
val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
tmp64 = readq(&bar0->rmac_addr_data0_mem);
mac_down = (u32) tmp64;
mac_up = (u32) (tmp64 >> 32);
sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
/* Set the factory defined MAC address initially */
dev->addr_len = ETH_ALEN;
memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
/* initialize number of multicast & unicast MAC entries variables */
if (sp->device_type == XFRAME_I_DEVICE) {
config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
} else if (sp->device_type == XFRAME_II_DEVICE) {
config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
}
/* store mac addresses from CAM to s2io_nic structure */
do_s2io_store_unicast_mc(sp);
/* Configure MSIX vector for number of rings configured plus one */
if ((sp->device_type == XFRAME_II_DEVICE) &&
(config->intr_type == MSI_X))
sp->num_entries = config->rx_ring_num + 1;
/* Store the values of the MSIX table in the s2io_nic structure */
store_xmsi_data(sp);
/* reset Nic and bring it to known state */
s2io_reset(sp);
/*
* Initialize link state flags
* and the card state parameter
*/
sp->state = 0;
/* Initialize spinlocks */
for (i = 0; i < sp->config.tx_fifo_num; i++)
spin_lock_init(&mac_control->fifos[i].tx_lock);
/*
* SXE-002: Configure link and activity LED to init state
* on driver load.
*/
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *) bar0 + 0x2700);
val64 = readq(&bar0->gpio_control);
}
sp->rx_csum = 1; /* Rx chksum verify enabled by default */
if (register_netdev(dev)) {
DBG_PRINT(ERR_DBG, "Device registration failed\n");
ret = -ENODEV;
goto register_failed;
}
s2io_vpd_read(sp);
DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
sp->product_name, pdev->revision);
DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
s2io_driver_version);
DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
if (sp->device_type & XFRAME_II_DEVICE) {
mode = s2io_print_pci_mode(sp);
if (mode < 0) {
DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
ret = -EBADSLT;
unregister_netdev(dev);
goto set_swap_failed;
}
}
switch(sp->rxd_mode) {
case RXD_MODE_1:
DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
dev->name);
break;
case RXD_MODE_3B:
DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
dev->name);
break;
}
switch (sp->config.napi) {
case 0:
DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
break;
case 1:
DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
break;
}
DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
sp->config.tx_fifo_num);
DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
sp->config.rx_ring_num);
switch(sp->config.intr_type) {
case INTA:
DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
break;
case MSI_X:
DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
break;
}
if (sp->config.multiq) {
for (i = 0; i < sp->config.tx_fifo_num; i++)
mac_control->fifos[i].multiq = config->multiq;
DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
dev->name);
} else
DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
dev->name);
switch (sp->config.tx_steering_type) {
case NO_STEERING:
DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
" transmit\n", dev->name);
break;
case TX_PRIORITY_STEERING:
DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
" transmit\n", dev->name);
break;
case TX_DEFAULT_STEERING:
DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
" transmit\n", dev->name);
}
if (sp->lro)
DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
dev->name);
if (ufo)
DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
" enabled\n", dev->name);
/* Initialize device name */
sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
if (vlan_tag_strip)
sp->vlan_strip_flag = 1;
else
sp->vlan_strip_flag = 0;
/*
* Make Link state as off at this point, when the Link change
* interrupt comes the state will be automatically changed to
* the right state.
*/
netif_carrier_off(dev);
return 0;
register_failed:
set_swap_failed:
iounmap(sp->bar1);
bar1_remap_failed:
iounmap(sp->bar0);
bar0_remap_failed:
mem_alloc_failed:
free_shared_mem(sp);
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return ret;
}
/**
* s2io_rem_nic - Free the PCI device
* @pdev: structure containing the PCI related information of the device.
* Description: This function is called by the Pci subsystem to release a
* PCI device and free up all resource held up by the device. This could
* be in response to a Hot plug event or when the driver is to be removed
* from memory.
*/
static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
struct net_device *dev =
(struct net_device *) pci_get_drvdata(pdev);
struct s2io_nic *sp;
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
return;
}
flush_scheduled_work();
sp = netdev_priv(dev);
unregister_netdev(dev);
free_shared_mem(sp);
iounmap(sp->bar0);
iounmap(sp->bar1);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
pci_disable_device(pdev);
}
/**
* s2io_starter - Entry point for the driver
* Description: This function is the entry point for the driver. It verifies
* the module loadable parameters and initializes PCI configuration space.
*/
static int __init s2io_starter(void)
{
return pci_register_driver(&s2io_driver);
}
/**
* s2io_closer - Cleanup routine for the driver
* Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
*/
static __exit void s2io_closer(void)
{
pci_unregister_driver(&s2io_driver);
DBG_PRINT(INIT_DBG, "cleanup done\n");
}
module_init(s2io_starter);
module_exit(s2io_closer);
static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
struct tcphdr **tcp, struct RxD_t *rxdp,
struct s2io_nic *sp)
{
int ip_off;
u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
__func__);
return -1;
}
/* Checking for DIX type or DIX type with VLAN */
if ((l2_type == 0)
|| (l2_type == 4)) {
ip_off = HEADER_ETHERNET_II_802_3_SIZE;
/*
* If vlan stripping is disabled and the frame is VLAN tagged,
* shift the offset by the VLAN header size bytes.
*/
if ((!sp->vlan_strip_flag) &&
(rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
ip_off += HEADER_VLAN_SIZE;
} else {
/* LLC, SNAP etc are considered non-mergeable */
return -1;
}
*ip = (struct iphdr *)((u8 *)buffer + ip_off);
ip_len = (u8)((*ip)->ihl);
ip_len <<= 2;
*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
return 0;
}
static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
struct tcphdr *tcp)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
(lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
return -1;
return 0;
}
static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
{
return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
}
static void initiate_new_session(struct lro *lro, u8 *l2h,
struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
lro->l2h = l2h;
lro->iph = ip;
lro->tcph = tcp;
lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
lro->tcp_ack = tcp->ack_seq;
lro->sg_num = 1;
lro->total_len = ntohs(ip->tot_len);
lro->frags_len = 0;
lro->vlan_tag = vlan_tag;
/*
* check if we saw TCP timestamp. Other consistency checks have
* already been done.
*/
if (tcp->doff == 8) {
__be32 *ptr;
ptr = (__be32 *)(tcp+1);
lro->saw_ts = 1;
lro->cur_tsval = ntohl(*(ptr+1));
lro->cur_tsecr = *(ptr+2);
}
lro->in_use = 1;
}
static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
{
struct iphdr *ip = lro->iph;
struct tcphdr *tcp = lro->tcph;
__sum16 nchk;
struct stat_block *statinfo = sp->mac_control.stats_info;
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
/* Update L3 header */
ip->tot_len = htons(lro->total_len);
ip->check = 0;
nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
ip->check = nchk;
/* Update L4 header */
tcp->ack_seq = lro->tcp_ack;
tcp->window = lro->window;
/* Update tsecr field if this session has timestamps enabled */
if (lro->saw_ts) {
__be32 *ptr = (__be32 *)(tcp + 1);
*(ptr+2) = lro->cur_tsecr;
}
/* Update counters required for calculation of
* average no. of packets aggregated.
*/
statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
statinfo->sw_stat.num_aggregations++;
}
static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
struct tcphdr *tcp, u32 l4_pyld)
{
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
lro->total_len += l4_pyld;
lro->frags_len += l4_pyld;
lro->tcp_next_seq += l4_pyld;
lro->sg_num++;
/* Update ack seq no. and window ad(from this pkt) in LRO object */
lro->tcp_ack = tcp->ack_seq;
lro->window = tcp->window;
if (lro->saw_ts) {
__be32 *ptr;
/* Update tsecr and tsval from this packet */
ptr = (__be32 *)(tcp+1);
lro->cur_tsval = ntohl(*(ptr+1));
lro->cur_tsecr = *(ptr + 2);
}
}
static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
struct tcphdr *tcp, u32 tcp_pyld_len)
{
u8 *ptr;
DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
if (!tcp_pyld_len) {
/* Runt frame or a pure ack */
return -1;
}
if (ip->ihl != 5) /* IP has options */
return -1;
/* If we see CE codepoint in IP header, packet is not mergeable */
if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
return -1;
/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
tcp->ece || tcp->cwr || !tcp->ack) {
/*
* Currently recognize only the ack control word and
* any other control field being set would result in
* flushing the LRO session
*/
return -1;
}
/*
* Allow only one TCP timestamp option. Don't aggregate if
* any other options are detected.
*/
if (tcp->doff != 5 && tcp->doff != 8)
return -1;
if (tcp->doff == 8) {
ptr = (u8 *)(tcp + 1);
while (*ptr == TCPOPT_NOP)
ptr++;
if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
return -1;
/* Ensure timestamp value increases monotonically */
if (l_lro)
if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
return -1;
/* timestamp echo reply should be non-zero */
if (*((__be32 *)(ptr+6)) == 0)
return -1;
}
return 0;
}
static int
s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
struct s2io_nic *sp)
{
struct iphdr *ip;
struct tcphdr *tcph;
int ret = 0, i;
u16 vlan_tag = 0;
if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
rxdp, sp))) {
DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
ip->saddr, ip->daddr);
} else
return ret;
vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
tcph = (struct tcphdr *)*tcp;
*tcp_len = get_l4_pyld_length(ip, tcph);
for (i=0; i<MAX_LRO_SESSIONS; i++) {
struct lro *l_lro = &ring_data->lro0_n[i];
if (l_lro->in_use) {
if (check_for_socket_match(l_lro, ip, tcph))
continue;
/* Sock pair matched */
*lro = l_lro;
if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
"0x%x, actual 0x%x\n", __func__,
(*lro)->tcp_next_seq,
ntohl(tcph->seq));
sp->mac_control.stats_info->
sw_stat.outof_sequence_pkts++;
ret = 2;
break;
}
if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
ret = 1; /* Aggregate */
else
ret = 2; /* Flush both */
break;
}
}
if (ret == 0) {
/* Before searching for available LRO objects,
* check if the pkt is L3/L4 aggregatable. If not
* don't create new LRO session. Just send this
* packet up.
*/
if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
return 5;
}
for (i=0; i<MAX_LRO_SESSIONS; i++) {
struct lro *l_lro = &ring_data->lro0_n[i];
if (!(l_lro->in_use)) {
*lro = l_lro;
ret = 3; /* Begin anew */
break;
}
}
}
if (ret == 0) { /* sessions exceeded */
DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
__func__);
*lro = NULL;
return ret;
}
switch (ret) {
case 3:
initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
vlan_tag);
break;
case 2:
update_L3L4_header(sp, *lro);
break;
case 1:
aggregate_new_rx(*lro, ip, tcph, *tcp_len);
if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
update_L3L4_header(sp, *lro);
ret = 4; /* Flush the LRO */
}
break;
default:
DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
__func__);
break;
}
return ret;
}
static void clear_lro_session(struct lro *lro)
{
static u16 lro_struct_size = sizeof(struct lro);
memset(lro, 0, lro_struct_size);
}
static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
{
struct net_device *dev = skb->dev;
struct s2io_nic *sp = netdev_priv(dev);
skb->protocol = eth_type_trans(skb, dev);
if (sp->vlgrp && vlan_tag
&& (sp->vlan_strip_flag)) {
/* Queueing the vlan frame to the upper layer */
if (sp->config.napi)
vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
else
vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
} else {
if (sp->config.napi)
netif_receive_skb(skb);
else
netif_rx(skb);
}
}
static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
struct sk_buff *skb,
u32 tcp_len)
{
struct sk_buff *first = lro->parent;
first->len += tcp_len;
first->data_len = lro->frags_len;
skb_pull(skb, (skb->len - tcp_len));
if (skb_shinfo(first)->frag_list)
lro->last_frag->next = skb;
else
skb_shinfo(first)->frag_list = skb;
first->truesize += skb->truesize;
lro->last_frag = skb;
sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
return;
}
/**
* s2io_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct s2io_nic *sp = netdev_priv(netdev);
netif_device_detach(netdev);
if (netif_running(netdev)) {
/* Bring down the card, while avoiding PCI I/O */
do_s2io_card_down(sp, 0);
}
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* s2io_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
* At this point, the card has exprienced a hard reset,
* followed by fixups by BIOS, and has its config space
* set up identically to what it was at cold boot.
*/
static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct s2io_nic *sp = netdev_priv(netdev);
if (pci_enable_device(pdev)) {
printk(KERN_ERR "s2io: "
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
s2io_reset(sp);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* s2io_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells
* us that its OK to resume normal operation.
*/
static void s2io_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct s2io_nic *sp = netdev_priv(netdev);
if (netif_running(netdev)) {
if (s2io_card_up(sp)) {
printk(KERN_ERR "s2io: "
"Can't bring device back up after reset.\n");
return;
}
if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
s2io_card_down(sp);
printk(KERN_ERR "s2io: "
"Can't resetore mac addr after reset.\n");
return;
}
}
netif_device_attach(netdev);
netif_tx_wake_all_queues(netdev);
}