mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 17:14:00 +08:00
d9c102de2c
Now that we eliminated the different behaviour in separately-reviewable commits, we can switch IA64 to the generic implementation. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Tested-by: Tony Luck <tony.luck@intel.com>
611 lines
15 KiB
C
611 lines
15 KiB
C
/*
|
|
* pci.c - Low-Level PCI Access in IA-64
|
|
*
|
|
* Derived from bios32.c of i386 tree.
|
|
*
|
|
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
|
* Copyright (C) 2004 Silicon Graphics, Inc.
|
|
*
|
|
* Note: Above list of copyright holders is incomplete...
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-acpi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/machvec.h>
|
|
#include <asm/page.h>
|
|
#include <asm/io.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/hw_irq.h>
|
|
|
|
/*
|
|
* Low-level SAL-based PCI configuration access functions. Note that SAL
|
|
* calls are already serialized (via sal_lock), so we don't need another
|
|
* synchronization mechanism here.
|
|
*/
|
|
|
|
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
|
|
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
|
|
|
|
/* SAL 3.2 adds support for extended config space. */
|
|
|
|
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
|
|
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
|
|
|
|
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
|
|
int reg, int len, u32 *value)
|
|
{
|
|
u64 addr, data = 0;
|
|
int mode, result;
|
|
|
|
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
|
return -EINVAL;
|
|
|
|
if ((seg | reg) <= 255) {
|
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 0;
|
|
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
|
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 1;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
result = ia64_sal_pci_config_read(addr, mode, len, &data);
|
|
if (result != 0)
|
|
return -EINVAL;
|
|
|
|
*value = (u32) data;
|
|
return 0;
|
|
}
|
|
|
|
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
|
|
int reg, int len, u32 value)
|
|
{
|
|
u64 addr;
|
|
int mode, result;
|
|
|
|
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
|
return -EINVAL;
|
|
|
|
if ((seg | reg) <= 255) {
|
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 0;
|
|
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
|
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
|
mode = 1;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
result = ia64_sal_pci_config_write(addr, mode, len, value);
|
|
if (result != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
|
|
int size, u32 *value)
|
|
{
|
|
return raw_pci_read(pci_domain_nr(bus), bus->number,
|
|
devfn, where, size, value);
|
|
}
|
|
|
|
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
|
|
int size, u32 value)
|
|
{
|
|
return raw_pci_write(pci_domain_nr(bus), bus->number,
|
|
devfn, where, size, value);
|
|
}
|
|
|
|
struct pci_ops pci_root_ops = {
|
|
.read = pci_read,
|
|
.write = pci_write,
|
|
};
|
|
|
|
struct pci_root_info {
|
|
struct acpi_pci_root_info common;
|
|
struct pci_controller controller;
|
|
struct list_head io_resources;
|
|
};
|
|
|
|
static unsigned int new_space(u64 phys_base, int sparse)
|
|
{
|
|
u64 mmio_base;
|
|
int i;
|
|
|
|
if (phys_base == 0)
|
|
return 0; /* legacy I/O port space */
|
|
|
|
mmio_base = (u64) ioremap(phys_base, 0);
|
|
for (i = 0; i < num_io_spaces; i++)
|
|
if (io_space[i].mmio_base == mmio_base &&
|
|
io_space[i].sparse == sparse)
|
|
return i;
|
|
|
|
if (num_io_spaces == MAX_IO_SPACES) {
|
|
pr_err("PCI: Too many IO port spaces "
|
|
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
|
|
return ~0;
|
|
}
|
|
|
|
i = num_io_spaces++;
|
|
io_space[i].mmio_base = mmio_base;
|
|
io_space[i].sparse = sparse;
|
|
|
|
return i;
|
|
}
|
|
|
|
static int add_io_space(struct device *dev, struct pci_root_info *info,
|
|
struct resource_entry *entry)
|
|
{
|
|
struct resource_entry *iospace;
|
|
struct resource *resource, *res = entry->res;
|
|
char *name;
|
|
unsigned long base, min, max, base_port;
|
|
unsigned int sparse = 0, space_nr, len;
|
|
|
|
len = strlen(info->common.name) + 32;
|
|
iospace = resource_list_create_entry(NULL, len);
|
|
if (!iospace) {
|
|
dev_err(dev, "PCI: No memory for %s I/O port space\n",
|
|
info->common.name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (res->flags & IORESOURCE_IO_SPARSE)
|
|
sparse = 1;
|
|
space_nr = new_space(entry->offset, sparse);
|
|
if (space_nr == ~0)
|
|
goto free_resource;
|
|
|
|
name = (char *)(iospace + 1);
|
|
min = res->start - entry->offset;
|
|
max = res->end - entry->offset;
|
|
base = __pa(io_space[space_nr].mmio_base);
|
|
base_port = IO_SPACE_BASE(space_nr);
|
|
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
|
|
base_port + min, base_port + max);
|
|
|
|
/*
|
|
* The SDM guarantees the legacy 0-64K space is sparse, but if the
|
|
* mapping is done by the processor (not the bridge), ACPI may not
|
|
* mark it as sparse.
|
|
*/
|
|
if (space_nr == 0)
|
|
sparse = 1;
|
|
|
|
resource = iospace->res;
|
|
resource->name = name;
|
|
resource->flags = IORESOURCE_MEM;
|
|
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
|
|
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
|
|
if (insert_resource(&iomem_resource, resource)) {
|
|
dev_err(dev,
|
|
"can't allocate host bridge io space resource %pR\n",
|
|
resource);
|
|
goto free_resource;
|
|
}
|
|
|
|
entry->offset = base_port;
|
|
res->start = min + base_port;
|
|
res->end = max + base_port;
|
|
resource_list_add_tail(iospace, &info->io_resources);
|
|
|
|
return 0;
|
|
|
|
free_resource:
|
|
resource_list_free_entry(iospace);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* An IO port or MMIO resource assigned to a PCI host bridge may be
|
|
* consumed by the host bridge itself or available to its child
|
|
* bus/devices. The ACPI specification defines a bit (Producer/Consumer)
|
|
* to tell whether the resource is consumed by the host bridge itself,
|
|
* but firmware hasn't used that bit consistently, so we can't rely on it.
|
|
*
|
|
* On x86 and IA64 platforms, all IO port and MMIO resources are assumed
|
|
* to be available to child bus/devices except one special case:
|
|
* IO port [0xCF8-0xCFF] is consumed by the host bridge itself
|
|
* to access PCI configuration space.
|
|
*
|
|
* So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
|
|
*/
|
|
static bool resource_is_pcicfg_ioport(struct resource *res)
|
|
{
|
|
return (res->flags & IORESOURCE_IO) &&
|
|
res->start == 0xCF8 && res->end == 0xCFF;
|
|
}
|
|
|
|
static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
|
|
{
|
|
struct device *dev = &ci->bridge->dev;
|
|
struct pci_root_info *info;
|
|
struct resource *res;
|
|
struct resource_entry *entry, *tmp;
|
|
int status;
|
|
|
|
status = acpi_pci_probe_root_resources(ci);
|
|
if (status > 0) {
|
|
info = container_of(ci, struct pci_root_info, common);
|
|
resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
|
|
res = entry->res;
|
|
if (res->flags & IORESOURCE_MEM) {
|
|
/*
|
|
* HP's firmware has a hack to work around a
|
|
* Windows bug. Ignore these tiny memory ranges.
|
|
*/
|
|
if (resource_size(res) <= 16) {
|
|
resource_list_del(entry);
|
|
insert_resource(&iomem_resource,
|
|
entry->res);
|
|
resource_list_add_tail(entry,
|
|
&info->io_resources);
|
|
}
|
|
} else if (res->flags & IORESOURCE_IO) {
|
|
if (resource_is_pcicfg_ioport(entry->res))
|
|
resource_list_destroy_entry(entry);
|
|
else if (add_io_space(dev, info, entry))
|
|
resource_list_destroy_entry(entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
|
|
{
|
|
struct pci_root_info *info;
|
|
struct resource_entry *entry, *tmp;
|
|
|
|
info = container_of(ci, struct pci_root_info, common);
|
|
resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
|
|
release_resource(entry->res);
|
|
resource_list_destroy_entry(entry);
|
|
}
|
|
kfree(info);
|
|
}
|
|
|
|
static struct acpi_pci_root_ops pci_acpi_root_ops = {
|
|
.pci_ops = &pci_root_ops,
|
|
.release_info = pci_acpi_root_release_info,
|
|
.prepare_resources = pci_acpi_root_prepare_resources,
|
|
};
|
|
|
|
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
|
|
{
|
|
struct acpi_device *device = root->device;
|
|
struct pci_root_info *info;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
dev_err(&device->dev,
|
|
"pci_bus %04x:%02x: ignored (out of memory)\n",
|
|
root->segment, (int)root->secondary.start);
|
|
return NULL;
|
|
}
|
|
|
|
info->controller.segment = root->segment;
|
|
info->controller.companion = device;
|
|
info->controller.node = acpi_get_node(device->handle);
|
|
INIT_LIST_HEAD(&info->io_resources);
|
|
return acpi_pci_root_create(root, &pci_acpi_root_ops,
|
|
&info->common, &info->controller);
|
|
}
|
|
|
|
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
|
|
{
|
|
/*
|
|
* We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
|
|
* here, pci_create_root_bus() has been called by someone else and
|
|
* sysdata is likely to be different from what we expect. Let it go in
|
|
* that case.
|
|
*/
|
|
if (!bridge->dev.parent) {
|
|
struct pci_controller *controller = bridge->bus->sysdata;
|
|
ACPI_COMPANION_SET(&bridge->dev, controller->companion);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void pcibios_fixup_device_resources(struct pci_dev *dev)
|
|
{
|
|
int idx;
|
|
|
|
if (!dev->bus)
|
|
return;
|
|
|
|
for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
|
|
struct resource *r = &dev->resource[idx];
|
|
|
|
if (!r->flags || r->parent || !r->start)
|
|
continue;
|
|
|
|
pci_claim_resource(dev, idx);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
|
|
|
|
static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
|
|
{
|
|
int idx;
|
|
|
|
if (!dev->bus)
|
|
return;
|
|
|
|
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
|
|
struct resource *r = &dev->resource[idx];
|
|
|
|
if (!r->flags || r->parent || !r->start)
|
|
continue;
|
|
|
|
pci_claim_bridge_resource(dev, idx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after each bus is probed, but before its children are examined.
|
|
*/
|
|
void pcibios_fixup_bus(struct pci_bus *b)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
if (b->self) {
|
|
pci_read_bridge_bases(b);
|
|
pcibios_fixup_bridge_resources(b->self);
|
|
}
|
|
list_for_each_entry(dev, &b->devices, bus_list)
|
|
pcibios_fixup_device_resources(dev);
|
|
platform_pci_fixup_bus(b);
|
|
}
|
|
|
|
void pcibios_add_bus(struct pci_bus *bus)
|
|
{
|
|
acpi_pci_add_bus(bus);
|
|
}
|
|
|
|
void pcibios_remove_bus(struct pci_bus *bus)
|
|
{
|
|
acpi_pci_remove_bus(bus);
|
|
}
|
|
|
|
void pcibios_set_master (struct pci_dev *dev)
|
|
{
|
|
/* No special bus mastering setup handling */
|
|
}
|
|
|
|
int
|
|
pcibios_enable_device (struct pci_dev *dev, int mask)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_enable_resources(dev, mask);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!dev->msi_enabled)
|
|
return acpi_pci_irq_enable(dev);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
pcibios_disable_device (struct pci_dev *dev)
|
|
{
|
|
BUG_ON(atomic_read(&dev->enable_cnt));
|
|
if (!dev->msi_enabled)
|
|
acpi_pci_irq_disable(dev);
|
|
}
|
|
|
|
resource_size_t
|
|
pcibios_align_resource (void *data, const struct resource *res,
|
|
resource_size_t size, resource_size_t align)
|
|
{
|
|
return res->start;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_get_legacy_mem - generic legacy mem routine
|
|
* @bus: bus to get legacy memory base address for
|
|
*
|
|
* Find the base of legacy memory for @bus. This is typically the first
|
|
* megabyte of bus address space for @bus or is simply 0 on platforms whose
|
|
* chipsets support legacy I/O and memory routing. Returns the base address
|
|
* or an error pointer if an error occurred.
|
|
*
|
|
* This is the ia64 generic version of this routine. Other platforms
|
|
* are free to override it with a machine vector.
|
|
*/
|
|
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
|
|
{
|
|
return (char *)__IA64_UNCACHED_OFFSET;
|
|
}
|
|
|
|
/**
|
|
* pci_mmap_legacy_page_range - map legacy memory space to userland
|
|
* @bus: bus whose legacy space we're mapping
|
|
* @vma: vma passed in by mmap
|
|
*
|
|
* Map legacy memory space for this device back to userspace using a machine
|
|
* vector to get the base address.
|
|
*/
|
|
int
|
|
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state)
|
|
{
|
|
unsigned long size = vma->vm_end - vma->vm_start;
|
|
pgprot_t prot;
|
|
char *addr;
|
|
|
|
/* We only support mmap'ing of legacy memory space */
|
|
if (mmap_state != pci_mmap_mem)
|
|
return -ENOSYS;
|
|
|
|
/*
|
|
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
|
|
* for more details.
|
|
*/
|
|
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
|
|
return -EINVAL;
|
|
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
|
|
vma->vm_page_prot);
|
|
|
|
addr = pci_get_legacy_mem(bus);
|
|
if (IS_ERR(addr))
|
|
return PTR_ERR(addr);
|
|
|
|
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
|
|
vma->vm_page_prot = prot;
|
|
|
|
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
size, vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_legacy_read - read from legacy I/O space
|
|
* @bus: bus to read
|
|
* @port: legacy port value
|
|
* @val: caller allocated storage for returned value
|
|
* @size: number of bytes to read
|
|
*
|
|
* Simply reads @size bytes from @port and puts the result in @val.
|
|
*
|
|
* Again, this (and the write routine) are generic versions that can be
|
|
* overridden by the platform. This is necessary on platforms that don't
|
|
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
|
|
*/
|
|
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
|
|
{
|
|
int ret = size;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
*val = inb(port);
|
|
break;
|
|
case 2:
|
|
*val = inw(port);
|
|
break;
|
|
case 4:
|
|
*val = inl(port);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ia64_pci_legacy_write - perform a legacy I/O write
|
|
* @bus: bus pointer
|
|
* @port: port to write
|
|
* @val: value to write
|
|
* @size: number of bytes to write from @val
|
|
*
|
|
* Simply writes @size bytes of @val to @port.
|
|
*/
|
|
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
|
|
{
|
|
int ret = size;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
outb(val, port);
|
|
break;
|
|
case 2:
|
|
outw(val, port);
|
|
break;
|
|
case 4:
|
|
outl(val, port);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* set_pci_cacheline_size - determine cacheline size for PCI devices
|
|
*
|
|
* We want to use the line-size of the outer-most cache. We assume
|
|
* that this line-size is the same for all CPUs.
|
|
*
|
|
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
|
|
*/
|
|
static void __init set_pci_dfl_cacheline_size(void)
|
|
{
|
|
unsigned long levels, unique_caches;
|
|
long status;
|
|
pal_cache_config_info_t cci;
|
|
|
|
status = ia64_pal_cache_summary(&levels, &unique_caches);
|
|
if (status != 0) {
|
|
pr_err("%s: ia64_pal_cache_summary() failed "
|
|
"(status=%ld)\n", __func__, status);
|
|
return;
|
|
}
|
|
|
|
status = ia64_pal_cache_config_info(levels - 1,
|
|
/* cache_type (data_or_unified)= */ 2, &cci);
|
|
if (status != 0) {
|
|
pr_err("%s: ia64_pal_cache_config_info() failed "
|
|
"(status=%ld)\n", __func__, status);
|
|
return;
|
|
}
|
|
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
|
|
}
|
|
|
|
u64 ia64_dma_get_required_mask(struct device *dev)
|
|
{
|
|
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
|
|
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
|
|
u64 mask;
|
|
|
|
if (!high_totalram) {
|
|
/* convert to mask just covering totalram */
|
|
low_totalram = (1 << (fls(low_totalram) - 1));
|
|
low_totalram += low_totalram - 1;
|
|
mask = low_totalram;
|
|
} else {
|
|
high_totalram = (1 << (fls(high_totalram) - 1));
|
|
high_totalram += high_totalram - 1;
|
|
mask = (((u64)high_totalram) << 32) + 0xffffffff;
|
|
}
|
|
return mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
|
|
|
|
u64 dma_get_required_mask(struct device *dev)
|
|
{
|
|
return platform_dma_get_required_mask(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dma_get_required_mask);
|
|
|
|
static int __init pcibios_init(void)
|
|
{
|
|
set_pci_dfl_cacheline_size();
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(pcibios_init);
|