mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 10:13:58 +08:00
931aa87791
Commit b02441999e
"Btrfs: don't wait for
the completion of all the ordered extents" introduced a bug that broke
the ordered root list:
WARNING: CPU: 1 PID: 7119 at lib/list_debug.c:59 __list_del_entry+0x5a/0x98()
It is because we forgot to return the roots in the splice list to the
ordered list of the fs. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
1132 lines
32 KiB
C
1132 lines
32 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
#include "disk-io.h"
|
|
|
|
static struct kmem_cache *btrfs_ordered_extent_cache;
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->len < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->len;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
static void ordered_data_tree_panic(struct inode *inode, int errno,
|
|
u64 offset)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
|
|
"%llu\n", offset);
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* helper to check if a given offset is inside a given entry
|
|
*/
|
|
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
|
|
{
|
|
if (file_offset < entry->file_offset ||
|
|
entry->file_offset + entry->len <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
|
|
u64 len)
|
|
{
|
|
if (file_offset + len <= entry->file_offset ||
|
|
entry->file_offset + entry->len <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_root *root = &tree->tree;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (tree->last) {
|
|
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (offset_in_entry(entry, file_offset))
|
|
return tree->last;
|
|
}
|
|
ret = __tree_search(root, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
tree->last = ret;
|
|
return ret;
|
|
}
|
|
|
|
/* allocate and add a new ordered_extent into the per-inode tree.
|
|
* file_offset is the logical offset in the file
|
|
*
|
|
* start is the disk block number of an extent already reserved in the
|
|
* extent allocation tree
|
|
*
|
|
* len is the length of the extent
|
|
*
|
|
* The tree is given a single reference on the ordered extent that was
|
|
* inserted.
|
|
*/
|
|
static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
|
|
u64 start, u64 len, u64 disk_len,
|
|
int type, int dio, int compress_type)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->start = start;
|
|
entry->len = len;
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
|
|
!(type == BTRFS_ORDERED_NOCOW))
|
|
entry->csum_bytes_left = disk_len;
|
|
entry->disk_len = disk_len;
|
|
entry->bytes_left = len;
|
|
entry->inode = igrab(inode);
|
|
entry->compress_type = compress_type;
|
|
entry->truncated_len = (u64)-1;
|
|
if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
|
|
set_bit(type, &entry->flags);
|
|
|
|
if (dio)
|
|
set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
|
|
|
|
/* one ref for the tree */
|
|
atomic_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
INIT_LIST_HEAD(&entry->work_list);
|
|
init_completion(&entry->completion);
|
|
INIT_LIST_HEAD(&entry->log_list);
|
|
|
|
trace_btrfs_ordered_extent_add(inode, entry);
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_insert(&tree->tree, file_offset,
|
|
&entry->rb_node);
|
|
if (node)
|
|
ordered_data_tree_panic(inode, -EEXIST, file_offset);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
if (root->nr_ordered_extents == 1) {
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
BUG_ON(!list_empty(&root->ordered_root));
|
|
list_add_tail(&root->ordered_root,
|
|
&root->fs_info->ordered_roots);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
|
|
u64 start, u64 len, u64 disk_len, int type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
|
|
disk_len, type, 0,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
|
|
u64 start, u64 len, u64 disk_len, int type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
|
|
disk_len, type, 1,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
|
|
u64 start, u64 len, u64 disk_len,
|
|
int type, int compress_type)
|
|
{
|
|
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
|
|
disk_len, type, 0,
|
|
compress_type);
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
void btrfs_add_ordered_sum(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
WARN_ON(entry->csum_bytes_left < sum->len);
|
|
entry->csum_bytes_left -= sum->len;
|
|
if (entry->csum_bytes_left == 0)
|
|
wake_up(&entry->wait);
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* this is used to account for finished IO across a given range
|
|
* of the file. The IO may span ordered extents. If
|
|
* a given ordered_extent is completely done, 1 is returned, otherwise
|
|
* 0.
|
|
*
|
|
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
|
|
* to make sure this function only returns 1 once for a given ordered extent.
|
|
*
|
|
* file_offset is updated to one byte past the range that is recorded as
|
|
* complete. This allows you to walk forward in the file.
|
|
*/
|
|
int btrfs_dec_test_first_ordered_pending(struct inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 *file_offset, u64 io_size, int uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
int ret;
|
|
unsigned long flags;
|
|
u64 dec_end;
|
|
u64 dec_start;
|
|
u64 to_dec;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
node = tree_search(tree, *file_offset);
|
|
if (!node) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, *file_offset)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
dec_start = max(*file_offset, entry->file_offset);
|
|
dec_end = min(*file_offset + io_size, entry->file_offset +
|
|
entry->len);
|
|
*file_offset = dec_end;
|
|
if (dec_start > dec_end) {
|
|
printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
|
|
dec_start, dec_end);
|
|
}
|
|
to_dec = dec_end - dec_start;
|
|
if (to_dec > entry->bytes_left) {
|
|
printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
|
|
entry->bytes_left, to_dec);
|
|
}
|
|
entry->bytes_left -= to_dec;
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
if (entry->bytes_left == 0)
|
|
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
else
|
|
ret = 1;
|
|
out:
|
|
if (!ret && cached && entry) {
|
|
*cached = entry;
|
|
atomic_inc(&entry->refs);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* this is used to account for finished IO across a given range
|
|
* of the file. The IO should not span ordered extents. If
|
|
* a given ordered_extent is completely done, 1 is returned, otherwise
|
|
* 0.
|
|
*
|
|
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
|
|
* to make sure this function only returns 1 once for a given ordered extent.
|
|
*/
|
|
int btrfs_dec_test_ordered_pending(struct inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size, int uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
if (cached && *cached) {
|
|
entry = *cached;
|
|
goto have_entry;
|
|
}
|
|
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
have_entry:
|
|
if (!offset_in_entry(entry, file_offset)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (io_size > entry->bytes_left) {
|
|
printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
|
|
entry->bytes_left, io_size);
|
|
}
|
|
entry->bytes_left -= io_size;
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
if (entry->bytes_left == 0)
|
|
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
else
|
|
ret = 1;
|
|
out:
|
|
if (!ret && cached && entry) {
|
|
*cached = entry;
|
|
atomic_inc(&entry->refs);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return ret == 0;
|
|
}
|
|
|
|
/* Needs to either be called under a log transaction or the log_mutex */
|
|
void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct rb_node *n;
|
|
int index = log->log_transid % 2;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
|
|
ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
spin_lock(&log->log_extents_lock[index]);
|
|
if (list_empty(&ordered->log_list)) {
|
|
list_add_tail(&ordered->log_list, &log->logged_list[index]);
|
|
atomic_inc(&ordered->refs);
|
|
}
|
|
spin_unlock(&log->log_extents_lock[index]);
|
|
}
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
int index = transid % 2;
|
|
|
|
spin_lock_irq(&log->log_extents_lock[index]);
|
|
while (!list_empty(&log->logged_list[index])) {
|
|
ordered = list_first_entry(&log->logged_list[index],
|
|
struct btrfs_ordered_extent,
|
|
log_list);
|
|
list_del_init(&ordered->log_list);
|
|
spin_unlock_irq(&log->log_extents_lock[index]);
|
|
wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
|
|
&ordered->flags));
|
|
btrfs_put_ordered_extent(ordered);
|
|
spin_lock_irq(&log->log_extents_lock[index]);
|
|
}
|
|
spin_unlock_irq(&log->log_extents_lock[index]);
|
|
}
|
|
|
|
void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
int index = transid % 2;
|
|
|
|
spin_lock_irq(&log->log_extents_lock[index]);
|
|
while (!list_empty(&log->logged_list[index])) {
|
|
ordered = list_first_entry(&log->logged_list[index],
|
|
struct btrfs_ordered_extent,
|
|
log_list);
|
|
list_del_init(&ordered->log_list);
|
|
spin_unlock_irq(&log->log_extents_lock[index]);
|
|
btrfs_put_ordered_extent(ordered);
|
|
spin_lock_irq(&log->log_extents_lock[index]);
|
|
}
|
|
spin_unlock_irq(&log->log_extents_lock[index]);
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
trace_btrfs_ordered_extent_put(entry->inode, entry);
|
|
|
|
if (atomic_dec_and_test(&entry->refs)) {
|
|
if (entry->inode)
|
|
btrfs_add_delayed_iput(entry->inode);
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kfree(sum);
|
|
}
|
|
kmem_cache_free(btrfs_ordered_extent_cache, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and waiters are woken up.
|
|
*/
|
|
void btrfs_remove_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct rb_node *node;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
tree->last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
root->nr_ordered_extents--;
|
|
|
|
trace_btrfs_ordered_extent_remove(inode, entry);
|
|
|
|
/*
|
|
* we have no more ordered extents for this inode and
|
|
* no dirty pages. We can safely remove it from the
|
|
* list of ordered extents
|
|
*/
|
|
if (RB_EMPTY_ROOT(&tree->tree) &&
|
|
!mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
list_del_init(&BTRFS_I(inode)->ordered_operations);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
|
|
if (!root->nr_ordered_extents) {
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
BUG_ON(list_empty(&root->ordered_root));
|
|
list_del_init(&root->ordered_root);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
wake_up(&entry->wait);
|
|
}
|
|
|
|
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
|
|
btrfs_start_ordered_extent(ordered->inode, ordered, 1);
|
|
complete(&ordered->completion);
|
|
}
|
|
|
|
/*
|
|
* wait for all the ordered extents in a root. This is done when balancing
|
|
* space between drives.
|
|
*/
|
|
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
|
|
{
|
|
struct list_head splice, works;
|
|
struct btrfs_ordered_extent *ordered, *next;
|
|
int count = 0;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
INIT_LIST_HEAD(&works);
|
|
|
|
mutex_lock(&root->fs_info->ordered_operations_mutex);
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_splice_init(&root->ordered_extents, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
list_move_tail(&ordered->root_extent_list,
|
|
&root->ordered_extents);
|
|
atomic_inc(&ordered->refs);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
ordered->flush_work.func = btrfs_run_ordered_extent_work;
|
|
list_add_tail(&ordered->work_list, &works);
|
|
btrfs_queue_worker(&root->fs_info->flush_workers,
|
|
&ordered->flush_work);
|
|
|
|
cond_resched();
|
|
spin_lock(&root->ordered_extent_lock);
|
|
if (nr != -1)
|
|
nr--;
|
|
count++;
|
|
}
|
|
list_splice_tail(&splice, &root->ordered_extents);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
list_for_each_entry_safe(ordered, next, &works, work_list) {
|
|
list_del_init(&ordered->work_list);
|
|
wait_for_completion(&ordered->completion);
|
|
btrfs_put_ordered_extent(ordered);
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&root->fs_info->ordered_operations_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
int done;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
root = btrfs_grab_fs_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
done = btrfs_wait_ordered_extents(root, nr);
|
|
btrfs_put_fs_root(root);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
if (nr != -1) {
|
|
nr -= done;
|
|
WARN_ON(nr < 0);
|
|
}
|
|
}
|
|
list_splice_tail(&splice, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
|
|
/*
|
|
* this is used during transaction commit to write all the inodes
|
|
* added to the ordered operation list. These files must be fully on
|
|
* disk before the transaction commits.
|
|
*
|
|
* we have two modes here, one is to just start the IO via filemap_flush
|
|
* and the other is to wait for all the io. When we wait, we have an
|
|
* extra check to make sure the ordered operation list really is empty
|
|
* before we return
|
|
*/
|
|
int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int wait)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct inode *inode;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct list_head splice;
|
|
struct list_head works;
|
|
struct btrfs_delalloc_work *work, *next;
|
|
int ret = 0;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
INIT_LIST_HEAD(&works);
|
|
|
|
mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
list_splice_init(&cur_trans->ordered_operations, &splice);
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
|
|
ordered_operations);
|
|
inode = &btrfs_inode->vfs_inode;
|
|
|
|
list_del_init(&btrfs_inode->ordered_operations);
|
|
|
|
/*
|
|
* the inode may be getting freed (in sys_unlink path).
|
|
*/
|
|
inode = igrab(inode);
|
|
if (!inode)
|
|
continue;
|
|
|
|
if (!wait)
|
|
list_add_tail(&BTRFS_I(inode)->ordered_operations,
|
|
&cur_trans->ordered_operations);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
|
|
work = btrfs_alloc_delalloc_work(inode, wait, 1);
|
|
if (!work) {
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
if (list_empty(&BTRFS_I(inode)->ordered_operations))
|
|
list_add_tail(&btrfs_inode->ordered_operations,
|
|
&splice);
|
|
list_splice_tail(&splice,
|
|
&cur_trans->ordered_operations);
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
list_add_tail(&work->list, &works);
|
|
btrfs_queue_worker(&root->fs_info->flush_workers,
|
|
&work->work);
|
|
|
|
cond_resched();
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
out:
|
|
list_for_each_entry_safe(work, next, &works, list) {
|
|
list_del_init(&work->list);
|
|
btrfs_wait_and_free_delalloc_work(work);
|
|
}
|
|
mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Used to start IO or wait for a given ordered extent to finish.
|
|
*
|
|
* If wait is one, this effectively waits on page writeback for all the pages
|
|
* in the extent, and it waits on the io completion code to insert
|
|
* metadata into the btree corresponding to the extent
|
|
*/
|
|
void btrfs_start_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry,
|
|
int wait)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->len - 1;
|
|
|
|
trace_btrfs_ordered_extent_start(inode, entry);
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for the flusher thread to find them
|
|
*/
|
|
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
filemap_fdatawrite_range(inode->i_mapping, start, end);
|
|
if (wait) {
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
|
|
&entry->flags));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
|
|
{
|
|
int ret = 0;
|
|
u64 end;
|
|
u64 orig_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (start + len < start) {
|
|
orig_end = INT_LIMIT(loff_t);
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > INT_LIMIT(loff_t))
|
|
orig_end = INT_LIMIT(loff_t);
|
|
}
|
|
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* So with compression we will find and lock a dirty page and clear the
|
|
* first one as dirty, setup an async extent, and immediately return
|
|
* with the entire range locked but with nobody actually marked with
|
|
* writeback. So we can't just filemap_write_and_wait_range() and
|
|
* expect it to work since it will just kick off a thread to do the
|
|
* actual work. So we need to call filemap_fdatawrite_range _again_
|
|
* since it will wait on the page lock, which won't be unlocked until
|
|
* after the pages have been marked as writeback and so we're good to go
|
|
* from there. We have to do this otherwise we'll miss the ordered
|
|
* extents and that results in badness. Please Josef, do not think you
|
|
* know better and pull this out at some point in the future, it is
|
|
* right and you are wrong.
|
|
*/
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags)) {
|
|
ret = filemap_fdatawrite_range(inode->i_mapping, start,
|
|
orig_end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
end = orig_end;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->len <= start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
end = ordered->file_offset;
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
ret = -EIO;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (ret || end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, file_offset))
|
|
entry = NULL;
|
|
if (entry)
|
|
atomic_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/* Since the DIO code tries to lock a wide area we need to look for any ordered
|
|
* extents that exist in the range, rather than just the start of the range.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
|
|
u64 file_offset,
|
|
u64 len)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
node = tree_search(tree, file_offset + len);
|
|
if (!node)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
break;
|
|
|
|
if (entry->file_offset >= file_offset + len) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
entry = NULL;
|
|
node = rb_next(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
out:
|
|
if (entry)
|
|
atomic_inc(&entry->refs);
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
atomic_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* After an extent is done, call this to conditionally update the on disk
|
|
* i_size. i_size is updated to cover any fully written part of the file.
|
|
*/
|
|
int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
|
|
struct btrfs_ordered_extent *ordered)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
u64 disk_i_size;
|
|
u64 new_i_size;
|
|
u64 i_size = i_size_read(inode);
|
|
struct rb_node *node;
|
|
struct rb_node *prev = NULL;
|
|
struct btrfs_ordered_extent *test;
|
|
int ret = 1;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
if (ordered) {
|
|
offset = entry_end(ordered);
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
|
|
offset = min(offset,
|
|
ordered->file_offset +
|
|
ordered->truncated_len);
|
|
} else {
|
|
offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
|
|
}
|
|
disk_i_size = BTRFS_I(inode)->disk_i_size;
|
|
|
|
/* truncate file */
|
|
if (disk_i_size > i_size) {
|
|
BTRFS_I(inode)->disk_i_size = i_size;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if the disk i_size is already at the inode->i_size, or
|
|
* this ordered extent is inside the disk i_size, we're done
|
|
*/
|
|
if (disk_i_size == i_size)
|
|
goto out;
|
|
|
|
/*
|
|
* We still need to update disk_i_size if outstanding_isize is greater
|
|
* than disk_i_size.
|
|
*/
|
|
if (offset <= disk_i_size &&
|
|
(!ordered || ordered->outstanding_isize <= disk_i_size))
|
|
goto out;
|
|
|
|
/*
|
|
* walk backward from this ordered extent to disk_i_size.
|
|
* if we find an ordered extent then we can't update disk i_size
|
|
* yet
|
|
*/
|
|
if (ordered) {
|
|
node = rb_prev(&ordered->rb_node);
|
|
} else {
|
|
prev = tree_search(tree, offset);
|
|
/*
|
|
* we insert file extents without involving ordered struct,
|
|
* so there should be no ordered struct cover this offset
|
|
*/
|
|
if (prev) {
|
|
test = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
BUG_ON(offset_in_entry(test, offset));
|
|
}
|
|
node = prev;
|
|
}
|
|
for (; node; node = rb_prev(node)) {
|
|
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
|
|
/* We treat this entry as if it doesnt exist */
|
|
if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
|
|
continue;
|
|
if (test->file_offset + test->len <= disk_i_size)
|
|
break;
|
|
if (test->file_offset >= i_size)
|
|
break;
|
|
if (entry_end(test) > disk_i_size) {
|
|
/*
|
|
* we don't update disk_i_size now, so record this
|
|
* undealt i_size. Or we will not know the real
|
|
* i_size.
|
|
*/
|
|
if (test->outstanding_isize < offset)
|
|
test->outstanding_isize = offset;
|
|
if (ordered &&
|
|
ordered->outstanding_isize >
|
|
test->outstanding_isize)
|
|
test->outstanding_isize =
|
|
ordered->outstanding_isize;
|
|
goto out;
|
|
}
|
|
}
|
|
new_i_size = min_t(u64, offset, i_size);
|
|
|
|
/*
|
|
* Some ordered extents may completed before the current one, and
|
|
* we hold the real i_size in ->outstanding_isize.
|
|
*/
|
|
if (ordered && ordered->outstanding_isize > new_i_size)
|
|
new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
|
|
BTRFS_I(inode)->disk_i_size = new_i_size;
|
|
ret = 0;
|
|
out:
|
|
/*
|
|
* We need to do this because we can't remove ordered extents until
|
|
* after the i_disk_size has been updated and then the inode has been
|
|
* updated to reflect the change, so we need to tell anybody who finds
|
|
* this ordered extent that we've already done all the real work, we
|
|
* just haven't completed all the other work.
|
|
*/
|
|
if (ordered)
|
|
set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
|
|
spin_unlock_irq(&tree->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* search the ordered extents for one corresponding to 'offset' and
|
|
* try to find a checksum. This is used because we allow pages to
|
|
* be reclaimed before their checksum is actually put into the btree
|
|
*/
|
|
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
|
|
u32 *sum, int len)
|
|
{
|
|
struct btrfs_ordered_sum *ordered_sum;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
unsigned long num_sectors;
|
|
unsigned long i;
|
|
u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
|
|
int index = 0;
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, offset);
|
|
if (!ordered)
|
|
return 0;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
|
|
if (disk_bytenr >= ordered_sum->bytenr &&
|
|
disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
|
|
i = (disk_bytenr - ordered_sum->bytenr) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
num_sectors = ordered_sum->len >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
num_sectors = min_t(int, len - index, num_sectors - i);
|
|
memcpy(sum + index, ordered_sum->sums + i,
|
|
num_sectors);
|
|
|
|
index += (int)num_sectors;
|
|
if (index == len)
|
|
goto out;
|
|
disk_bytenr += num_sectors * sectorsize;
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
btrfs_put_ordered_extent(ordered);
|
|
return index;
|
|
}
|
|
|
|
|
|
/*
|
|
* add a given inode to the list of inodes that must be fully on
|
|
* disk before a transaction commit finishes.
|
|
*
|
|
* This basically gives us the ext3 style data=ordered mode, and it is mostly
|
|
* used to make sure renamed files are fully on disk.
|
|
*
|
|
* It is a noop if the inode is already fully on disk.
|
|
*
|
|
* If trans is not null, we'll do a friendly check for a transaction that
|
|
* is already flushing things and force the IO down ourselves.
|
|
*/
|
|
void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
u64 last_mod;
|
|
|
|
last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
|
|
|
|
/*
|
|
* if this file hasn't been changed since the last transaction
|
|
* commit, we can safely return without doing anything
|
|
*/
|
|
if (last_mod <= root->fs_info->last_trans_committed)
|
|
return;
|
|
|
|
spin_lock(&root->fs_info->ordered_root_lock);
|
|
if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
|
|
list_add_tail(&BTRFS_I(inode)->ordered_operations,
|
|
&cur_trans->ordered_operations);
|
|
}
|
|
spin_unlock(&root->fs_info->ordered_root_lock);
|
|
}
|
|
|
|
int __init ordered_data_init(void)
|
|
{
|
|
btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
|
|
sizeof(struct btrfs_ordered_extent), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_ordered_extent_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ordered_data_exit(void)
|
|
{
|
|
if (btrfs_ordered_extent_cache)
|
|
kmem_cache_destroy(btrfs_ordered_extent_cache);
|
|
}
|