2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/sound/soc/codecs/wm_adsp.c
Charles Keepax d8a64d6ade ASoC: wm_adsp: Factor out ADSP2 boot proceedure
Move the ADSP2 boot proceedure into a work structure in preparation for
running it asynchronously with the reset of the audio path bring up.

Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
2014-01-08 18:17:37 +00:00

1725 lines
43 KiB
C

/*
* wm_adsp.c -- Wolfson ADSP support
*
* Copyright 2012 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/list.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <linux/mfd/arizona/registers.h>
#include "arizona.h"
#include "wm_adsp.h"
#define adsp_crit(_dsp, fmt, ...) \
dev_crit(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__)
#define adsp_err(_dsp, fmt, ...) \
dev_err(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__)
#define adsp_warn(_dsp, fmt, ...) \
dev_warn(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__)
#define adsp_info(_dsp, fmt, ...) \
dev_info(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__)
#define adsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "DSP%d: " fmt, _dsp->num, ##__VA_ARGS__)
#define ADSP1_CONTROL_1 0x00
#define ADSP1_CONTROL_2 0x02
#define ADSP1_CONTROL_3 0x03
#define ADSP1_CONTROL_4 0x04
#define ADSP1_CONTROL_5 0x06
#define ADSP1_CONTROL_6 0x07
#define ADSP1_CONTROL_7 0x08
#define ADSP1_CONTROL_8 0x09
#define ADSP1_CONTROL_9 0x0A
#define ADSP1_CONTROL_10 0x0B
#define ADSP1_CONTROL_11 0x0C
#define ADSP1_CONTROL_12 0x0D
#define ADSP1_CONTROL_13 0x0F
#define ADSP1_CONTROL_14 0x10
#define ADSP1_CONTROL_15 0x11
#define ADSP1_CONTROL_16 0x12
#define ADSP1_CONTROL_17 0x13
#define ADSP1_CONTROL_18 0x14
#define ADSP1_CONTROL_19 0x16
#define ADSP1_CONTROL_20 0x17
#define ADSP1_CONTROL_21 0x18
#define ADSP1_CONTROL_22 0x1A
#define ADSP1_CONTROL_23 0x1B
#define ADSP1_CONTROL_24 0x1C
#define ADSP1_CONTROL_25 0x1E
#define ADSP1_CONTROL_26 0x20
#define ADSP1_CONTROL_27 0x21
#define ADSP1_CONTROL_28 0x22
#define ADSP1_CONTROL_29 0x23
#define ADSP1_CONTROL_30 0x24
#define ADSP1_CONTROL_31 0x26
/*
* ADSP1 Control 19
*/
#define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
/*
* ADSP1 Control 30
*/
#define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
#define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
#define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP1_START 0x0001 /* DSP1_START */
#define ADSP1_START_MASK 0x0001 /* DSP1_START */
#define ADSP1_START_SHIFT 0 /* DSP1_START */
#define ADSP1_START_WIDTH 1 /* DSP1_START */
/*
* ADSP1 Control 31
*/
#define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
#define ADSP2_CONTROL 0x0
#define ADSP2_CLOCKING 0x1
#define ADSP2_STATUS1 0x4
#define ADSP2_WDMA_CONFIG_1 0x30
#define ADSP2_WDMA_CONFIG_2 0x31
#define ADSP2_RDMA_CONFIG_1 0x34
/*
* ADSP2 Control
*/
#define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
#define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
#define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
#define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
#define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
#define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
#define ADSP2_START 0x0001 /* DSP1_START */
#define ADSP2_START_MASK 0x0001 /* DSP1_START */
#define ADSP2_START_SHIFT 0 /* DSP1_START */
#define ADSP2_START_WIDTH 1 /* DSP1_START */
/*
* ADSP2 clocking
*/
#define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
#define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
/*
* ADSP2 Status 1
*/
#define ADSP2_RAM_RDY 0x0001
#define ADSP2_RAM_RDY_MASK 0x0001
#define ADSP2_RAM_RDY_SHIFT 0
#define ADSP2_RAM_RDY_WIDTH 1
struct wm_adsp_buf {
struct list_head list;
void *buf;
};
static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len,
struct list_head *list)
{
struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return NULL;
buf->buf = kmemdup(src, len, GFP_KERNEL | GFP_DMA);
if (!buf->buf) {
kfree(buf);
return NULL;
}
if (list)
list_add_tail(&buf->list, list);
return buf;
}
static void wm_adsp_buf_free(struct list_head *list)
{
while (!list_empty(list)) {
struct wm_adsp_buf *buf = list_first_entry(list,
struct wm_adsp_buf,
list);
list_del(&buf->list);
kfree(buf->buf);
kfree(buf);
}
}
#define WM_ADSP_NUM_FW 4
#define WM_ADSP_FW_MBC_VSS 0
#define WM_ADSP_FW_TX 1
#define WM_ADSP_FW_TX_SPK 2
#define WM_ADSP_FW_RX_ANC 3
static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = "MBC/VSS",
[WM_ADSP_FW_TX] = "Tx",
[WM_ADSP_FW_TX_SPK] = "Tx Speaker",
[WM_ADSP_FW_RX_ANC] = "Rx ANC",
};
static struct {
const char *file;
} wm_adsp_fw[WM_ADSP_NUM_FW] = {
[WM_ADSP_FW_MBC_VSS] = { .file = "mbc-vss" },
[WM_ADSP_FW_TX] = { .file = "tx" },
[WM_ADSP_FW_TX_SPK] = { .file = "tx-spk" },
[WM_ADSP_FW_RX_ANC] = { .file = "rx-anc" },
};
struct wm_coeff_ctl_ops {
int (*xget)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
int (*xput)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
int (*xinfo)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo);
};
struct wm_coeff_ctl {
const char *name;
struct wm_adsp_alg_region region;
struct wm_coeff_ctl_ops ops;
struct wm_adsp *adsp;
void *private;
unsigned int enabled:1;
struct list_head list;
void *cache;
size_t len;
unsigned int set:1;
struct snd_kcontrol *kcontrol;
};
static int wm_adsp_fw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] = adsp[e->shift_l].fw;
return 0;
}
static int wm_adsp_fw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct wm_adsp *adsp = snd_soc_codec_get_drvdata(codec);
if (ucontrol->value.integer.value[0] == adsp[e->shift_l].fw)
return 0;
if (ucontrol->value.integer.value[0] >= WM_ADSP_NUM_FW)
return -EINVAL;
if (adsp[e->shift_l].running)
return -EBUSY;
adsp[e->shift_l].fw = ucontrol->value.integer.value[0];
return 0;
}
static const struct soc_enum wm_adsp_fw_enum[] = {
SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
};
const struct snd_kcontrol_new wm_adsp1_fw_controls[] = {
SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2],
wm_adsp_fw_get, wm_adsp_fw_put),
};
EXPORT_SYMBOL_GPL(wm_adsp1_fw_controls);
#if IS_ENABLED(CONFIG_SND_SOC_ARIZONA)
static const struct soc_enum wm_adsp2_rate_enum[] = {
SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP1_CONTROL_1,
ARIZONA_DSP1_RATE_SHIFT, 0xf,
ARIZONA_RATE_ENUM_SIZE,
arizona_rate_text, arizona_rate_val),
SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP2_CONTROL_1,
ARIZONA_DSP1_RATE_SHIFT, 0xf,
ARIZONA_RATE_ENUM_SIZE,
arizona_rate_text, arizona_rate_val),
SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP3_CONTROL_1,
ARIZONA_DSP1_RATE_SHIFT, 0xf,
ARIZONA_RATE_ENUM_SIZE,
arizona_rate_text, arizona_rate_val),
SOC_VALUE_ENUM_SINGLE(ARIZONA_DSP4_CONTROL_1,
ARIZONA_DSP1_RATE_SHIFT, 0xf,
ARIZONA_RATE_ENUM_SIZE,
arizona_rate_text, arizona_rate_val),
};
const struct snd_kcontrol_new wm_adsp2_fw_controls[] = {
SOC_ENUM_EXT("DSP1 Firmware", wm_adsp_fw_enum[0],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM("DSP1 Rate", wm_adsp2_rate_enum[0]),
SOC_ENUM_EXT("DSP2 Firmware", wm_adsp_fw_enum[1],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM("DSP2 Rate", wm_adsp2_rate_enum[1]),
SOC_ENUM_EXT("DSP3 Firmware", wm_adsp_fw_enum[2],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM("DSP3 Rate", wm_adsp2_rate_enum[2]),
SOC_ENUM_EXT("DSP4 Firmware", wm_adsp_fw_enum[3],
wm_adsp_fw_get, wm_adsp_fw_put),
SOC_ENUM("DSP4 Rate", wm_adsp2_rate_enum[3]),
};
EXPORT_SYMBOL_GPL(wm_adsp2_fw_controls);
#endif
static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp,
int type)
{
int i;
for (i = 0; i < dsp->num_mems; i++)
if (dsp->mem[i].type == type)
return &dsp->mem[i];
return NULL;
}
static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *region,
unsigned int offset)
{
if (WARN_ON(!region))
return offset;
switch (region->type) {
case WMFW_ADSP1_PM:
return region->base + (offset * 3);
case WMFW_ADSP1_DM:
return region->base + (offset * 2);
case WMFW_ADSP2_XM:
return region->base + (offset * 2);
case WMFW_ADSP2_YM:
return region->base + (offset * 2);
case WMFW_ADSP1_ZM:
return region->base + (offset * 2);
default:
WARN(1, "Unknown memory region type");
return offset;
}
}
static int wm_coeff_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = ctl->len;
return 0;
}
static int wm_coeff_write_control(struct snd_kcontrol *kcontrol,
const void *buf, size_t len)
{
struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value;
struct wm_adsp_alg_region *region = &ctl->region;
const struct wm_adsp_region *mem;
struct wm_adsp *adsp = ctl->adsp;
void *scratch;
int ret;
unsigned int reg;
mem = wm_adsp_find_region(adsp, region->type);
if (!mem) {
adsp_err(adsp, "No base for region %x\n",
region->type);
return -EINVAL;
}
reg = ctl->region.base;
reg = wm_adsp_region_to_reg(mem, reg);
scratch = kmemdup(buf, ctl->len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_write(adsp->regmap, reg, scratch,
ctl->len);
if (ret) {
adsp_err(adsp, "Failed to write %zu bytes to %x: %d\n",
ctl->len, reg, ret);
kfree(scratch);
return ret;
}
adsp_dbg(adsp, "Wrote %zu bytes to %x\n", ctl->len, reg);
kfree(scratch);
return 0;
}
static int wm_coeff_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value;
char *p = ucontrol->value.bytes.data;
memcpy(ctl->cache, p, ctl->len);
if (!ctl->enabled) {
ctl->set = 1;
return 0;
}
return wm_coeff_write_control(kcontrol, p, ctl->len);
}
static int wm_coeff_read_control(struct snd_kcontrol *kcontrol,
void *buf, size_t len)
{
struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value;
struct wm_adsp_alg_region *region = &ctl->region;
const struct wm_adsp_region *mem;
struct wm_adsp *adsp = ctl->adsp;
void *scratch;
int ret;
unsigned int reg;
mem = wm_adsp_find_region(adsp, region->type);
if (!mem) {
adsp_err(adsp, "No base for region %x\n",
region->type);
return -EINVAL;
}
reg = ctl->region.base;
reg = wm_adsp_region_to_reg(mem, reg);
scratch = kmalloc(ctl->len, GFP_KERNEL | GFP_DMA);
if (!scratch)
return -ENOMEM;
ret = regmap_raw_read(adsp->regmap, reg, scratch, ctl->len);
if (ret) {
adsp_err(adsp, "Failed to read %zu bytes from %x: %d\n",
ctl->len, reg, ret);
kfree(scratch);
return ret;
}
adsp_dbg(adsp, "Read %zu bytes from %x\n", ctl->len, reg);
memcpy(buf, scratch, ctl->len);
kfree(scratch);
return 0;
}
static int wm_coeff_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct wm_coeff_ctl *ctl = (struct wm_coeff_ctl *)kcontrol->private_value;
char *p = ucontrol->value.bytes.data;
memcpy(p, ctl->cache, ctl->len);
return 0;
}
struct wmfw_ctl_work {
struct wm_adsp *adsp;
struct wm_coeff_ctl *ctl;
struct work_struct work;
};
static int wmfw_add_ctl(struct wm_adsp *adsp, struct wm_coeff_ctl *ctl)
{
struct snd_kcontrol_new *kcontrol;
int ret;
if (!ctl || !ctl->name)
return -EINVAL;
kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL);
if (!kcontrol)
return -ENOMEM;
kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER;
kcontrol->name = ctl->name;
kcontrol->info = wm_coeff_info;
kcontrol->get = wm_coeff_get;
kcontrol->put = wm_coeff_put;
kcontrol->private_value = (unsigned long)ctl;
ret = snd_soc_add_card_controls(adsp->card,
kcontrol, 1);
if (ret < 0)
goto err_kcontrol;
kfree(kcontrol);
ctl->kcontrol = snd_soc_card_get_kcontrol(adsp->card,
ctl->name);
list_add(&ctl->list, &adsp->ctl_list);
return 0;
err_kcontrol:
kfree(kcontrol);
return ret;
}
static int wm_adsp_load(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
const struct firmware *firmware;
struct regmap *regmap = dsp->regmap;
unsigned int pos = 0;
const struct wmfw_header *header;
const struct wmfw_adsp1_sizes *adsp1_sizes;
const struct wmfw_adsp2_sizes *adsp2_sizes;
const struct wmfw_footer *footer;
const struct wmfw_region *region;
const struct wm_adsp_region *mem;
const char *region_name;
char *file, *text;
struct wm_adsp_buf *buf;
unsigned int reg;
int regions = 0;
int ret, offset, type, sizes;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.wmfw", dsp->part, dsp->num,
wm_adsp_fw[dsp->fw].file);
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_err(dsp, "Failed to request '%s'\n", file);
goto out;
}
ret = -EINVAL;
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
if (pos >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
header = (void*)&firmware->data[0];
if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
if (header->ver != 0) {
adsp_err(dsp, "%s: unknown file format %d\n",
file, header->ver);
goto out_fw;
}
adsp_info(dsp, "Firmware version: %d\n", header->ver);
if (header->core != dsp->type) {
adsp_err(dsp, "%s: invalid core %d != %d\n",
file, header->core, dsp->type);
goto out_fw;
}
switch (dsp->type) {
case WMFW_ADSP1:
pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
adsp1_sizes = (void *)&(header[1]);
footer = (void *)&(adsp1_sizes[1]);
sizes = sizeof(*adsp1_sizes);
adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n",
file, le32_to_cpu(adsp1_sizes->dm),
le32_to_cpu(adsp1_sizes->pm),
le32_to_cpu(adsp1_sizes->zm));
break;
case WMFW_ADSP2:
pos = sizeof(*header) + sizeof(*adsp2_sizes) + sizeof(*footer);
adsp2_sizes = (void *)&(header[1]);
footer = (void *)&(adsp2_sizes[1]);
sizes = sizeof(*adsp2_sizes);
adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n",
file, le32_to_cpu(adsp2_sizes->xm),
le32_to_cpu(adsp2_sizes->ym),
le32_to_cpu(adsp2_sizes->pm),
le32_to_cpu(adsp2_sizes->zm));
break;
default:
WARN(1, "Unknown DSP type");
goto out_fw;
}
if (le32_to_cpu(header->len) != sizeof(*header) +
sizes + sizeof(*footer)) {
adsp_err(dsp, "%s: unexpected header length %d\n",
file, le32_to_cpu(header->len));
goto out_fw;
}
adsp_dbg(dsp, "%s: timestamp %llu\n", file,
le64_to_cpu(footer->timestamp));
while (pos < firmware->size &&
pos - firmware->size > sizeof(*region)) {
region = (void *)&(firmware->data[pos]);
region_name = "Unknown";
reg = 0;
text = NULL;
offset = le32_to_cpu(region->offset) & 0xffffff;
type = be32_to_cpu(region->type) & 0xff;
mem = wm_adsp_find_region(dsp, type);
switch (type) {
case WMFW_NAME_TEXT:
region_name = "Firmware name";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_INFO_TEXT:
region_name = "Information";
text = kzalloc(le32_to_cpu(region->len) + 1,
GFP_KERNEL);
break;
case WMFW_ABSOLUTE:
region_name = "Absolute";
reg = offset;
break;
case WMFW_ADSP1_PM:
region_name = "PM";
reg = wm_adsp_region_to_reg(mem, offset);
break;
case WMFW_ADSP1_DM:
region_name = "DM";
reg = wm_adsp_region_to_reg(mem, offset);
break;
case WMFW_ADSP2_XM:
region_name = "XM";
reg = wm_adsp_region_to_reg(mem, offset);
break;
case WMFW_ADSP2_YM:
region_name = "YM";
reg = wm_adsp_region_to_reg(mem, offset);
break;
case WMFW_ADSP1_ZM:
region_name = "ZM";
reg = wm_adsp_region_to_reg(mem, offset);
break;
default:
adsp_warn(dsp,
"%s.%d: Unknown region type %x at %d(%x)\n",
file, regions, type, pos, pos);
break;
}
adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
regions, le32_to_cpu(region->len), offset,
region_name);
if (text) {
memcpy(text, region->data, le32_to_cpu(region->len));
adsp_info(dsp, "%s: %s\n", file, text);
kfree(text);
}
if (reg) {
buf = wm_adsp_buf_alloc(region->data,
le32_to_cpu(region->len),
&buf_list);
if (!buf) {
adsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(region->len));
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed to write %d bytes at %d in %s: %d\n",
file, regions,
le32_to_cpu(region->len), offset,
region_name, ret);
goto out_fw;
}
}
pos += le32_to_cpu(region->len) + sizeof(*region);
regions++;
}
ret = regmap_async_complete(regmap);
if (ret != 0) {
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
goto out_fw;
}
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, regions, pos - firmware->size);
out_fw:
regmap_async_complete(regmap);
wm_adsp_buf_free(&buf_list);
release_firmware(firmware);
out:
kfree(file);
return ret;
}
static int wm_coeff_init_control_caches(struct wm_adsp *adsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &adsp->ctl_list, list) {
if (!ctl->enabled || ctl->set)
continue;
ret = wm_coeff_read_control(ctl->kcontrol,
ctl->cache,
ctl->len);
if (ret < 0)
return ret;
}
return 0;
}
static int wm_coeff_sync_controls(struct wm_adsp *adsp)
{
struct wm_coeff_ctl *ctl;
int ret;
list_for_each_entry(ctl, &adsp->ctl_list, list) {
if (!ctl->enabled)
continue;
if (ctl->set) {
ret = wm_coeff_write_control(ctl->kcontrol,
ctl->cache,
ctl->len);
if (ret < 0)
return ret;
}
}
return 0;
}
static void wm_adsp_ctl_work(struct work_struct *work)
{
struct wmfw_ctl_work *ctl_work = container_of(work,
struct wmfw_ctl_work,
work);
wmfw_add_ctl(ctl_work->adsp, ctl_work->ctl);
kfree(ctl_work);
}
static int wm_adsp_create_control(struct wm_adsp *dsp,
const struct wm_adsp_alg_region *region)
{
struct wm_coeff_ctl *ctl;
struct wmfw_ctl_work *ctl_work;
char *name;
char *region_name;
int ret;
name = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!name)
return -ENOMEM;
switch (region->type) {
case WMFW_ADSP1_PM:
region_name = "PM";
break;
case WMFW_ADSP1_DM:
region_name = "DM";
break;
case WMFW_ADSP2_XM:
region_name = "XM";
break;
case WMFW_ADSP2_YM:
region_name = "YM";
break;
case WMFW_ADSP1_ZM:
region_name = "ZM";
break;
default:
ret = -EINVAL;
goto err_name;
}
snprintf(name, PAGE_SIZE, "DSP%d %s %x",
dsp->num, region_name, region->alg);
list_for_each_entry(ctl, &dsp->ctl_list,
list) {
if (!strcmp(ctl->name, name)) {
if (!ctl->enabled)
ctl->enabled = 1;
goto found;
}
}
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
if (!ctl) {
ret = -ENOMEM;
goto err_name;
}
ctl->region = *region;
ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL);
if (!ctl->name) {
ret = -ENOMEM;
goto err_ctl;
}
ctl->enabled = 1;
ctl->set = 0;
ctl->ops.xget = wm_coeff_get;
ctl->ops.xput = wm_coeff_put;
ctl->adsp = dsp;
ctl->len = region->len;
ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
if (!ctl->cache) {
ret = -ENOMEM;
goto err_ctl_name;
}
ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL);
if (!ctl_work) {
ret = -ENOMEM;
goto err_ctl_cache;
}
ctl_work->adsp = dsp;
ctl_work->ctl = ctl;
INIT_WORK(&ctl_work->work, wm_adsp_ctl_work);
schedule_work(&ctl_work->work);
found:
kfree(name);
return 0;
err_ctl_cache:
kfree(ctl->cache);
err_ctl_name:
kfree(ctl->name);
err_ctl:
kfree(ctl);
err_name:
kfree(name);
return ret;
}
static int wm_adsp_setup_algs(struct wm_adsp *dsp)
{
struct regmap *regmap = dsp->regmap;
struct wmfw_adsp1_id_hdr adsp1_id;
struct wmfw_adsp2_id_hdr adsp2_id;
struct wmfw_adsp1_alg_hdr *adsp1_alg;
struct wmfw_adsp2_alg_hdr *adsp2_alg;
void *alg, *buf;
struct wm_adsp_alg_region *region;
const struct wm_adsp_region *mem;
unsigned int pos, term;
size_t algs, buf_size;
__be32 val;
int i, ret;
switch (dsp->type) {
case WMFW_ADSP1:
mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM);
break;
case WMFW_ADSP2:
mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
break;
default:
mem = NULL;
break;
}
if (WARN_ON(!mem))
return -EINVAL;
switch (dsp->type) {
case WMFW_ADSP1:
ret = regmap_raw_read(regmap, mem->base, &adsp1_id,
sizeof(adsp1_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
buf = &adsp1_id;
buf_size = sizeof(adsp1_id);
algs = be32_to_cpu(adsp1_id.algs);
dsp->fw_id = be32_to_cpu(adsp1_id.fw.id);
adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
dsp->fw_id,
(be32_to_cpu(adsp1_id.fw.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_id.fw.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_id.fw.ver) & 0xff,
algs);
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP1_ZM;
region->alg = be32_to_cpu(adsp1_id.fw.id);
region->base = be32_to_cpu(adsp1_id.zm);
list_add_tail(&region->list, &dsp->alg_regions);
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP1_DM;
region->alg = be32_to_cpu(adsp1_id.fw.id);
region->base = be32_to_cpu(adsp1_id.dm);
list_add_tail(&region->list, &dsp->alg_regions);
pos = sizeof(adsp1_id) / 2;
term = pos + ((sizeof(*adsp1_alg) * algs) / 2);
break;
case WMFW_ADSP2:
ret = regmap_raw_read(regmap, mem->base, &adsp2_id,
sizeof(adsp2_id));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm info: %d\n",
ret);
return ret;
}
buf = &adsp2_id;
buf_size = sizeof(adsp2_id);
algs = be32_to_cpu(adsp2_id.algs);
dsp->fw_id = be32_to_cpu(adsp2_id.fw.id);
adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
dsp->fw_id,
(be32_to_cpu(adsp2_id.fw.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_id.fw.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_id.fw.ver) & 0xff,
algs);
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_XM;
region->alg = be32_to_cpu(adsp2_id.fw.id);
region->base = be32_to_cpu(adsp2_id.xm);
list_add_tail(&region->list, &dsp->alg_regions);
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_YM;
region->alg = be32_to_cpu(adsp2_id.fw.id);
region->base = be32_to_cpu(adsp2_id.ym);
list_add_tail(&region->list, &dsp->alg_regions);
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_ZM;
region->alg = be32_to_cpu(adsp2_id.fw.id);
region->base = be32_to_cpu(adsp2_id.zm);
list_add_tail(&region->list, &dsp->alg_regions);
pos = sizeof(adsp2_id) / 2;
term = pos + ((sizeof(*adsp2_alg) * algs) / 2);
break;
default:
WARN(1, "Unknown DSP type");
return -EINVAL;
}
if (algs == 0) {
adsp_err(dsp, "No algorithms\n");
return -EINVAL;
}
if (algs > 1024) {
adsp_err(dsp, "Algorithm count %zx excessive\n", algs);
print_hex_dump_bytes(dev_name(dsp->dev), DUMP_PREFIX_OFFSET,
buf, buf_size);
return -EINVAL;
}
/* Read the terminator first to validate the length */
ret = regmap_raw_read(regmap, mem->base + term, &val, sizeof(val));
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list end: %d\n",
ret);
return ret;
}
if (be32_to_cpu(val) != 0xbedead)
adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbeadead\n",
term, be32_to_cpu(val));
alg = kzalloc((term - pos) * 2, GFP_KERNEL | GFP_DMA);
if (!alg)
return -ENOMEM;
ret = regmap_raw_read(regmap, mem->base + pos, alg, (term - pos) * 2);
if (ret != 0) {
adsp_err(dsp, "Failed to read algorithm list: %d\n",
ret);
goto out;
}
adsp1_alg = alg;
adsp2_alg = alg;
for (i = 0; i < algs; i++) {
switch (dsp->type) {
case WMFW_ADSP1:
adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
i, be32_to_cpu(adsp1_alg[i].alg.id),
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp1_alg[i].dm),
be32_to_cpu(adsp1_alg[i].zm));
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP1_DM;
region->alg = be32_to_cpu(adsp1_alg[i].alg.id);
region->base = be32_to_cpu(adsp1_alg[i].dm);
region->len = 0;
list_add_tail(&region->list, &dsp->alg_regions);
if (i + 1 < algs) {
region->len = be32_to_cpu(adsp1_alg[i + 1].dm);
region->len -= be32_to_cpu(adsp1_alg[i].dm);
region->len *= 4;
wm_adsp_create_control(dsp, region);
} else {
adsp_warn(dsp, "Missing length info for region DM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP1_ZM;
region->alg = be32_to_cpu(adsp1_alg[i].alg.id);
region->base = be32_to_cpu(adsp1_alg[i].zm);
region->len = 0;
list_add_tail(&region->list, &dsp->alg_regions);
if (i + 1 < algs) {
region->len = be32_to_cpu(adsp1_alg[i + 1].zm);
region->len -= be32_to_cpu(adsp1_alg[i].zm);
region->len *= 4;
wm_adsp_create_control(dsp, region);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp1_alg[i].alg.id));
}
break;
case WMFW_ADSP2:
adsp_info(dsp,
"%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
i, be32_to_cpu(adsp2_alg[i].alg.id),
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
(be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
be32_to_cpu(adsp2_alg[i].xm),
be32_to_cpu(adsp2_alg[i].ym),
be32_to_cpu(adsp2_alg[i].zm));
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_XM;
region->alg = be32_to_cpu(adsp2_alg[i].alg.id);
region->base = be32_to_cpu(adsp2_alg[i].xm);
region->len = 0;
list_add_tail(&region->list, &dsp->alg_regions);
if (i + 1 < algs) {
region->len = be32_to_cpu(adsp2_alg[i + 1].xm);
region->len -= be32_to_cpu(adsp2_alg[i].xm);
region->len *= 4;
wm_adsp_create_control(dsp, region);
} else {
adsp_warn(dsp, "Missing length info for region XM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_YM;
region->alg = be32_to_cpu(adsp2_alg[i].alg.id);
region->base = be32_to_cpu(adsp2_alg[i].ym);
region->len = 0;
list_add_tail(&region->list, &dsp->alg_regions);
if (i + 1 < algs) {
region->len = be32_to_cpu(adsp2_alg[i + 1].ym);
region->len -= be32_to_cpu(adsp2_alg[i].ym);
region->len *= 4;
wm_adsp_create_control(dsp, region);
} else {
adsp_warn(dsp, "Missing length info for region YM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
region = kzalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
region->type = WMFW_ADSP2_ZM;
region->alg = be32_to_cpu(adsp2_alg[i].alg.id);
region->base = be32_to_cpu(adsp2_alg[i].zm);
region->len = 0;
list_add_tail(&region->list, &dsp->alg_regions);
if (i + 1 < algs) {
region->len = be32_to_cpu(adsp2_alg[i + 1].zm);
region->len -= be32_to_cpu(adsp2_alg[i].zm);
region->len *= 4;
wm_adsp_create_control(dsp, region);
} else {
adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
be32_to_cpu(adsp2_alg[i].alg.id));
}
break;
}
}
out:
kfree(alg);
return ret;
}
static int wm_adsp_load_coeff(struct wm_adsp *dsp)
{
LIST_HEAD(buf_list);
struct regmap *regmap = dsp->regmap;
struct wmfw_coeff_hdr *hdr;
struct wmfw_coeff_item *blk;
const struct firmware *firmware;
const struct wm_adsp_region *mem;
struct wm_adsp_alg_region *alg_region;
const char *region_name;
int ret, pos, blocks, type, offset, reg;
char *file;
struct wm_adsp_buf *buf;
int tmp;
file = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (file == NULL)
return -ENOMEM;
snprintf(file, PAGE_SIZE, "%s-dsp%d-%s.bin", dsp->part, dsp->num,
wm_adsp_fw[dsp->fw].file);
file[PAGE_SIZE - 1] = '\0';
ret = request_firmware(&firmware, file, dsp->dev);
if (ret != 0) {
adsp_warn(dsp, "Failed to request '%s'\n", file);
ret = 0;
goto out;
}
ret = -EINVAL;
if (sizeof(*hdr) >= firmware->size) {
adsp_err(dsp, "%s: file too short, %zu bytes\n",
file, firmware->size);
goto out_fw;
}
hdr = (void*)&firmware->data[0];
if (memcmp(hdr->magic, "WMDR", 4) != 0) {
adsp_err(dsp, "%s: invalid magic\n", file);
goto out_fw;
}
switch (be32_to_cpu(hdr->rev) & 0xff) {
case 1:
break;
default:
adsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
file, be32_to_cpu(hdr->rev) & 0xff);
ret = -EINVAL;
goto out_fw;
}
adsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
(le32_to_cpu(hdr->ver) >> 16) & 0xff,
(le32_to_cpu(hdr->ver) >> 8) & 0xff,
le32_to_cpu(hdr->ver) & 0xff);
pos = le32_to_cpu(hdr->len);
blocks = 0;
while (pos < firmware->size &&
pos - firmware->size > sizeof(*blk)) {
blk = (void*)(&firmware->data[pos]);
type = le16_to_cpu(blk->type);
offset = le16_to_cpu(blk->offset);
adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
file, blocks, le32_to_cpu(blk->id),
(le32_to_cpu(blk->ver) >> 16) & 0xff,
(le32_to_cpu(blk->ver) >> 8) & 0xff,
le32_to_cpu(blk->ver) & 0xff);
adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
file, blocks, le32_to_cpu(blk->len), offset, type);
reg = 0;
region_name = "Unknown";
switch (type) {
case (WMFW_NAME_TEXT << 8):
case (WMFW_INFO_TEXT << 8):
break;
case (WMFW_ABSOLUTE << 8):
/*
* Old files may use this for global
* coefficients.
*/
if (le32_to_cpu(blk->id) == dsp->fw_id &&
offset == 0) {
region_name = "global coefficients";
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No ZM\n");
break;
}
reg = wm_adsp_region_to_reg(mem, 0);
} else {
region_name = "register";
reg = offset;
}
break;
case WMFW_ADSP1_DM:
case WMFW_ADSP1_ZM:
case WMFW_ADSP2_XM:
case WMFW_ADSP2_YM:
adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
file, blocks, le32_to_cpu(blk->len),
type, le32_to_cpu(blk->id));
mem = wm_adsp_find_region(dsp, type);
if (!mem) {
adsp_err(dsp, "No base for region %x\n", type);
break;
}
reg = 0;
list_for_each_entry(alg_region,
&dsp->alg_regions, list) {
if (le32_to_cpu(blk->id) == alg_region->alg &&
type == alg_region->type) {
reg = alg_region->base;
reg = wm_adsp_region_to_reg(mem,
reg);
reg += offset;
}
}
if (reg == 0)
adsp_err(dsp, "No %x for algorithm %x\n",
type, le32_to_cpu(blk->id));
break;
default:
adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
file, blocks, type, pos);
break;
}
if (reg) {
buf = wm_adsp_buf_alloc(blk->data,
le32_to_cpu(blk->len),
&buf_list);
if (!buf) {
adsp_err(dsp, "Out of memory\n");
ret = -ENOMEM;
goto out_fw;
}
adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
file, blocks, le32_to_cpu(blk->len),
reg);
ret = regmap_raw_write_async(regmap, reg, buf->buf,
le32_to_cpu(blk->len));
if (ret != 0) {
adsp_err(dsp,
"%s.%d: Failed to write to %x in %s: %d\n",
file, blocks, reg, region_name, ret);
}
}
tmp = le32_to_cpu(blk->len) % 4;
if (tmp)
pos += le32_to_cpu(blk->len) + (4 - tmp) + sizeof(*blk);
else
pos += le32_to_cpu(blk->len) + sizeof(*blk);
blocks++;
}
ret = regmap_async_complete(regmap);
if (ret != 0)
adsp_err(dsp, "Failed to complete async write: %d\n", ret);
if (pos > firmware->size)
adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
file, blocks, pos - firmware->size);
out_fw:
release_firmware(firmware);
wm_adsp_buf_free(&buf_list);
out:
kfree(file);
return ret;
}
int wm_adsp1_init(struct wm_adsp *adsp)
{
INIT_LIST_HEAD(&adsp->alg_regions);
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp1_init);
int wm_adsp1_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_adsp_alg_region *alg_region;
struct wm_coeff_ctl *ctl;
int ret;
int val;
dsp->card = codec->card;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, ADSP1_SYS_ENA);
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
if(dsp->sysclk_reg) {
ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
if (ret != 0) {
adsp_err(dsp, "Failed to read SYSCLK state: %d\n",
ret);
return ret;
}
val = (val & dsp->sysclk_mask)
>> dsp->sysclk_shift;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP1_CONTROL_31,
ADSP1_CLK_SEL_MASK, val);
if (ret != 0) {
adsp_err(dsp, "Failed to set clock rate: %d\n",
ret);
return ret;
}
}
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err;
ret = wm_adsp_setup_algs(dsp);
if (ret != 0)
goto err;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err;
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
/* Start the core running */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START,
ADSP1_CORE_ENA | ADSP1_START);
break;
case SND_SOC_DAPM_PRE_PMD:
/* Halt the core */
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_CORE_ENA | ADSP1_START, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct wm_adsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
break;
default:
break;
}
return 0;
err:
regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
ADSP1_SYS_ENA, 0);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp1_event);
static int wm_adsp2_ena(struct wm_adsp *dsp)
{
unsigned int val;
int ret, count;
ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA, ADSP2_SYS_ENA);
if (ret != 0)
return ret;
/* Wait for the RAM to start, should be near instantaneous */
count = 0;
do {
ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1,
&val);
if (ret != 0)
return ret;
} while (!(val & ADSP2_RAM_RDY) && ++count < 10);
if (!(val & ADSP2_RAM_RDY)) {
adsp_err(dsp, "Failed to start DSP RAM\n");
return -EBUSY;
}
adsp_dbg(dsp, "RAM ready after %d polls\n", count);
return 0;
}
void wm_adsp2_boot_work(struct work_struct *work)
{
struct wm_adsp *dsp = container_of(work,
struct wm_adsp,
boot_work);
int ret;
unsigned int val;
/*
* For simplicity set the DSP clock rate to be the
* SYSCLK rate rather than making it configurable.
*/
ret = regmap_read(dsp->regmap, ARIZONA_SYSTEM_CLOCK_1, &val);
if (ret != 0) {
adsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
return;
}
val = (val & ARIZONA_SYSCLK_FREQ_MASK)
>> ARIZONA_SYSCLK_FREQ_SHIFT;
ret = regmap_update_bits_async(dsp->regmap,
dsp->base + ADSP2_CLOCKING,
ADSP2_CLK_SEL_MASK, val);
if (ret != 0) {
adsp_err(dsp, "Failed to set clock rate: %d\n", ret);
return;
}
if (dsp->dvfs) {
ret = regmap_read(dsp->regmap,
dsp->base + ADSP2_CLOCKING, &val);
if (ret != 0) {
dev_err(dsp->dev, "Failed to read clocking: %d\n", ret);
return;
}
if ((val & ADSP2_CLK_SEL_MASK) >= 3) {
ret = regulator_enable(dsp->dvfs);
if (ret != 0) {
dev_err(dsp->dev,
"Failed to enable supply: %d\n",
ret);
return;
}
ret = regulator_set_voltage(dsp->dvfs,
1800000,
1800000);
if (ret != 0) {
dev_err(dsp->dev,
"Failed to raise supply: %d\n",
ret);
return;
}
}
}
ret = wm_adsp2_ena(dsp);
if (ret != 0)
return;
ret = wm_adsp_load(dsp);
if (ret != 0)
goto err;
ret = wm_adsp_setup_algs(dsp);
if (ret != 0)
goto err;
ret = wm_adsp_load_coeff(dsp);
if (ret != 0)
goto err;
/* Initialize caches for enabled and unset controls */
ret = wm_coeff_init_control_caches(dsp);
if (ret != 0)
goto err;
/* Sync set controls */
ret = wm_coeff_sync_controls(dsp);
if (ret != 0)
goto err;
ret = regmap_update_bits_async(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_CORE_ENA,
ADSP2_CORE_ENA);
if (ret != 0)
goto err;
dsp->running = true;
return;
err:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
}
int wm_adsp2_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm_adsp *dsps = snd_soc_codec_get_drvdata(codec);
struct wm_adsp *dsp = &dsps[w->shift];
struct wm_adsp_alg_region *alg_region;
struct wm_coeff_ctl *ctl;
int ret;
dsp->card = codec->card;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
queue_work(system_unbound_wq, &dsp->boot_work);
flush_work(&dsp->boot_work);
if (!dsp->running)
return -EIO;
ret = regmap_update_bits(dsp->regmap,
dsp->base + ADSP2_CONTROL,
ADSP2_START,
ADSP2_START);
if (ret != 0)
goto err;
break;
case SND_SOC_DAPM_PRE_PMD:
dsp->running = false;
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA | ADSP2_CORE_ENA |
ADSP2_START, 0);
/* Make sure DMAs are quiesced */
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
if (dsp->dvfs) {
ret = regulator_set_voltage(dsp->dvfs, 1200000,
1800000);
if (ret != 0)
dev_warn(dsp->dev,
"Failed to lower supply: %d\n",
ret);
ret = regulator_disable(dsp->dvfs);
if (ret != 0)
dev_err(dsp->dev,
"Failed to enable supply: %d\n",
ret);
}
list_for_each_entry(ctl, &dsp->ctl_list, list)
ctl->enabled = 0;
while (!list_empty(&dsp->alg_regions)) {
alg_region = list_first_entry(&dsp->alg_regions,
struct wm_adsp_alg_region,
list);
list_del(&alg_region->list);
kfree(alg_region);
}
break;
default:
break;
}
return 0;
err:
regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
return ret;
}
EXPORT_SYMBOL_GPL(wm_adsp2_event);
int wm_adsp2_init(struct wm_adsp *adsp, bool dvfs)
{
int ret;
/*
* Disable the DSP memory by default when in reset for a small
* power saving.
*/
ret = regmap_update_bits(adsp->regmap, adsp->base + ADSP2_CONTROL,
ADSP2_MEM_ENA, 0);
if (ret != 0) {
adsp_err(adsp, "Failed to clear memory retention: %d\n", ret);
return ret;
}
INIT_LIST_HEAD(&adsp->alg_regions);
INIT_LIST_HEAD(&adsp->ctl_list);
INIT_WORK(&adsp->boot_work, wm_adsp2_boot_work);
if (dvfs) {
adsp->dvfs = devm_regulator_get(adsp->dev, "DCVDD");
if (IS_ERR(adsp->dvfs)) {
ret = PTR_ERR(adsp->dvfs);
dev_err(adsp->dev, "Failed to get DCVDD: %d\n", ret);
return ret;
}
ret = regulator_enable(adsp->dvfs);
if (ret != 0) {
dev_err(adsp->dev, "Failed to enable DCVDD: %d\n",
ret);
return ret;
}
ret = regulator_set_voltage(adsp->dvfs, 1200000, 1800000);
if (ret != 0) {
dev_err(adsp->dev, "Failed to initialise DVFS: %d\n",
ret);
return ret;
}
ret = regulator_disable(adsp->dvfs);
if (ret != 0) {
dev_err(adsp->dev, "Failed to disable DCVDD: %d\n",
ret);
return ret;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(wm_adsp2_init);