2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/net/core/skbuff.c
Alexander Duyck 3bed3cc415 net: Do not allocate page fragments that are not skb aligned
This patch addresses the fact that there are drivers, specifically tun,
that will call into the network page fragment allocators with buffer sizes
that are not cache aligned. Doing this could result in data alignment
and DMA performance issues as these fragment pools are also shared with the
skb allocator and any other devices that will use napi_alloc_frags or
netdev_alloc_frags.

Fixes: ffde7328a3 ("net: Split netdev_alloc_frag into __alloc_page_frag and add __napi_alloc_frag")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-17 15:48:43 -08:00

5740 lines
141 KiB
C

/*
* Routines having to do with the 'struct sk_buff' memory handlers.
*
* Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
* Florian La Roche <rzsfl@rz.uni-sb.de>
*
* Fixes:
* Alan Cox : Fixed the worst of the load
* balancer bugs.
* Dave Platt : Interrupt stacking fix.
* Richard Kooijman : Timestamp fixes.
* Alan Cox : Changed buffer format.
* Alan Cox : destructor hook for AF_UNIX etc.
* Linus Torvalds : Better skb_clone.
* Alan Cox : Added skb_copy.
* Alan Cox : Added all the changed routines Linus
* only put in the headers
* Ray VanTassle : Fixed --skb->lock in free
* Alan Cox : skb_copy copy arp field
* Andi Kleen : slabified it.
* Robert Olsson : Removed skb_head_pool
*
* NOTE:
* The __skb_ routines should be called with interrupts
* disabled, or you better be *real* sure that the operation is atomic
* with respect to whatever list is being frobbed (e.g. via lock_sock()
* or via disabling bottom half handlers, etc).
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* The functions in this file will not compile correctly with gcc 2.4.x
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/sctp.h>
#include <linux/netdevice.h>
#ifdef CONFIG_NET_CLS_ACT
#include <net/pkt_sched.h>
#endif
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/splice.h>
#include <linux/cache.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/scatterlist.h>
#include <linux/errqueue.h>
#include <linux/prefetch.h>
#include <linux/if_vlan.h>
#include <net/protocol.h>
#include <net/dst.h>
#include <net/sock.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/xfrm.h>
#include <linux/uaccess.h>
#include <trace/events/skb.h>
#include <linux/highmem.h>
#include <linux/capability.h>
#include <linux/user_namespace.h>
struct kmem_cache *skbuff_head_cache __ro_after_init;
static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
#ifdef CONFIG_SKB_EXTENSIONS
static struct kmem_cache *skbuff_ext_cache __ro_after_init;
#endif
int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
EXPORT_SYMBOL(sysctl_max_skb_frags);
/**
* skb_panic - private function for out-of-line support
* @skb: buffer
* @sz: size
* @addr: address
* @msg: skb_over_panic or skb_under_panic
*
* Out-of-line support for skb_put() and skb_push().
* Called via the wrapper skb_over_panic() or skb_under_panic().
* Keep out of line to prevent kernel bloat.
* __builtin_return_address is not used because it is not always reliable.
*/
static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
const char msg[])
{
pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
msg, addr, skb->len, sz, skb->head, skb->data,
(unsigned long)skb->tail, (unsigned long)skb->end,
skb->dev ? skb->dev->name : "<NULL>");
BUG();
}
static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
{
skb_panic(skb, sz, addr, __func__);
}
static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
{
skb_panic(skb, sz, addr, __func__);
}
/*
* kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
* the caller if emergency pfmemalloc reserves are being used. If it is and
* the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
* may be used. Otherwise, the packet data may be discarded until enough
* memory is free
*/
#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
__kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
unsigned long ip, bool *pfmemalloc)
{
void *obj;
bool ret_pfmemalloc = false;
/*
* Try a regular allocation, when that fails and we're not entitled
* to the reserves, fail.
*/
obj = kmalloc_node_track_caller(size,
flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
node);
if (obj || !(gfp_pfmemalloc_allowed(flags)))
goto out;
/* Try again but now we are using pfmemalloc reserves */
ret_pfmemalloc = true;
obj = kmalloc_node_track_caller(size, flags, node);
out:
if (pfmemalloc)
*pfmemalloc = ret_pfmemalloc;
return obj;
}
/* Allocate a new skbuff. We do this ourselves so we can fill in a few
* 'private' fields and also do memory statistics to find all the
* [BEEP] leaks.
*
*/
/**
* __alloc_skb - allocate a network buffer
* @size: size to allocate
* @gfp_mask: allocation mask
* @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
* instead of head cache and allocate a cloned (child) skb.
* If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
* allocations in case the data is required for writeback
* @node: numa node to allocate memory on
*
* Allocate a new &sk_buff. The returned buffer has no headroom and a
* tail room of at least size bytes. The object has a reference count
* of one. The return is the buffer. On a failure the return is %NULL.
*
* Buffers may only be allocated from interrupts using a @gfp_mask of
* %GFP_ATOMIC.
*/
struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
int flags, int node)
{
struct kmem_cache *cache;
struct skb_shared_info *shinfo;
struct sk_buff *skb;
u8 *data;
bool pfmemalloc;
cache = (flags & SKB_ALLOC_FCLONE)
? skbuff_fclone_cache : skbuff_head_cache;
if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
gfp_mask |= __GFP_MEMALLOC;
/* Get the HEAD */
skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
if (!skb)
goto out;
prefetchw(skb);
/* We do our best to align skb_shared_info on a separate cache
* line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
* aligned memory blocks, unless SLUB/SLAB debug is enabled.
* Both skb->head and skb_shared_info are cache line aligned.
*/
size = SKB_DATA_ALIGN(size);
size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
if (!data)
goto nodata;
/* kmalloc(size) might give us more room than requested.
* Put skb_shared_info exactly at the end of allocated zone,
* to allow max possible filling before reallocation.
*/
size = SKB_WITH_OVERHEAD(ksize(data));
prefetchw(data + size);
/*
* Only clear those fields we need to clear, not those that we will
* actually initialise below. Hence, don't put any more fields after
* the tail pointer in struct sk_buff!
*/
memset(skb, 0, offsetof(struct sk_buff, tail));
/* Account for allocated memory : skb + skb->head */
skb->truesize = SKB_TRUESIZE(size);
skb->pfmemalloc = pfmemalloc;
refcount_set(&skb->users, 1);
skb->head = data;
skb->data = data;
skb_reset_tail_pointer(skb);
skb->end = skb->tail + size;
skb->mac_header = (typeof(skb->mac_header))~0U;
skb->transport_header = (typeof(skb->transport_header))~0U;
/* make sure we initialize shinfo sequentially */
shinfo = skb_shinfo(skb);
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
atomic_set(&shinfo->dataref, 1);
if (flags & SKB_ALLOC_FCLONE) {
struct sk_buff_fclones *fclones;
fclones = container_of(skb, struct sk_buff_fclones, skb1);
skb->fclone = SKB_FCLONE_ORIG;
refcount_set(&fclones->fclone_ref, 1);
fclones->skb2.fclone = SKB_FCLONE_CLONE;
}
out:
return skb;
nodata:
kmem_cache_free(cache, skb);
skb = NULL;
goto out;
}
EXPORT_SYMBOL(__alloc_skb);
/**
* __build_skb - build a network buffer
* @data: data buffer provided by caller
* @frag_size: size of data, or 0 if head was kmalloced
*
* Allocate a new &sk_buff. Caller provides space holding head and
* skb_shared_info. @data must have been allocated by kmalloc() only if
* @frag_size is 0, otherwise data should come from the page allocator
* or vmalloc()
* The return is the new skb buffer.
* On a failure the return is %NULL, and @data is not freed.
* Notes :
* Before IO, driver allocates only data buffer where NIC put incoming frame
* Driver should add room at head (NET_SKB_PAD) and
* MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
* After IO, driver calls build_skb(), to allocate sk_buff and populate it
* before giving packet to stack.
* RX rings only contains data buffers, not full skbs.
*/
struct sk_buff *__build_skb(void *data, unsigned int frag_size)
{
struct skb_shared_info *shinfo;
struct sk_buff *skb;
unsigned int size = frag_size ? : ksize(data);
skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
if (!skb)
return NULL;
size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
memset(skb, 0, offsetof(struct sk_buff, tail));
skb->truesize = SKB_TRUESIZE(size);
refcount_set(&skb->users, 1);
skb->head = data;
skb->data = data;
skb_reset_tail_pointer(skb);
skb->end = skb->tail + size;
skb->mac_header = (typeof(skb->mac_header))~0U;
skb->transport_header = (typeof(skb->transport_header))~0U;
/* make sure we initialize shinfo sequentially */
shinfo = skb_shinfo(skb);
memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
atomic_set(&shinfo->dataref, 1);
return skb;
}
/* build_skb() is wrapper over __build_skb(), that specifically
* takes care of skb->head and skb->pfmemalloc
* This means that if @frag_size is not zero, then @data must be backed
* by a page fragment, not kmalloc() or vmalloc()
*/
struct sk_buff *build_skb(void *data, unsigned int frag_size)
{
struct sk_buff *skb = __build_skb(data, frag_size);
if (skb && frag_size) {
skb->head_frag = 1;
if (page_is_pfmemalloc(virt_to_head_page(data)))
skb->pfmemalloc = 1;
}
return skb;
}
EXPORT_SYMBOL(build_skb);
#define NAPI_SKB_CACHE_SIZE 64
struct napi_alloc_cache {
struct page_frag_cache page;
unsigned int skb_count;
void *skb_cache[NAPI_SKB_CACHE_SIZE];
};
static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
{
struct page_frag_cache *nc;
unsigned long flags;
void *data;
local_irq_save(flags);
nc = this_cpu_ptr(&netdev_alloc_cache);
data = page_frag_alloc(nc, fragsz, gfp_mask);
local_irq_restore(flags);
return data;
}
/**
* netdev_alloc_frag - allocate a page fragment
* @fragsz: fragment size
*
* Allocates a frag from a page for receive buffer.
* Uses GFP_ATOMIC allocations.
*/
void *netdev_alloc_frag(unsigned int fragsz)
{
fragsz = SKB_DATA_ALIGN(fragsz);
return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
}
EXPORT_SYMBOL(netdev_alloc_frag);
static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
return page_frag_alloc(&nc->page, fragsz, gfp_mask);
}
void *napi_alloc_frag(unsigned int fragsz)
{
fragsz = SKB_DATA_ALIGN(fragsz);
return __napi_alloc_frag(fragsz, GFP_ATOMIC);
}
EXPORT_SYMBOL(napi_alloc_frag);
/**
* __netdev_alloc_skb - allocate an skbuff for rx on a specific device
* @dev: network device to receive on
* @len: length to allocate
* @gfp_mask: get_free_pages mask, passed to alloc_skb
*
* Allocate a new &sk_buff and assign it a usage count of one. The
* buffer has NET_SKB_PAD headroom built in. Users should allocate
* the headroom they think they need without accounting for the
* built in space. The built in space is used for optimisations.
*
* %NULL is returned if there is no free memory.
*/
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
gfp_t gfp_mask)
{
struct page_frag_cache *nc;
unsigned long flags;
struct sk_buff *skb;
bool pfmemalloc;
void *data;
len += NET_SKB_PAD;
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
if (!skb)
goto skb_fail;
goto skb_success;
}
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
len = SKB_DATA_ALIGN(len);
if (sk_memalloc_socks())
gfp_mask |= __GFP_MEMALLOC;
local_irq_save(flags);
nc = this_cpu_ptr(&netdev_alloc_cache);
data = page_frag_alloc(nc, len, gfp_mask);
pfmemalloc = nc->pfmemalloc;
local_irq_restore(flags);
if (unlikely(!data))
return NULL;
skb = __build_skb(data, len);
if (unlikely(!skb)) {
skb_free_frag(data);
return NULL;
}
/* use OR instead of assignment to avoid clearing of bits in mask */
if (pfmemalloc)
skb->pfmemalloc = 1;
skb->head_frag = 1;
skb_success:
skb_reserve(skb, NET_SKB_PAD);
skb->dev = dev;
skb_fail:
return skb;
}
EXPORT_SYMBOL(__netdev_alloc_skb);
/**
* __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
* @napi: napi instance this buffer was allocated for
* @len: length to allocate
* @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
*
* Allocate a new sk_buff for use in NAPI receive. This buffer will
* attempt to allocate the head from a special reserved region used
* only for NAPI Rx allocation. By doing this we can save several
* CPU cycles by avoiding having to disable and re-enable IRQs.
*
* %NULL is returned if there is no free memory.
*/
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
gfp_t gfp_mask)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
struct sk_buff *skb;
void *data;
len += NET_SKB_PAD + NET_IP_ALIGN;
if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
(gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
if (!skb)
goto skb_fail;
goto skb_success;
}
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
len = SKB_DATA_ALIGN(len);
if (sk_memalloc_socks())
gfp_mask |= __GFP_MEMALLOC;
data = page_frag_alloc(&nc->page, len, gfp_mask);
if (unlikely(!data))
return NULL;
skb = __build_skb(data, len);
if (unlikely(!skb)) {
skb_free_frag(data);
return NULL;
}
/* use OR instead of assignment to avoid clearing of bits in mask */
if (nc->page.pfmemalloc)
skb->pfmemalloc = 1;
skb->head_frag = 1;
skb_success:
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
skb->dev = napi->dev;
skb_fail:
return skb;
}
EXPORT_SYMBOL(__napi_alloc_skb);
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
int size, unsigned int truesize)
{
skb_fill_page_desc(skb, i, page, off, size);
skb->len += size;
skb->data_len += size;
skb->truesize += truesize;
}
EXPORT_SYMBOL(skb_add_rx_frag);
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
unsigned int truesize)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
skb_frag_size_add(frag, size);
skb->len += size;
skb->data_len += size;
skb->truesize += truesize;
}
EXPORT_SYMBOL(skb_coalesce_rx_frag);
static void skb_drop_list(struct sk_buff **listp)
{
kfree_skb_list(*listp);
*listp = NULL;
}
static inline void skb_drop_fraglist(struct sk_buff *skb)
{
skb_drop_list(&skb_shinfo(skb)->frag_list);
}
static void skb_clone_fraglist(struct sk_buff *skb)
{
struct sk_buff *list;
skb_walk_frags(skb, list)
skb_get(list);
}
static void skb_free_head(struct sk_buff *skb)
{
unsigned char *head = skb->head;
if (skb->head_frag)
skb_free_frag(head);
else
kfree(head);
}
static void skb_release_data(struct sk_buff *skb)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int i;
if (skb->cloned &&
atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
&shinfo->dataref))
return;
for (i = 0; i < shinfo->nr_frags; i++)
__skb_frag_unref(&shinfo->frags[i]);
if (shinfo->frag_list)
kfree_skb_list(shinfo->frag_list);
skb_zcopy_clear(skb, true);
skb_free_head(skb);
}
/*
* Free an skbuff by memory without cleaning the state.
*/
static void kfree_skbmem(struct sk_buff *skb)
{
struct sk_buff_fclones *fclones;
switch (skb->fclone) {
case SKB_FCLONE_UNAVAILABLE:
kmem_cache_free(skbuff_head_cache, skb);
return;
case SKB_FCLONE_ORIG:
fclones = container_of(skb, struct sk_buff_fclones, skb1);
/* We usually free the clone (TX completion) before original skb
* This test would have no chance to be true for the clone,
* while here, branch prediction will be good.
*/
if (refcount_read(&fclones->fclone_ref) == 1)
goto fastpath;
break;
default: /* SKB_FCLONE_CLONE */
fclones = container_of(skb, struct sk_buff_fclones, skb2);
break;
}
if (!refcount_dec_and_test(&fclones->fclone_ref))
return;
fastpath:
kmem_cache_free(skbuff_fclone_cache, fclones);
}
void skb_release_head_state(struct sk_buff *skb)
{
skb_dst_drop(skb);
if (skb->destructor) {
WARN_ON(in_irq());
skb->destructor(skb);
}
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
nf_conntrack_put(skb_nfct(skb));
#endif
skb_ext_put(skb);
}
/* Free everything but the sk_buff shell. */
static void skb_release_all(struct sk_buff *skb)
{
skb_release_head_state(skb);
if (likely(skb->head))
skb_release_data(skb);
}
/**
* __kfree_skb - private function
* @skb: buffer
*
* Free an sk_buff. Release anything attached to the buffer.
* Clean the state. This is an internal helper function. Users should
* always call kfree_skb
*/
void __kfree_skb(struct sk_buff *skb)
{
skb_release_all(skb);
kfree_skbmem(skb);
}
EXPORT_SYMBOL(__kfree_skb);
/**
* kfree_skb - free an sk_buff
* @skb: buffer to free
*
* Drop a reference to the buffer and free it if the usage count has
* hit zero.
*/
void kfree_skb(struct sk_buff *skb)
{
if (!skb_unref(skb))
return;
trace_kfree_skb(skb, __builtin_return_address(0));
__kfree_skb(skb);
}
EXPORT_SYMBOL(kfree_skb);
void kfree_skb_list(struct sk_buff *segs)
{
while (segs) {
struct sk_buff *next = segs->next;
kfree_skb(segs);
segs = next;
}
}
EXPORT_SYMBOL(kfree_skb_list);
/**
* skb_tx_error - report an sk_buff xmit error
* @skb: buffer that triggered an error
*
* Report xmit error if a device callback is tracking this skb.
* skb must be freed afterwards.
*/
void skb_tx_error(struct sk_buff *skb)
{
skb_zcopy_clear(skb, true);
}
EXPORT_SYMBOL(skb_tx_error);
/**
* consume_skb - free an skbuff
* @skb: buffer to free
*
* Drop a ref to the buffer and free it if the usage count has hit zero
* Functions identically to kfree_skb, but kfree_skb assumes that the frame
* is being dropped after a failure and notes that
*/
void consume_skb(struct sk_buff *skb)
{
if (!skb_unref(skb))
return;
trace_consume_skb(skb);
__kfree_skb(skb);
}
EXPORT_SYMBOL(consume_skb);
/**
* consume_stateless_skb - free an skbuff, assuming it is stateless
* @skb: buffer to free
*
* Alike consume_skb(), but this variant assumes that this is the last
* skb reference and all the head states have been already dropped
*/
void __consume_stateless_skb(struct sk_buff *skb)
{
trace_consume_skb(skb);
skb_release_data(skb);
kfree_skbmem(skb);
}
void __kfree_skb_flush(void)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
/* flush skb_cache if containing objects */
if (nc->skb_count) {
kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
nc->skb_cache);
nc->skb_count = 0;
}
}
static inline void _kfree_skb_defer(struct sk_buff *skb)
{
struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
/* drop skb->head and call any destructors for packet */
skb_release_all(skb);
/* record skb to CPU local list */
nc->skb_cache[nc->skb_count++] = skb;
#ifdef CONFIG_SLUB
/* SLUB writes into objects when freeing */
prefetchw(skb);
#endif
/* flush skb_cache if it is filled */
if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
nc->skb_cache);
nc->skb_count = 0;
}
}
void __kfree_skb_defer(struct sk_buff *skb)
{
_kfree_skb_defer(skb);
}
void napi_consume_skb(struct sk_buff *skb, int budget)
{
if (unlikely(!skb))
return;
/* Zero budget indicate non-NAPI context called us, like netpoll */
if (unlikely(!budget)) {
dev_consume_skb_any(skb);
return;
}
if (!skb_unref(skb))
return;
/* if reaching here SKB is ready to free */
trace_consume_skb(skb);
/* if SKB is a clone, don't handle this case */
if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
__kfree_skb(skb);
return;
}
_kfree_skb_defer(skb);
}
EXPORT_SYMBOL(napi_consume_skb);
/* Make sure a field is enclosed inside headers_start/headers_end section */
#define CHECK_SKB_FIELD(field) \
BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
offsetof(struct sk_buff, headers_start)); \
BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
offsetof(struct sk_buff, headers_end)); \
static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
{
new->tstamp = old->tstamp;
/* We do not copy old->sk */
new->dev = old->dev;
memcpy(new->cb, old->cb, sizeof(old->cb));
skb_dst_copy(new, old);
__skb_ext_copy(new, old);
__nf_copy(new, old, false);
/* Note : this field could be in headers_start/headers_end section
* It is not yet because we do not want to have a 16 bit hole
*/
new->queue_mapping = old->queue_mapping;
memcpy(&new->headers_start, &old->headers_start,
offsetof(struct sk_buff, headers_end) -
offsetof(struct sk_buff, headers_start));
CHECK_SKB_FIELD(protocol);
CHECK_SKB_FIELD(csum);
CHECK_SKB_FIELD(hash);
CHECK_SKB_FIELD(priority);
CHECK_SKB_FIELD(skb_iif);
CHECK_SKB_FIELD(vlan_proto);
CHECK_SKB_FIELD(vlan_tci);
CHECK_SKB_FIELD(transport_header);
CHECK_SKB_FIELD(network_header);
CHECK_SKB_FIELD(mac_header);
CHECK_SKB_FIELD(inner_protocol);
CHECK_SKB_FIELD(inner_transport_header);
CHECK_SKB_FIELD(inner_network_header);
CHECK_SKB_FIELD(inner_mac_header);
CHECK_SKB_FIELD(mark);
#ifdef CONFIG_NETWORK_SECMARK
CHECK_SKB_FIELD(secmark);
#endif
#ifdef CONFIG_NET_RX_BUSY_POLL
CHECK_SKB_FIELD(napi_id);
#endif
#ifdef CONFIG_XPS
CHECK_SKB_FIELD(sender_cpu);
#endif
#ifdef CONFIG_NET_SCHED
CHECK_SKB_FIELD(tc_index);
#endif
}
/*
* You should not add any new code to this function. Add it to
* __copy_skb_header above instead.
*/
static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
{
#define C(x) n->x = skb->x
n->next = n->prev = NULL;
n->sk = NULL;
__copy_skb_header(n, skb);
C(len);
C(data_len);
C(mac_len);
n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
n->cloned = 1;
n->nohdr = 0;
n->peeked = 0;
C(pfmemalloc);
n->destructor = NULL;
C(tail);
C(end);
C(head);
C(head_frag);
C(data);
C(truesize);
refcount_set(&n->users, 1);
atomic_inc(&(skb_shinfo(skb)->dataref));
skb->cloned = 1;
return n;
#undef C
}
/**
* skb_morph - morph one skb into another
* @dst: the skb to receive the contents
* @src: the skb to supply the contents
*
* This is identical to skb_clone except that the target skb is
* supplied by the user.
*
* The target skb is returned upon exit.
*/
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
{
skb_release_all(dst);
return __skb_clone(dst, src);
}
EXPORT_SYMBOL_GPL(skb_morph);
int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
{
unsigned long max_pg, num_pg, new_pg, old_pg;
struct user_struct *user;
if (capable(CAP_IPC_LOCK) || !size)
return 0;
num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
user = mmp->user ? : current_user();
do {
old_pg = atomic_long_read(&user->locked_vm);
new_pg = old_pg + num_pg;
if (new_pg > max_pg)
return -ENOBUFS;
} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
old_pg);
if (!mmp->user) {
mmp->user = get_uid(user);
mmp->num_pg = num_pg;
} else {
mmp->num_pg += num_pg;
}
return 0;
}
EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
void mm_unaccount_pinned_pages(struct mmpin *mmp)
{
if (mmp->user) {
atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
free_uid(mmp->user);
}
}
EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
{
struct ubuf_info *uarg;
struct sk_buff *skb;
WARN_ON_ONCE(!in_task());
skb = sock_omalloc(sk, 0, GFP_KERNEL);
if (!skb)
return NULL;
BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
uarg = (void *)skb->cb;
uarg->mmp.user = NULL;
if (mm_account_pinned_pages(&uarg->mmp, size)) {
kfree_skb(skb);
return NULL;
}
uarg->callback = sock_zerocopy_callback;
uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
uarg->len = 1;
uarg->bytelen = size;
uarg->zerocopy = 1;
refcount_set(&uarg->refcnt, 1);
sock_hold(sk);
return uarg;
}
EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
{
return container_of((void *)uarg, struct sk_buff, cb);
}
struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
struct ubuf_info *uarg)
{
if (uarg) {
const u32 byte_limit = 1 << 19; /* limit to a few TSO */
u32 bytelen, next;
/* realloc only when socket is locked (TCP, UDP cork),
* so uarg->len and sk_zckey access is serialized
*/
if (!sock_owned_by_user(sk)) {
WARN_ON_ONCE(1);
return NULL;
}
bytelen = uarg->bytelen + size;
if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
/* TCP can create new skb to attach new uarg */
if (sk->sk_type == SOCK_STREAM)
goto new_alloc;
return NULL;
}
next = (u32)atomic_read(&sk->sk_zckey);
if ((u32)(uarg->id + uarg->len) == next) {
if (mm_account_pinned_pages(&uarg->mmp, size))
return NULL;
uarg->len++;
uarg->bytelen = bytelen;
atomic_set(&sk->sk_zckey, ++next);
sock_zerocopy_get(uarg);
return uarg;
}
}
new_alloc:
return sock_zerocopy_alloc(sk, size);
}
EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
{
struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
u32 old_lo, old_hi;
u64 sum_len;
old_lo = serr->ee.ee_info;
old_hi = serr->ee.ee_data;
sum_len = old_hi - old_lo + 1ULL + len;
if (sum_len >= (1ULL << 32))
return false;
if (lo != old_hi + 1)
return false;
serr->ee.ee_data += len;
return true;
}
void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
{
struct sk_buff *tail, *skb = skb_from_uarg(uarg);
struct sock_exterr_skb *serr;
struct sock *sk = skb->sk;
struct sk_buff_head *q;
unsigned long flags;
u32 lo, hi;
u16 len;
mm_unaccount_pinned_pages(&uarg->mmp);
/* if !len, there was only 1 call, and it was aborted
* so do not queue a completion notification
*/
if (!uarg->len || sock_flag(sk, SOCK_DEAD))
goto release;
len = uarg->len;
lo = uarg->id;
hi = uarg->id + len - 1;
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = 0;
serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
serr->ee.ee_data = hi;
serr->ee.ee_info = lo;
if (!success)
serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
q = &sk->sk_error_queue;
spin_lock_irqsave(&q->lock, flags);
tail = skb_peek_tail(q);
if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
!skb_zerocopy_notify_extend(tail, lo, len)) {
__skb_queue_tail(q, skb);
skb = NULL;
}
spin_unlock_irqrestore(&q->lock, flags);
sk->sk_error_report(sk);
release:
consume_skb(skb);
sock_put(sk);
}
EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
void sock_zerocopy_put(struct ubuf_info *uarg)
{
if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
if (uarg->callback)
uarg->callback(uarg, uarg->zerocopy);
else
consume_skb(skb_from_uarg(uarg));
}
}
EXPORT_SYMBOL_GPL(sock_zerocopy_put);
void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
{
if (uarg) {
struct sock *sk = skb_from_uarg(uarg)->sk;
atomic_dec(&sk->sk_zckey);
uarg->len--;
if (have_uref)
sock_zerocopy_put(uarg);
}
}
EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
struct iov_iter *from, size_t length);
int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
{
return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
}
EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
struct msghdr *msg, int len,
struct ubuf_info *uarg)
{
struct ubuf_info *orig_uarg = skb_zcopy(skb);
struct iov_iter orig_iter = msg->msg_iter;
int err, orig_len = skb->len;
/* An skb can only point to one uarg. This edge case happens when
* TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
*/
if (orig_uarg && uarg != orig_uarg)
return -EEXIST;
err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
struct sock *save_sk = skb->sk;
/* Streams do not free skb on error. Reset to prev state. */
msg->msg_iter = orig_iter;
skb->sk = sk;
___pskb_trim(skb, orig_len);
skb->sk = save_sk;
return err;
}
skb_zcopy_set(skb, uarg, NULL);
return skb->len - orig_len;
}
EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
gfp_t gfp_mask)
{
if (skb_zcopy(orig)) {
if (skb_zcopy(nskb)) {
/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
if (!gfp_mask) {
WARN_ON_ONCE(1);
return -ENOMEM;
}
if (skb_uarg(nskb) == skb_uarg(orig))
return 0;
if (skb_copy_ubufs(nskb, GFP_ATOMIC))
return -EIO;
}
skb_zcopy_set(nskb, skb_uarg(orig), NULL);
}
return 0;
}
/**
* skb_copy_ubufs - copy userspace skb frags buffers to kernel
* @skb: the skb to modify
* @gfp_mask: allocation priority
*
* This must be called on SKBTX_DEV_ZEROCOPY skb.
* It will copy all frags into kernel and drop the reference
* to userspace pages.
*
* If this function is called from an interrupt gfp_mask() must be
* %GFP_ATOMIC.
*
* Returns 0 on success or a negative error code on failure
* to allocate kernel memory to copy to.
*/
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
{
int num_frags = skb_shinfo(skb)->nr_frags;
struct page *page, *head = NULL;
int i, new_frags;
u32 d_off;
if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
return -EINVAL;
if (!num_frags)
goto release;
new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
for (i = 0; i < new_frags; i++) {
page = alloc_page(gfp_mask);
if (!page) {
while (head) {
struct page *next = (struct page *)page_private(head);
put_page(head);
head = next;
}
return -ENOMEM;
}
set_page_private(page, (unsigned long)head);
head = page;
}
page = head;
d_off = 0;
for (i = 0; i < num_frags; i++) {
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
p, p_off, p_len, copied) {
u32 copy, done = 0;
vaddr = kmap_atomic(p);
while (done < p_len) {
if (d_off == PAGE_SIZE) {
d_off = 0;
page = (struct page *)page_private(page);
}
copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
memcpy(page_address(page) + d_off,
vaddr + p_off + done, copy);
done += copy;
d_off += copy;
}
kunmap_atomic(vaddr);
}
}
/* skb frags release userspace buffers */
for (i = 0; i < num_frags; i++)
skb_frag_unref(skb, i);
/* skb frags point to kernel buffers */
for (i = 0; i < new_frags - 1; i++) {
__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
head = (struct page *)page_private(head);
}
__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
skb_shinfo(skb)->nr_frags = new_frags;
release:
skb_zcopy_clear(skb, false);
return 0;
}
EXPORT_SYMBOL_GPL(skb_copy_ubufs);
/**
* skb_clone - duplicate an sk_buff
* @skb: buffer to clone
* @gfp_mask: allocation priority
*
* Duplicate an &sk_buff. The new one is not owned by a socket. Both
* copies share the same packet data but not structure. The new
* buffer has a reference count of 1. If the allocation fails the
* function returns %NULL otherwise the new buffer is returned.
*
* If this function is called from an interrupt gfp_mask() must be
* %GFP_ATOMIC.
*/
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
{
struct sk_buff_fclones *fclones = container_of(skb,
struct sk_buff_fclones,
skb1);
struct sk_buff *n;
if (skb_orphan_frags(skb, gfp_mask))
return NULL;
if (skb->fclone == SKB_FCLONE_ORIG &&
refcount_read(&fclones->fclone_ref) == 1) {
n = &fclones->skb2;
refcount_set(&fclones->fclone_ref, 2);
} else {
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
if (!n)
return NULL;
n->fclone = SKB_FCLONE_UNAVAILABLE;
}
return __skb_clone(n, skb);
}
EXPORT_SYMBOL(skb_clone);
void skb_headers_offset_update(struct sk_buff *skb, int off)
{
/* Only adjust this if it actually is csum_start rather than csum */
if (skb->ip_summed == CHECKSUM_PARTIAL)
skb->csum_start += off;
/* {transport,network,mac}_header and tail are relative to skb->head */
skb->transport_header += off;
skb->network_header += off;
if (skb_mac_header_was_set(skb))
skb->mac_header += off;
skb->inner_transport_header += off;
skb->inner_network_header += off;
skb->inner_mac_header += off;
}
EXPORT_SYMBOL(skb_headers_offset_update);
void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
{
__copy_skb_header(new, old);
skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
}
EXPORT_SYMBOL(skb_copy_header);
static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
{
if (skb_pfmemalloc(skb))
return SKB_ALLOC_RX;
return 0;
}
/**
* skb_copy - create private copy of an sk_buff
* @skb: buffer to copy
* @gfp_mask: allocation priority
*
* Make a copy of both an &sk_buff and its data. This is used when the
* caller wishes to modify the data and needs a private copy of the
* data to alter. Returns %NULL on failure or the pointer to the buffer
* on success. The returned buffer has a reference count of 1.
*
* As by-product this function converts non-linear &sk_buff to linear
* one, so that &sk_buff becomes completely private and caller is allowed
* to modify all the data of returned buffer. This means that this
* function is not recommended for use in circumstances when only
* header is going to be modified. Use pskb_copy() instead.
*/
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
{
int headerlen = skb_headroom(skb);
unsigned int size = skb_end_offset(skb) + skb->data_len;
struct sk_buff *n = __alloc_skb(size, gfp_mask,
skb_alloc_rx_flag(skb), NUMA_NO_NODE);
if (!n)
return NULL;
/* Set the data pointer */
skb_reserve(n, headerlen);
/* Set the tail pointer and length */
skb_put(n, skb->len);
BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
skb_copy_header(n, skb);
return n;
}
EXPORT_SYMBOL(skb_copy);
/**
* __pskb_copy_fclone - create copy of an sk_buff with private head.
* @skb: buffer to copy
* @headroom: headroom of new skb
* @gfp_mask: allocation priority
* @fclone: if true allocate the copy of the skb from the fclone
* cache instead of the head cache; it is recommended to set this
* to true for the cases where the copy will likely be cloned
*
* Make a copy of both an &sk_buff and part of its data, located
* in header. Fragmented data remain shared. This is used when
* the caller wishes to modify only header of &sk_buff and needs
* private copy of the header to alter. Returns %NULL on failure
* or the pointer to the buffer on success.
* The returned buffer has a reference count of 1.
*/
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
gfp_t gfp_mask, bool fclone)
{
unsigned int size = skb_headlen(skb) + headroom;
int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
if (!n)
goto out;
/* Set the data pointer */
skb_reserve(n, headroom);
/* Set the tail pointer and length */
skb_put(n, skb_headlen(skb));
/* Copy the bytes */
skb_copy_from_linear_data(skb, n->data, n->len);
n->truesize += skb->data_len;
n->data_len = skb->data_len;
n->len = skb->len;
if (skb_shinfo(skb)->nr_frags) {
int i;
if (skb_orphan_frags(skb, gfp_mask) ||
skb_zerocopy_clone(n, skb, gfp_mask)) {
kfree_skb(n);
n = NULL;
goto out;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
skb_frag_ref(skb, i);
}
skb_shinfo(n)->nr_frags = i;
}
if (skb_has_frag_list(skb)) {
skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
skb_clone_fraglist(n);
}
skb_copy_header(n, skb);
out:
return n;
}
EXPORT_SYMBOL(__pskb_copy_fclone);
/**
* pskb_expand_head - reallocate header of &sk_buff
* @skb: buffer to reallocate
* @nhead: room to add at head
* @ntail: room to add at tail
* @gfp_mask: allocation priority
*
* Expands (or creates identical copy, if @nhead and @ntail are zero)
* header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
* reference count of 1. Returns zero in the case of success or error,
* if expansion failed. In the last case, &sk_buff is not changed.
*
* All the pointers pointing into skb header may change and must be
* reloaded after call to this function.
*/
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
gfp_t gfp_mask)
{
int i, osize = skb_end_offset(skb);
int size = osize + nhead + ntail;
long off;
u8 *data;
BUG_ON(nhead < 0);
BUG_ON(skb_shared(skb));
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
goto nodata;
size = SKB_WITH_OVERHEAD(ksize(data));
/* Copy only real data... and, alas, header. This should be
* optimized for the cases when header is void.
*/
memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb),
offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
/*
* if shinfo is shared we must drop the old head gracefully, but if it
* is not we can just drop the old head and let the existing refcount
* be since all we did is relocate the values
*/
if (skb_cloned(skb)) {
if (skb_orphan_frags(skb, gfp_mask))
goto nofrags;
if (skb_zcopy(skb))
refcount_inc(&skb_uarg(skb)->refcnt);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_frag_ref(skb, i);
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
skb_release_data(skb);
} else {
skb_free_head(skb);
}
off = (data + nhead) - skb->head;
skb->head = data;
skb->head_frag = 0;
skb->data += off;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
off = nhead;
#else
skb->end = skb->head + size;
#endif
skb->tail += off;
skb_headers_offset_update(skb, nhead);
skb->cloned = 0;
skb->hdr_len = 0;
skb->nohdr = 0;
atomic_set(&skb_shinfo(skb)->dataref, 1);
skb_metadata_clear(skb);
/* It is not generally safe to change skb->truesize.
* For the moment, we really care of rx path, or
* when skb is orphaned (not attached to a socket).
*/
if (!skb->sk || skb->destructor == sock_edemux)
skb->truesize += size - osize;
return 0;
nofrags:
kfree(data);
nodata:
return -ENOMEM;
}
EXPORT_SYMBOL(pskb_expand_head);
/* Make private copy of skb with writable head and some headroom */
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
{
struct sk_buff *skb2;
int delta = headroom - skb_headroom(skb);
if (delta <= 0)
skb2 = pskb_copy(skb, GFP_ATOMIC);
else {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
GFP_ATOMIC)) {
kfree_skb(skb2);
skb2 = NULL;
}
}
return skb2;
}
EXPORT_SYMBOL(skb_realloc_headroom);
/**
* skb_copy_expand - copy and expand sk_buff
* @skb: buffer to copy
* @newheadroom: new free bytes at head
* @newtailroom: new free bytes at tail
* @gfp_mask: allocation priority
*
* Make a copy of both an &sk_buff and its data and while doing so
* allocate additional space.
*
* This is used when the caller wishes to modify the data and needs a
* private copy of the data to alter as well as more space for new fields.
* Returns %NULL on failure or the pointer to the buffer
* on success. The returned buffer has a reference count of 1.
*
* You must pass %GFP_ATOMIC as the allocation priority if this function
* is called from an interrupt.
*/
struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
int newheadroom, int newtailroom,
gfp_t gfp_mask)
{
/*
* Allocate the copy buffer
*/
struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
gfp_mask, skb_alloc_rx_flag(skb),
NUMA_NO_NODE);
int oldheadroom = skb_headroom(skb);
int head_copy_len, head_copy_off;
if (!n)
return NULL;
skb_reserve(n, newheadroom);
/* Set the tail pointer and length */
skb_put(n, skb->len);
head_copy_len = oldheadroom;
head_copy_off = 0;
if (newheadroom <= head_copy_len)
head_copy_len = newheadroom;
else
head_copy_off = newheadroom - head_copy_len;
/* Copy the linear header and data. */
BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
skb->len + head_copy_len));
skb_copy_header(n, skb);
skb_headers_offset_update(n, newheadroom - oldheadroom);
return n;
}
EXPORT_SYMBOL(skb_copy_expand);
/**
* __skb_pad - zero pad the tail of an skb
* @skb: buffer to pad
* @pad: space to pad
* @free_on_error: free buffer on error
*
* Ensure that a buffer is followed by a padding area that is zero
* filled. Used by network drivers which may DMA or transfer data
* beyond the buffer end onto the wire.
*
* May return error in out of memory cases. The skb is freed on error
* if @free_on_error is true.
*/
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
{
int err;
int ntail;
/* If the skbuff is non linear tailroom is always zero.. */
if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
memset(skb->data+skb->len, 0, pad);
return 0;
}
ntail = skb->data_len + pad - (skb->end - skb->tail);
if (likely(skb_cloned(skb) || ntail > 0)) {
err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
if (unlikely(err))
goto free_skb;
}
/* FIXME: The use of this function with non-linear skb's really needs
* to be audited.
*/
err = skb_linearize(skb);
if (unlikely(err))
goto free_skb;
memset(skb->data + skb->len, 0, pad);
return 0;
free_skb:
if (free_on_error)
kfree_skb(skb);
return err;
}
EXPORT_SYMBOL(__skb_pad);
/**
* pskb_put - add data to the tail of a potentially fragmented buffer
* @skb: start of the buffer to use
* @tail: tail fragment of the buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the potentially
* fragmented buffer. @tail must be the last fragment of @skb -- or
* @skb itself. If this would exceed the total buffer size the kernel
* will panic. A pointer to the first byte of the extra data is
* returned.
*/
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
{
if (tail != skb) {
skb->data_len += len;
skb->len += len;
}
return skb_put(tail, len);
}
EXPORT_SYMBOL_GPL(pskb_put);
/**
* skb_put - add data to a buffer
* @skb: buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the buffer. If this would
* exceed the total buffer size the kernel will panic. A pointer to the
* first byte of the extra data is returned.
*/
void *skb_put(struct sk_buff *skb, unsigned int len)
{
void *tmp = skb_tail_pointer(skb);
SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len += len;
if (unlikely(skb->tail > skb->end))
skb_over_panic(skb, len, __builtin_return_address(0));
return tmp;
}
EXPORT_SYMBOL(skb_put);
/**
* skb_push - add data to the start of a buffer
* @skb: buffer to use
* @len: amount of data to add
*
* This function extends the used data area of the buffer at the buffer
* start. If this would exceed the total buffer headroom the kernel will
* panic. A pointer to the first byte of the extra data is returned.
*/
void *skb_push(struct sk_buff *skb, unsigned int len)
{
skb->data -= len;
skb->len += len;
if (unlikely(skb->data < skb->head))
skb_under_panic(skb, len, __builtin_return_address(0));
return skb->data;
}
EXPORT_SYMBOL(skb_push);
/**
* skb_pull - remove data from the start of a buffer
* @skb: buffer to use
* @len: amount of data to remove
*
* This function removes data from the start of a buffer, returning
* the memory to the headroom. A pointer to the next data in the buffer
* is returned. Once the data has been pulled future pushes will overwrite
* the old data.
*/
void *skb_pull(struct sk_buff *skb, unsigned int len)
{
return skb_pull_inline(skb, len);
}
EXPORT_SYMBOL(skb_pull);
/**
* skb_trim - remove end from a buffer
* @skb: buffer to alter
* @len: new length
*
* Cut the length of a buffer down by removing data from the tail. If
* the buffer is already under the length specified it is not modified.
* The skb must be linear.
*/
void skb_trim(struct sk_buff *skb, unsigned int len)
{
if (skb->len > len)
__skb_trim(skb, len);
}
EXPORT_SYMBOL(skb_trim);
/* Trims skb to length len. It can change skb pointers.
*/
int ___pskb_trim(struct sk_buff *skb, unsigned int len)
{
struct sk_buff **fragp;
struct sk_buff *frag;
int offset = skb_headlen(skb);
int nfrags = skb_shinfo(skb)->nr_frags;
int i;
int err;
if (skb_cloned(skb) &&
unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
return err;
i = 0;
if (offset >= len)
goto drop_pages;
for (; i < nfrags; i++) {
int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (end < len) {
offset = end;
continue;
}
skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
drop_pages:
skb_shinfo(skb)->nr_frags = i;
for (; i < nfrags; i++)
skb_frag_unref(skb, i);
if (skb_has_frag_list(skb))
skb_drop_fraglist(skb);
goto done;
}
for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
fragp = &frag->next) {
int end = offset + frag->len;
if (skb_shared(frag)) {
struct sk_buff *nfrag;
nfrag = skb_clone(frag, GFP_ATOMIC);
if (unlikely(!nfrag))
return -ENOMEM;
nfrag->next = frag->next;
consume_skb(frag);
frag = nfrag;
*fragp = frag;
}
if (end < len) {
offset = end;
continue;
}
if (end > len &&
unlikely((err = pskb_trim(frag, len - offset))))
return err;
if (frag->next)
skb_drop_list(&frag->next);
break;
}
done:
if (len > skb_headlen(skb)) {
skb->data_len -= skb->len - len;
skb->len = len;
} else {
skb->len = len;
skb->data_len = 0;
skb_set_tail_pointer(skb, len);
}
if (!skb->sk || skb->destructor == sock_edemux)
skb_condense(skb);
return 0;
}
EXPORT_SYMBOL(___pskb_trim);
/* Note : use pskb_trim_rcsum() instead of calling this directly
*/
int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
{
if (skb->ip_summed == CHECKSUM_COMPLETE) {
int delta = skb->len - len;
skb->csum = csum_block_sub(skb->csum,
skb_checksum(skb, len, delta, 0),
len);
}
return __pskb_trim(skb, len);
}
EXPORT_SYMBOL(pskb_trim_rcsum_slow);
/**
* __pskb_pull_tail - advance tail of skb header
* @skb: buffer to reallocate
* @delta: number of bytes to advance tail
*
* The function makes a sense only on a fragmented &sk_buff,
* it expands header moving its tail forward and copying necessary
* data from fragmented part.
*
* &sk_buff MUST have reference count of 1.
*
* Returns %NULL (and &sk_buff does not change) if pull failed
* or value of new tail of skb in the case of success.
*
* All the pointers pointing into skb header may change and must be
* reloaded after call to this function.
*/
/* Moves tail of skb head forward, copying data from fragmented part,
* when it is necessary.
* 1. It may fail due to malloc failure.
* 2. It may change skb pointers.
*
* It is pretty complicated. Luckily, it is called only in exceptional cases.
*/
void *__pskb_pull_tail(struct sk_buff *skb, int delta)
{
/* If skb has not enough free space at tail, get new one
* plus 128 bytes for future expansions. If we have enough
* room at tail, reallocate without expansion only if skb is cloned.
*/
int i, k, eat = (skb->tail + delta) - skb->end;
if (eat > 0 || skb_cloned(skb)) {
if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
GFP_ATOMIC))
return NULL;
}
BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
skb_tail_pointer(skb), delta));
/* Optimization: no fragments, no reasons to preestimate
* size of pulled pages. Superb.
*/
if (!skb_has_frag_list(skb))
goto pull_pages;
/* Estimate size of pulled pages. */
eat = delta;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (size >= eat)
goto pull_pages;
eat -= size;
}
/* If we need update frag list, we are in troubles.
* Certainly, it is possible to add an offset to skb data,
* but taking into account that pulling is expected to
* be very rare operation, it is worth to fight against
* further bloating skb head and crucify ourselves here instead.
* Pure masohism, indeed. 8)8)
*/
if (eat) {
struct sk_buff *list = skb_shinfo(skb)->frag_list;
struct sk_buff *clone = NULL;
struct sk_buff *insp = NULL;
do {
if (list->len <= eat) {
/* Eaten as whole. */
eat -= list->len;
list = list->next;
insp = list;
} else {
/* Eaten partially. */
if (skb_shared(list)) {
/* Sucks! We need to fork list. :-( */
clone = skb_clone(list, GFP_ATOMIC);
if (!clone)
return NULL;
insp = list->next;
list = clone;
} else {
/* This may be pulled without
* problems. */
insp = list;
}
if (!pskb_pull(list, eat)) {
kfree_skb(clone);
return NULL;
}
break;
}
} while (eat);
/* Free pulled out fragments. */
while ((list = skb_shinfo(skb)->frag_list) != insp) {
skb_shinfo(skb)->frag_list = list->next;
kfree_skb(list);
}
/* And insert new clone at head. */
if (clone) {
clone->next = list;
skb_shinfo(skb)->frag_list = clone;
}
}
/* Success! Now we may commit changes to skb data. */
pull_pages:
eat = delta;
k = 0;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (size <= eat) {
skb_frag_unref(skb, i);
eat -= size;
} else {
skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
if (eat) {
skb_shinfo(skb)->frags[k].page_offset += eat;
skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
if (!i)
goto end;
eat = 0;
}
k++;
}
}
skb_shinfo(skb)->nr_frags = k;
end:
skb->tail += delta;
skb->data_len -= delta;
if (!skb->data_len)
skb_zcopy_clear(skb, false);
return skb_tail_pointer(skb);
}
EXPORT_SYMBOL(__pskb_pull_tail);
/**
* skb_copy_bits - copy bits from skb to kernel buffer
* @skb: source skb
* @offset: offset in source
* @to: destination buffer
* @len: number of bytes to copy
*
* Copy the specified number of bytes from the source skb to the
* destination buffer.
*
* CAUTION ! :
* If its prototype is ever changed,
* check arch/{*}/net/{*}.S files,
* since it is called from BPF assembly code.
*/
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
{
int start = skb_headlen(skb);
struct sk_buff *frag_iter;
int i, copy;
if (offset > (int)skb->len - len)
goto fault;
/* Copy header. */
if ((copy = start - offset) > 0) {
if (copy > len)
copy = len;
skb_copy_from_linear_data_offset(skb, offset, to, copy);
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
WARN_ON(start > offset + len);
end = start + skb_frag_size(f);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(f,
f->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
memcpy(to + copied, vaddr + p_off, p_len);
kunmap_atomic(vaddr);
}
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
if (skb_copy_bits(frag_iter, offset - start, to, copy))
goto fault;
if ((len -= copy) == 0)
return 0;
offset += copy;
to += copy;
}
start = end;
}
if (!len)
return 0;
fault:
return -EFAULT;
}
EXPORT_SYMBOL(skb_copy_bits);
/*
* Callback from splice_to_pipe(), if we need to release some pages
* at the end of the spd in case we error'ed out in filling the pipe.
*/
static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
{
put_page(spd->pages[i]);
}
static struct page *linear_to_page(struct page *page, unsigned int *len,
unsigned int *offset,
struct sock *sk)
{
struct page_frag *pfrag = sk_page_frag(sk);
if (!sk_page_frag_refill(sk, pfrag))
return NULL;
*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
memcpy(page_address(pfrag->page) + pfrag->offset,
page_address(page) + *offset, *len);
*offset = pfrag->offset;
pfrag->offset += *len;
return pfrag->page;
}
static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
struct page *page,
unsigned int offset)
{
return spd->nr_pages &&
spd->pages[spd->nr_pages - 1] == page &&
(spd->partial[spd->nr_pages - 1].offset +
spd->partial[spd->nr_pages - 1].len == offset);
}
/*
* Fill page/offset/length into spd, if it can hold more pages.
*/
static bool spd_fill_page(struct splice_pipe_desc *spd,
struct pipe_inode_info *pipe, struct page *page,
unsigned int *len, unsigned int offset,
bool linear,
struct sock *sk)
{
if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
return true;
if (linear) {
page = linear_to_page(page, len, &offset, sk);
if (!page)
return true;
}
if (spd_can_coalesce(spd, page, offset)) {
spd->partial[spd->nr_pages - 1].len += *len;
return false;
}
get_page(page);
spd->pages[spd->nr_pages] = page;
spd->partial[spd->nr_pages].len = *len;
spd->partial[spd->nr_pages].offset = offset;
spd->nr_pages++;
return false;
}
static bool __splice_segment(struct page *page, unsigned int poff,
unsigned int plen, unsigned int *off,
unsigned int *len,
struct splice_pipe_desc *spd, bool linear,
struct sock *sk,
struct pipe_inode_info *pipe)
{
if (!*len)
return true;
/* skip this segment if already processed */
if (*off >= plen) {
*off -= plen;
return false;
}
/* ignore any bits we already processed */
poff += *off;
plen -= *off;
*off = 0;
do {
unsigned int flen = min(*len, plen);
if (spd_fill_page(spd, pipe, page, &flen, poff,
linear, sk))
return true;
poff += flen;
plen -= flen;
*len -= flen;
} while (*len && plen);
return false;
}
/*
* Map linear and fragment data from the skb to spd. It reports true if the
* pipe is full or if we already spliced the requested length.
*/
static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
unsigned int *offset, unsigned int *len,
struct splice_pipe_desc *spd, struct sock *sk)
{
int seg;
struct sk_buff *iter;
/* map the linear part :
* If skb->head_frag is set, this 'linear' part is backed by a
* fragment, and if the head is not shared with any clones then
* we can avoid a copy since we own the head portion of this page.
*/
if (__splice_segment(virt_to_page(skb->data),
(unsigned long) skb->data & (PAGE_SIZE - 1),
skb_headlen(skb),
offset, len, spd,
skb_head_is_locked(skb),
sk, pipe))
return true;
/*
* then map the fragments
*/
for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
if (__splice_segment(skb_frag_page(f),
f->page_offset, skb_frag_size(f),
offset, len, spd, false, sk, pipe))
return true;
}
skb_walk_frags(skb, iter) {
if (*offset >= iter->len) {
*offset -= iter->len;
continue;
}
/* __skb_splice_bits() only fails if the output has no room
* left, so no point in going over the frag_list for the error
* case.
*/
if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
return true;
}
return false;
}
/*
* Map data from the skb to a pipe. Should handle both the linear part,
* the fragments, and the frag list.
*/
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
struct pipe_inode_info *pipe, unsigned int tlen,
unsigned int flags)
{
struct partial_page partial[MAX_SKB_FRAGS];
struct page *pages[MAX_SKB_FRAGS];
struct splice_pipe_desc spd = {
.pages = pages,
.partial = partial,
.nr_pages_max = MAX_SKB_FRAGS,
.ops = &nosteal_pipe_buf_ops,
.spd_release = sock_spd_release,
};
int ret = 0;
__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
if (spd.nr_pages)
ret = splice_to_pipe(pipe, &spd);
return ret;
}
EXPORT_SYMBOL_GPL(skb_splice_bits);
/* Send skb data on a socket. Socket must be locked. */
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
int len)
{
unsigned int orig_len = len;
struct sk_buff *head = skb;
unsigned short fragidx;
int slen, ret;
do_frag_list:
/* Deal with head data */
while (offset < skb_headlen(skb) && len) {
struct kvec kv;
struct msghdr msg;
slen = min_t(int, len, skb_headlen(skb) - offset);
kv.iov_base = skb->data + offset;
kv.iov_len = slen;
memset(&msg, 0, sizeof(msg));
ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
if (ret <= 0)
goto error;
offset += ret;
len -= ret;
}
/* All the data was skb head? */
if (!len)
goto out;
/* Make offset relative to start of frags */
offset -= skb_headlen(skb);
/* Find where we are in frag list */
for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
if (offset < frag->size)
break;
offset -= frag->size;
}
for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
slen = min_t(size_t, len, frag->size - offset);
while (slen) {
ret = kernel_sendpage_locked(sk, frag->page.p,
frag->page_offset + offset,
slen, MSG_DONTWAIT);
if (ret <= 0)
goto error;
len -= ret;
offset += ret;
slen -= ret;
}
offset = 0;
}
if (len) {
/* Process any frag lists */
if (skb == head) {
if (skb_has_frag_list(skb)) {
skb = skb_shinfo(skb)->frag_list;
goto do_frag_list;
}
} else if (skb->next) {
skb = skb->next;
goto do_frag_list;
}
}
out:
return orig_len - len;
error:
return orig_len == len ? ret : orig_len - len;
}
EXPORT_SYMBOL_GPL(skb_send_sock_locked);
/**
* skb_store_bits - store bits from kernel buffer to skb
* @skb: destination buffer
* @offset: offset in destination
* @from: source buffer
* @len: number of bytes to copy
*
* Copy the specified number of bytes from the source buffer to the
* destination skb. This function handles all the messy bits of
* traversing fragment lists and such.
*/
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
{
int start = skb_headlen(skb);
struct sk_buff *frag_iter;
int i, copy;
if (offset > (int)skb->len - len)
goto fault;
if ((copy = start - offset) > 0) {
if (copy > len)
copy = len;
skb_copy_to_linear_data_offset(skb, offset, from, copy);
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(frag);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
memcpy(vaddr + p_off, from + copied, p_len);
kunmap_atomic(vaddr);
}
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
if (skb_store_bits(frag_iter, offset - start,
from, copy))
goto fault;
if ((len -= copy) == 0)
return 0;
offset += copy;
from += copy;
}
start = end;
}
if (!len)
return 0;
fault:
return -EFAULT;
}
EXPORT_SYMBOL(skb_store_bits);
/* Checksum skb data. */
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
__wsum csum, const struct skb_checksum_ops *ops)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int pos = 0;
/* Checksum header. */
if (copy > 0) {
if (copy > len)
copy = len;
csum = ops->update(skb->data + offset, copy, csum);
if ((len -= copy) == 0)
return csum;
offset += copy;
pos = copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
WARN_ON(start > offset + len);
end = start + skb_frag_size(frag);
if ((copy = end - offset) > 0) {
u32 p_off, p_len, copied;
struct page *p;
__wsum csum2;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
csum2 = ops->update(vaddr + p_off, p_len, 0);
kunmap_atomic(vaddr);
csum = ops->combine(csum, csum2, pos, p_len);
pos += p_len;
}
if (!(len -= copy))
return csum;
offset += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
__wsum csum2;
if (copy > len)
copy = len;
csum2 = __skb_checksum(frag_iter, offset - start,
copy, 0, ops);
csum = ops->combine(csum, csum2, pos, copy);
if ((len -= copy) == 0)
return csum;
offset += copy;
pos += copy;
}
start = end;
}
BUG_ON(len);
return csum;
}
EXPORT_SYMBOL(__skb_checksum);
__wsum skb_checksum(const struct sk_buff *skb, int offset,
int len, __wsum csum)
{
const struct skb_checksum_ops ops = {
.update = csum_partial_ext,
.combine = csum_block_add_ext,
};
return __skb_checksum(skb, offset, len, csum, &ops);
}
EXPORT_SYMBOL(skb_checksum);
/* Both of above in one bottle. */
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
u8 *to, int len, __wsum csum)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int pos = 0;
/* Copy header. */
if (copy > 0) {
if (copy > len)
copy = len;
csum = csum_partial_copy_nocheck(skb->data + offset, to,
copy, csum);
if ((len -= copy) == 0)
return csum;
offset += copy;
to += copy;
pos = copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if ((copy = end - offset) > 0) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
u32 p_off, p_len, copied;
struct page *p;
__wsum csum2;
u8 *vaddr;
if (copy > len)
copy = len;
skb_frag_foreach_page(frag,
frag->page_offset + offset - start,
copy, p, p_off, p_len, copied) {
vaddr = kmap_atomic(p);
csum2 = csum_partial_copy_nocheck(vaddr + p_off,
to + copied,
p_len, 0);
kunmap_atomic(vaddr);
csum = csum_block_add(csum, csum2, pos);
pos += p_len;
}
if (!(len -= copy))
return csum;
offset += copy;
to += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
__wsum csum2;
int end;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (copy > len)
copy = len;
csum2 = skb_copy_and_csum_bits(frag_iter,
offset - start,
to, copy, 0);
csum = csum_block_add(csum, csum2, pos);
if ((len -= copy) == 0)
return csum;
offset += copy;
to += copy;
pos += copy;
}
start = end;
}
BUG_ON(len);
return csum;
}
EXPORT_SYMBOL(skb_copy_and_csum_bits);
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
{
__sum16 sum;
sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
/* See comments in __skb_checksum_complete(). */
if (likely(!sum)) {
if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
!skb->csum_complete_sw)
netdev_rx_csum_fault(skb->dev, skb);
}
if (!skb_shared(skb))
skb->csum_valid = !sum;
return sum;
}
EXPORT_SYMBOL(__skb_checksum_complete_head);
/* This function assumes skb->csum already holds pseudo header's checksum,
* which has been changed from the hardware checksum, for example, by
* __skb_checksum_validate_complete(). And, the original skb->csum must
* have been validated unsuccessfully for CHECKSUM_COMPLETE case.
*
* It returns non-zero if the recomputed checksum is still invalid, otherwise
* zero. The new checksum is stored back into skb->csum unless the skb is
* shared.
*/
__sum16 __skb_checksum_complete(struct sk_buff *skb)
{
__wsum csum;
__sum16 sum;
csum = skb_checksum(skb, 0, skb->len, 0);
sum = csum_fold(csum_add(skb->csum, csum));
/* This check is inverted, because we already knew the hardware
* checksum is invalid before calling this function. So, if the
* re-computed checksum is valid instead, then we have a mismatch
* between the original skb->csum and skb_checksum(). This means either
* the original hardware checksum is incorrect or we screw up skb->csum
* when moving skb->data around.
*/
if (likely(!sum)) {
if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
!skb->csum_complete_sw)
netdev_rx_csum_fault(skb->dev, skb);
}
if (!skb_shared(skb)) {
/* Save full packet checksum */
skb->csum = csum;
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum_complete_sw = 1;
skb->csum_valid = !sum;
}
return sum;
}
EXPORT_SYMBOL(__skb_checksum_complete);
static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
{
net_warn_ratelimited(
"%s: attempt to compute crc32c without libcrc32c.ko\n",
__func__);
return 0;
}
static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
int offset, int len)
{
net_warn_ratelimited(
"%s: attempt to compute crc32c without libcrc32c.ko\n",
__func__);
return 0;
}
static const struct skb_checksum_ops default_crc32c_ops = {
.update = warn_crc32c_csum_update,
.combine = warn_crc32c_csum_combine,
};
const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
&default_crc32c_ops;
EXPORT_SYMBOL(crc32c_csum_stub);
/**
* skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
* @from: source buffer
*
* Calculates the amount of linear headroom needed in the 'to' skb passed
* into skb_zerocopy().
*/
unsigned int
skb_zerocopy_headlen(const struct sk_buff *from)
{
unsigned int hlen = 0;
if (!from->head_frag ||
skb_headlen(from) < L1_CACHE_BYTES ||
skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
hlen = skb_headlen(from);
if (skb_has_frag_list(from))
hlen = from->len;
return hlen;
}
EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
/**
* skb_zerocopy - Zero copy skb to skb
* @to: destination buffer
* @from: source buffer
* @len: number of bytes to copy from source buffer
* @hlen: size of linear headroom in destination buffer
*
* Copies up to `len` bytes from `from` to `to` by creating references
* to the frags in the source buffer.
*
* The `hlen` as calculated by skb_zerocopy_headlen() specifies the
* headroom in the `to` buffer.
*
* Return value:
* 0: everything is OK
* -ENOMEM: couldn't orphan frags of @from due to lack of memory
* -EFAULT: skb_copy_bits() found some problem with skb geometry
*/
int
skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
{
int i, j = 0;
int plen = 0; /* length of skb->head fragment */
int ret;
struct page *page;
unsigned int offset;
BUG_ON(!from->head_frag && !hlen);
/* dont bother with small payloads */
if (len <= skb_tailroom(to))
return skb_copy_bits(from, 0, skb_put(to, len), len);
if (hlen) {
ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
if (unlikely(ret))
return ret;
len -= hlen;
} else {
plen = min_t(int, skb_headlen(from), len);
if (plen) {
page = virt_to_head_page(from->head);
offset = from->data - (unsigned char *)page_address(page);
__skb_fill_page_desc(to, 0, page, offset, plen);
get_page(page);
j = 1;
len -= plen;
}
}
to->truesize += len + plen;
to->len += len + plen;
to->data_len += len + plen;
if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
skb_tx_error(from);
return -ENOMEM;
}
skb_zerocopy_clone(to, from, GFP_ATOMIC);
for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
if (!len)
break;
skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
len -= skb_shinfo(to)->frags[j].size;
skb_frag_ref(to, j);
j++;
}
skb_shinfo(to)->nr_frags = j;
return 0;
}
EXPORT_SYMBOL_GPL(skb_zerocopy);
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
{
__wsum csum;
long csstart;
if (skb->ip_summed == CHECKSUM_PARTIAL)
csstart = skb_checksum_start_offset(skb);
else
csstart = skb_headlen(skb);
BUG_ON(csstart > skb_headlen(skb));
skb_copy_from_linear_data(skb, to, csstart);
csum = 0;
if (csstart != skb->len)
csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
skb->len - csstart, 0);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
long csstuff = csstart + skb->csum_offset;
*((__sum16 *)(to + csstuff)) = csum_fold(csum);
}
}
EXPORT_SYMBOL(skb_copy_and_csum_dev);
/**
* skb_dequeue - remove from the head of the queue
* @list: list to dequeue from
*
* Remove the head of the list. The list lock is taken so the function
* may be used safely with other locking list functions. The head item is
* returned or %NULL if the list is empty.
*/
struct sk_buff *skb_dequeue(struct sk_buff_head *list)
{
unsigned long flags;
struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags);
result = __skb_dequeue(list);
spin_unlock_irqrestore(&list->lock, flags);
return result;
}
EXPORT_SYMBOL(skb_dequeue);
/**
* skb_dequeue_tail - remove from the tail of the queue
* @list: list to dequeue from
*
* Remove the tail of the list. The list lock is taken so the function
* may be used safely with other locking list functions. The tail item is
* returned or %NULL if the list is empty.
*/
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
{
unsigned long flags;
struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags);
result = __skb_dequeue_tail(list);
spin_unlock_irqrestore(&list->lock, flags);
return result;
}
EXPORT_SYMBOL(skb_dequeue_tail);
/**
* skb_queue_purge - empty a list
* @list: list to empty
*
* Delete all buffers on an &sk_buff list. Each buffer is removed from
* the list and one reference dropped. This function takes the list
* lock and is atomic with respect to other list locking functions.
*/
void skb_queue_purge(struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
kfree_skb(skb);
}
EXPORT_SYMBOL(skb_queue_purge);
/**
* skb_rbtree_purge - empty a skb rbtree
* @root: root of the rbtree to empty
* Return value: the sum of truesizes of all purged skbs.
*
* Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
* the list and one reference dropped. This function does not take
* any lock. Synchronization should be handled by the caller (e.g., TCP
* out-of-order queue is protected by the socket lock).
*/
unsigned int skb_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
unsigned int sum = 0;
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
p = rb_next(p);
rb_erase(&skb->rbnode, root);
sum += skb->truesize;
kfree_skb(skb);
}
return sum;
}
/**
* skb_queue_head - queue a buffer at the list head
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the start of the list. This function takes the
* list lock and can be used safely with other locking &sk_buff functions
* safely.
*
* A buffer cannot be placed on two lists at the same time.
*/
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_head(list, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_queue_head);
/**
* skb_queue_tail - queue a buffer at the list tail
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the tail of the list. This function takes the
* list lock and can be used safely with other locking &sk_buff functions
* safely.
*
* A buffer cannot be placed on two lists at the same time.
*/
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_tail(list, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_queue_tail);
/**
* skb_unlink - remove a buffer from a list
* @skb: buffer to remove
* @list: list to use
*
* Remove a packet from a list. The list locks are taken and this
* function is atomic with respect to other list locked calls
*
* You must know what list the SKB is on.
*/
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_unlink(skb, list);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_unlink);
/**
* skb_append - append a buffer
* @old: buffer to insert after
* @newsk: buffer to insert
* @list: list to use
*
* Place a packet after a given packet in a list. The list locks are taken
* and this function is atomic with respect to other list locked calls.
* A buffer cannot be placed on two lists at the same time.
*/
void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
{
unsigned long flags;
spin_lock_irqsave(&list->lock, flags);
__skb_queue_after(list, old, newsk);
spin_unlock_irqrestore(&list->lock, flags);
}
EXPORT_SYMBOL(skb_append);
static inline void skb_split_inside_header(struct sk_buff *skb,
struct sk_buff* skb1,
const u32 len, const int pos)
{
int i;
skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
pos - len);
/* And move data appendix as is. */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
skb_shinfo(skb)->nr_frags = 0;
skb1->data_len = skb->data_len;
skb1->len += skb1->data_len;
skb->data_len = 0;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
static inline void skb_split_no_header(struct sk_buff *skb,
struct sk_buff* skb1,
const u32 len, int pos)
{
int i, k = 0;
const int nfrags = skb_shinfo(skb)->nr_frags;
skb_shinfo(skb)->nr_frags = 0;
skb1->len = skb1->data_len = skb->len - len;
skb->len = len;
skb->data_len = len - pos;
for (i = 0; i < nfrags; i++) {
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (pos + size > len) {
skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
if (pos < len) {
/* Split frag.
* We have two variants in this case:
* 1. Move all the frag to the second
* part, if it is possible. F.e.
* this approach is mandatory for TUX,
* where splitting is expensive.
* 2. Split is accurately. We make this.
*/
skb_frag_ref(skb, i);
skb_shinfo(skb1)->frags[0].page_offset += len - pos;
skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
skb_shinfo(skb)->nr_frags++;
}
k++;
} else
skb_shinfo(skb)->nr_frags++;
pos += size;
}
skb_shinfo(skb1)->nr_frags = k;
}
/**
* skb_split - Split fragmented skb to two parts at length len.
* @skb: the buffer to split
* @skb1: the buffer to receive the second part
* @len: new length for skb
*/
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
{
int pos = skb_headlen(skb);
skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
SKBTX_SHARED_FRAG;
skb_zerocopy_clone(skb1, skb, 0);
if (len < pos) /* Split line is inside header. */
skb_split_inside_header(skb, skb1, len, pos);
else /* Second chunk has no header, nothing to copy. */
skb_split_no_header(skb, skb1, len, pos);
}
EXPORT_SYMBOL(skb_split);
/* Shifting from/to a cloned skb is a no-go.
*
* Caller cannot keep skb_shinfo related pointers past calling here!
*/
static int skb_prepare_for_shift(struct sk_buff *skb)
{
return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}
/**
* skb_shift - Shifts paged data partially from skb to another
* @tgt: buffer into which tail data gets added
* @skb: buffer from which the paged data comes from
* @shiftlen: shift up to this many bytes
*
* Attempts to shift up to shiftlen worth of bytes, which may be less than
* the length of the skb, from skb to tgt. Returns number bytes shifted.
* It's up to caller to free skb if everything was shifted.
*
* If @tgt runs out of frags, the whole operation is aborted.
*
* Skb cannot include anything else but paged data while tgt is allowed
* to have non-paged data as well.
*
* TODO: full sized shift could be optimized but that would need
* specialized skb free'er to handle frags without up-to-date nr_frags.
*/
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
{
int from, to, merge, todo;
struct skb_frag_struct *fragfrom, *fragto;
BUG_ON(shiftlen > skb->len);
if (skb_headlen(skb))
return 0;
if (skb_zcopy(tgt) || skb_zcopy(skb))
return 0;
todo = shiftlen;
from = 0;
to = skb_shinfo(tgt)->nr_frags;
fragfrom = &skb_shinfo(skb)->frags[from];
/* Actual merge is delayed until the point when we know we can
* commit all, so that we don't have to undo partial changes
*/
if (!to ||
!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
fragfrom->page_offset)) {
merge = -1;
} else {
merge = to - 1;
todo -= skb_frag_size(fragfrom);
if (todo < 0) {
if (skb_prepare_for_shift(skb) ||
skb_prepare_for_shift(tgt))
return 0;
/* All previous frag pointers might be stale! */
fragfrom = &skb_shinfo(skb)->frags[from];
fragto = &skb_shinfo(tgt)->frags[merge];
skb_frag_size_add(fragto, shiftlen);
skb_frag_size_sub(fragfrom, shiftlen);
fragfrom->page_offset += shiftlen;
goto onlymerged;
}
from++;
}
/* Skip full, not-fitting skb to avoid expensive operations */
if ((shiftlen == skb->len) &&
(skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
return 0;
if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
return 0;
while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
if (to == MAX_SKB_FRAGS)
return 0;
fragfrom = &skb_shinfo(skb)->frags[from];
fragto = &skb_shinfo(tgt)->frags[to];
if (todo >= skb_frag_size(fragfrom)) {
*fragto = *fragfrom;
todo -= skb_frag_size(fragfrom);
from++;
to++;
} else {
__skb_frag_ref(fragfrom);
fragto->page = fragfrom->page;
fragto->page_offset = fragfrom->page_offset;
skb_frag_size_set(fragto, todo);
fragfrom->page_offset += todo;
skb_frag_size_sub(fragfrom, todo);
todo = 0;
to++;
break;
}
}
/* Ready to "commit" this state change to tgt */
skb_shinfo(tgt)->nr_frags = to;
if (merge >= 0) {
fragfrom = &skb_shinfo(skb)->frags[0];
fragto = &skb_shinfo(tgt)->frags[merge];
skb_frag_size_add(fragto, skb_frag_size(fragfrom));
__skb_frag_unref(fragfrom);
}
/* Reposition in the original skb */
to = 0;
while (from < skb_shinfo(skb)->nr_frags)
skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
skb_shinfo(skb)->nr_frags = to;
BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
onlymerged:
/* Most likely the tgt won't ever need its checksum anymore, skb on
* the other hand might need it if it needs to be resent
*/
tgt->ip_summed = CHECKSUM_PARTIAL;
skb->ip_summed = CHECKSUM_PARTIAL;
/* Yak, is it really working this way? Some helper please? */
skb->len -= shiftlen;
skb->data_len -= shiftlen;
skb->truesize -= shiftlen;
tgt->len += shiftlen;
tgt->data_len += shiftlen;
tgt->truesize += shiftlen;
return shiftlen;
}
/**
* skb_prepare_seq_read - Prepare a sequential read of skb data
* @skb: the buffer to read
* @from: lower offset of data to be read
* @to: upper offset of data to be read
* @st: state variable
*
* Initializes the specified state variable. Must be called before
* invoking skb_seq_read() for the first time.
*/
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
unsigned int to, struct skb_seq_state *st)
{
st->lower_offset = from;
st->upper_offset = to;
st->root_skb = st->cur_skb = skb;
st->frag_idx = st->stepped_offset = 0;
st->frag_data = NULL;
}
EXPORT_SYMBOL(skb_prepare_seq_read);
/**
* skb_seq_read - Sequentially read skb data
* @consumed: number of bytes consumed by the caller so far
* @data: destination pointer for data to be returned
* @st: state variable
*
* Reads a block of skb data at @consumed relative to the
* lower offset specified to skb_prepare_seq_read(). Assigns
* the head of the data block to @data and returns the length
* of the block or 0 if the end of the skb data or the upper
* offset has been reached.
*
* The caller is not required to consume all of the data
* returned, i.e. @consumed is typically set to the number
* of bytes already consumed and the next call to
* skb_seq_read() will return the remaining part of the block.
*
* Note 1: The size of each block of data returned can be arbitrary,
* this limitation is the cost for zerocopy sequential
* reads of potentially non linear data.
*
* Note 2: Fragment lists within fragments are not implemented
* at the moment, state->root_skb could be replaced with
* a stack for this purpose.
*/
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
struct skb_seq_state *st)
{
unsigned int block_limit, abs_offset = consumed + st->lower_offset;
skb_frag_t *frag;
if (unlikely(abs_offset >= st->upper_offset)) {
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
return 0;
}
next_skb:
block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
if (abs_offset < block_limit && !st->frag_data) {
*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
return block_limit - abs_offset;
}
if (st->frag_idx == 0 && !st->frag_data)
st->stepped_offset += skb_headlen(st->cur_skb);
while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
block_limit = skb_frag_size(frag) + st->stepped_offset;
if (abs_offset < block_limit) {
if (!st->frag_data)
st->frag_data = kmap_atomic(skb_frag_page(frag));
*data = (u8 *) st->frag_data + frag->page_offset +
(abs_offset - st->stepped_offset);
return block_limit - abs_offset;
}
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
st->frag_idx++;
st->stepped_offset += skb_frag_size(frag);
}
if (st->frag_data) {
kunmap_atomic(st->frag_data);
st->frag_data = NULL;
}
if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
st->frag_idx = 0;
goto next_skb;
} else if (st->cur_skb->next) {
st->cur_skb = st->cur_skb->next;
st->frag_idx = 0;
goto next_skb;
}
return 0;
}
EXPORT_SYMBOL(skb_seq_read);
/**
* skb_abort_seq_read - Abort a sequential read of skb data
* @st: state variable
*
* Must be called if skb_seq_read() was not called until it
* returned 0.
*/
void skb_abort_seq_read(struct skb_seq_state *st)
{
if (st->frag_data)
kunmap_atomic(st->frag_data);
}
EXPORT_SYMBOL(skb_abort_seq_read);
#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
struct ts_config *conf,
struct ts_state *state)
{
return skb_seq_read(offset, text, TS_SKB_CB(state));
}
static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
{
skb_abort_seq_read(TS_SKB_CB(state));
}
/**
* skb_find_text - Find a text pattern in skb data
* @skb: the buffer to look in
* @from: search offset
* @to: search limit
* @config: textsearch configuration
*
* Finds a pattern in the skb data according to the specified
* textsearch configuration. Use textsearch_next() to retrieve
* subsequent occurrences of the pattern. Returns the offset
* to the first occurrence or UINT_MAX if no match was found.
*/
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
unsigned int to, struct ts_config *config)
{
struct ts_state state;
unsigned int ret;
config->get_next_block = skb_ts_get_next_block;
config->finish = skb_ts_finish;
skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
ret = textsearch_find(config, &state);
return (ret <= to - from ? ret : UINT_MAX);
}
EXPORT_SYMBOL(skb_find_text);
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
int offset, size_t size)
{
int i = skb_shinfo(skb)->nr_frags;
if (skb_can_coalesce(skb, i, page, offset)) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
} else if (i < MAX_SKB_FRAGS) {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, size);
} else {
return -EMSGSIZE;
}
return 0;
}
EXPORT_SYMBOL_GPL(skb_append_pagefrags);
/**
* skb_pull_rcsum - pull skb and update receive checksum
* @skb: buffer to update
* @len: length of data pulled
*
* This function performs an skb_pull on the packet and updates
* the CHECKSUM_COMPLETE checksum. It should be used on
* receive path processing instead of skb_pull unless you know
* that the checksum difference is zero (e.g., a valid IP header)
* or you are setting ip_summed to CHECKSUM_NONE.
*/
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
{
unsigned char *data = skb->data;
BUG_ON(len > skb->len);
__skb_pull(skb, len);
skb_postpull_rcsum(skb, data, len);
return skb->data;
}
EXPORT_SYMBOL_GPL(skb_pull_rcsum);
static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
{
skb_frag_t head_frag;
struct page *page;
page = virt_to_head_page(frag_skb->head);
head_frag.page.p = page;
head_frag.page_offset = frag_skb->data -
(unsigned char *)page_address(page);
head_frag.size = skb_headlen(frag_skb);
return head_frag;
}
/**
* skb_segment - Perform protocol segmentation on skb.
* @head_skb: buffer to segment
* @features: features for the output path (see dev->features)
*
* This function performs segmentation on the given skb. It returns
* a pointer to the first in a list of new skbs for the segments.
* In case of error it returns ERR_PTR(err).
*/
struct sk_buff *skb_segment(struct sk_buff *head_skb,
netdev_features_t features)
{
struct sk_buff *segs = NULL;
struct sk_buff *tail = NULL;
struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
skb_frag_t *frag = skb_shinfo(head_skb)->frags;
unsigned int mss = skb_shinfo(head_skb)->gso_size;
unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
struct sk_buff *frag_skb = head_skb;
unsigned int offset = doffset;
unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
unsigned int partial_segs = 0;
unsigned int headroom;
unsigned int len = head_skb->len;
__be16 proto;
bool csum, sg;
int nfrags = skb_shinfo(head_skb)->nr_frags;
int err = -ENOMEM;
int i = 0;
int pos;
int dummy;
__skb_push(head_skb, doffset);
proto = skb_network_protocol(head_skb, &dummy);
if (unlikely(!proto))
return ERR_PTR(-EINVAL);
sg = !!(features & NETIF_F_SG);
csum = !!can_checksum_protocol(features, proto);
if (sg && csum && (mss != GSO_BY_FRAGS)) {
if (!(features & NETIF_F_GSO_PARTIAL)) {
struct sk_buff *iter;
unsigned int frag_len;
if (!list_skb ||
!net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
goto normal;
/* If we get here then all the required
* GSO features except frag_list are supported.
* Try to split the SKB to multiple GSO SKBs
* with no frag_list.
* Currently we can do that only when the buffers don't
* have a linear part and all the buffers except
* the last are of the same length.
*/
frag_len = list_skb->len;
skb_walk_frags(head_skb, iter) {
if (frag_len != iter->len && iter->next)
goto normal;
if (skb_headlen(iter) && !iter->head_frag)
goto normal;
len -= iter->len;
}
if (len != frag_len)
goto normal;
}
/* GSO partial only requires that we trim off any excess that
* doesn't fit into an MSS sized block, so take care of that
* now.
*/
partial_segs = len / mss;
if (partial_segs > 1)
mss *= partial_segs;
else
partial_segs = 0;
}
normal:
headroom = skb_headroom(head_skb);
pos = skb_headlen(head_skb);
do {
struct sk_buff *nskb;
skb_frag_t *nskb_frag;
int hsize;
int size;
if (unlikely(mss == GSO_BY_FRAGS)) {
len = list_skb->len;
} else {
len = head_skb->len - offset;
if (len > mss)
len = mss;
}
hsize = skb_headlen(head_skb) - offset;
if (hsize < 0)
hsize = 0;
if (hsize > len || !sg)
hsize = len;
if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
(skb_headlen(list_skb) == len || sg)) {
BUG_ON(skb_headlen(list_skb) > len);
i = 0;
nfrags = skb_shinfo(list_skb)->nr_frags;
frag = skb_shinfo(list_skb)->frags;
frag_skb = list_skb;
pos += skb_headlen(list_skb);
while (pos < offset + len) {
BUG_ON(i >= nfrags);
size = skb_frag_size(frag);
if (pos + size > offset + len)
break;
i++;
pos += size;
frag++;
}
nskb = skb_clone(list_skb, GFP_ATOMIC);
list_skb = list_skb->next;
if (unlikely(!nskb))
goto err;
if (unlikely(pskb_trim(nskb, len))) {
kfree_skb(nskb);
goto err;
}
hsize = skb_end_offset(nskb);
if (skb_cow_head(nskb, doffset + headroom)) {
kfree_skb(nskb);
goto err;
}
nskb->truesize += skb_end_offset(nskb) - hsize;
skb_release_head_state(nskb);
__skb_push(nskb, doffset);
} else {
nskb = __alloc_skb(hsize + doffset + headroom,
GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
NUMA_NO_NODE);
if (unlikely(!nskb))
goto err;
skb_reserve(nskb, headroom);
__skb_put(nskb, doffset);
}
if (segs)
tail->next = nskb;
else
segs = nskb;
tail = nskb;
__copy_skb_header(nskb, head_skb);
skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
skb_reset_mac_len(nskb);
skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
nskb->data - tnl_hlen,
doffset + tnl_hlen);
if (nskb->len == len + doffset)
goto perform_csum_check;
if (!sg) {
if (!nskb->remcsum_offload)
nskb->ip_summed = CHECKSUM_NONE;
SKB_GSO_CB(nskb)->csum =
skb_copy_and_csum_bits(head_skb, offset,
skb_put(nskb, len),
len, 0);
SKB_GSO_CB(nskb)->csum_start =
skb_headroom(nskb) + doffset;
continue;
}
nskb_frag = skb_shinfo(nskb)->frags;
skb_copy_from_linear_data_offset(head_skb, offset,
skb_put(nskb, hsize), hsize);
skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
SKBTX_SHARED_FRAG;
if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
goto err;
while (pos < offset + len) {
if (i >= nfrags) {
i = 0;
nfrags = skb_shinfo(list_skb)->nr_frags;
frag = skb_shinfo(list_skb)->frags;
frag_skb = list_skb;
if (!skb_headlen(list_skb)) {
BUG_ON(!nfrags);
} else {
BUG_ON(!list_skb->head_frag);
/* to make room for head_frag. */
i--;
frag--;
}
if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
skb_zerocopy_clone(nskb, frag_skb,
GFP_ATOMIC))
goto err;
list_skb = list_skb->next;
}
if (unlikely(skb_shinfo(nskb)->nr_frags >=
MAX_SKB_FRAGS)) {
net_warn_ratelimited(
"skb_segment: too many frags: %u %u\n",
pos, mss);
err = -EINVAL;
goto err;
}
*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
__skb_frag_ref(nskb_frag);
size = skb_frag_size(nskb_frag);
if (pos < offset) {
nskb_frag->page_offset += offset - pos;
skb_frag_size_sub(nskb_frag, offset - pos);
}
skb_shinfo(nskb)->nr_frags++;
if (pos + size <= offset + len) {
i++;
frag++;
pos += size;
} else {
skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
goto skip_fraglist;
}
nskb_frag++;
}
skip_fraglist:
nskb->data_len = len - hsize;
nskb->len += nskb->data_len;
nskb->truesize += nskb->data_len;
perform_csum_check:
if (!csum) {
if (skb_has_shared_frag(nskb) &&
__skb_linearize(nskb))
goto err;
if (!nskb->remcsum_offload)
nskb->ip_summed = CHECKSUM_NONE;
SKB_GSO_CB(nskb)->csum =
skb_checksum(nskb, doffset,
nskb->len - doffset, 0);
SKB_GSO_CB(nskb)->csum_start =
skb_headroom(nskb) + doffset;
}
} while ((offset += len) < head_skb->len);
/* Some callers want to get the end of the list.
* Put it in segs->prev to avoid walking the list.
* (see validate_xmit_skb_list() for example)
*/
segs->prev = tail;
if (partial_segs) {
struct sk_buff *iter;
int type = skb_shinfo(head_skb)->gso_type;
unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
/* Update type to add partial and then remove dodgy if set */
type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
type &= ~SKB_GSO_DODGY;
/* Update GSO info and prepare to start updating headers on
* our way back down the stack of protocols.
*/
for (iter = segs; iter; iter = iter->next) {
skb_shinfo(iter)->gso_size = gso_size;
skb_shinfo(iter)->gso_segs = partial_segs;
skb_shinfo(iter)->gso_type = type;
SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
}
if (tail->len - doffset <= gso_size)
skb_shinfo(tail)->gso_size = 0;
else if (tail != segs)
skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
}
/* Following permits correct backpressure, for protocols
* using skb_set_owner_w().
* Idea is to tranfert ownership from head_skb to last segment.
*/
if (head_skb->destructor == sock_wfree) {
swap(tail->truesize, head_skb->truesize);
swap(tail->destructor, head_skb->destructor);
swap(tail->sk, head_skb->sk);
}
return segs;
err:
kfree_skb_list(segs);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(skb_segment);
int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
{
struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
unsigned int offset = skb_gro_offset(skb);
unsigned int headlen = skb_headlen(skb);
unsigned int len = skb_gro_len(skb);
unsigned int delta_truesize;
struct sk_buff *lp;
if (unlikely(p->len + len >= 65536))
return -E2BIG;
lp = NAPI_GRO_CB(p)->last;
pinfo = skb_shinfo(lp);
if (headlen <= offset) {
skb_frag_t *frag;
skb_frag_t *frag2;
int i = skbinfo->nr_frags;
int nr_frags = pinfo->nr_frags + i;
if (nr_frags > MAX_SKB_FRAGS)
goto merge;
offset -= headlen;
pinfo->nr_frags = nr_frags;
skbinfo->nr_frags = 0;
frag = pinfo->frags + nr_frags;
frag2 = skbinfo->frags + i;
do {
*--frag = *--frag2;
} while (--i);
frag->page_offset += offset;
skb_frag_size_sub(frag, offset);
/* all fragments truesize : remove (head size + sk_buff) */
delta_truesize = skb->truesize -
SKB_TRUESIZE(skb_end_offset(skb));
skb->truesize -= skb->data_len;
skb->len -= skb->data_len;
skb->data_len = 0;
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
goto done;
} else if (skb->head_frag) {
int nr_frags = pinfo->nr_frags;
skb_frag_t *frag = pinfo->frags + nr_frags;
struct page *page = virt_to_head_page(skb->head);
unsigned int first_size = headlen - offset;
unsigned int first_offset;
if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
goto merge;
first_offset = skb->data -
(unsigned char *)page_address(page) +
offset;
pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
frag->page.p = page;
frag->page_offset = first_offset;
skb_frag_size_set(frag, first_size);
memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
/* We dont need to clear skbinfo->nr_frags here */
delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
goto done;
}
merge:
delta_truesize = skb->truesize;
if (offset > headlen) {
unsigned int eat = offset - headlen;
skbinfo->frags[0].page_offset += eat;
skb_frag_size_sub(&skbinfo->frags[0], eat);
skb->data_len -= eat;
skb->len -= eat;
offset = headlen;
}
__skb_pull(skb, offset);
if (NAPI_GRO_CB(p)->last == p)
skb_shinfo(p)->frag_list = skb;
else
NAPI_GRO_CB(p)->last->next = skb;
NAPI_GRO_CB(p)->last = skb;
__skb_header_release(skb);
lp = p;
done:
NAPI_GRO_CB(p)->count++;
p->data_len += len;
p->truesize += delta_truesize;
p->len += len;
if (lp != p) {
lp->data_len += len;
lp->truesize += delta_truesize;
lp->len += len;
}
NAPI_GRO_CB(skb)->same_flow = 1;
return 0;
}
EXPORT_SYMBOL_GPL(skb_gro_receive);
#ifdef CONFIG_SKB_EXTENSIONS
#define SKB_EXT_ALIGN_VALUE 8
#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
static const u8 skb_ext_type_len[] = {
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
#endif
#ifdef CONFIG_XFRM
[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
#endif
};
static __always_inline unsigned int skb_ext_total_length(void)
{
return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
#endif
#ifdef CONFIG_XFRM
skb_ext_type_len[SKB_EXT_SEC_PATH] +
#endif
0;
}
static void skb_extensions_init(void)
{
BUILD_BUG_ON(SKB_EXT_NUM >= 8);
BUILD_BUG_ON(skb_ext_total_length() > 255);
skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
NULL);
}
#else
static void skb_extensions_init(void) {}
#endif
void __init skb_init(void)
{
skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
sizeof(struct sk_buff),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
offsetof(struct sk_buff, cb),
sizeof_field(struct sk_buff, cb),
NULL);
skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
sizeof(struct sk_buff_fclones),
0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
NULL);
skb_extensions_init();
}
static int
__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
unsigned int recursion_level)
{
int start = skb_headlen(skb);
int i, copy = start - offset;
struct sk_buff *frag_iter;
int elt = 0;
if (unlikely(recursion_level >= 24))
return -EMSGSIZE;
if (copy > 0) {
if (copy > len)
copy = len;
sg_set_buf(sg, skb->data + offset, copy);
elt++;
if ((len -= copy) == 0)
return elt;
offset += copy;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
int end;
WARN_ON(start > offset + len);
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
if ((copy = end - offset) > 0) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (unlikely(elt && sg_is_last(&sg[elt - 1])))
return -EMSGSIZE;
if (copy > len)
copy = len;
sg_set_page(&sg[elt], skb_frag_page(frag), copy,
frag->page_offset+offset-start);
elt++;
if (!(len -= copy))
return elt;
offset += copy;
}
start = end;
}
skb_walk_frags(skb, frag_iter) {
int end, ret;
WARN_ON(start > offset + len);
end = start + frag_iter->len;
if ((copy = end - offset) > 0) {
if (unlikely(elt && sg_is_last(&sg[elt - 1])))
return -EMSGSIZE;
if (copy > len)
copy = len;
ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
copy, recursion_level + 1);
if (unlikely(ret < 0))
return ret;
elt += ret;
if ((len -= copy) == 0)
return elt;
offset += copy;
}
start = end;
}
BUG_ON(len);
return elt;
}
/**
* skb_to_sgvec - Fill a scatter-gather list from a socket buffer
* @skb: Socket buffer containing the buffers to be mapped
* @sg: The scatter-gather list to map into
* @offset: The offset into the buffer's contents to start mapping
* @len: Length of buffer space to be mapped
*
* Fill the specified scatter-gather list with mappings/pointers into a
* region of the buffer space attached to a socket buffer. Returns either
* the number of scatterlist items used, or -EMSGSIZE if the contents
* could not fit.
*/
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
{
int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
if (nsg <= 0)
return nsg;
sg_mark_end(&sg[nsg - 1]);
return nsg;
}
EXPORT_SYMBOL_GPL(skb_to_sgvec);
/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
* sglist without mark the sg which contain last skb data as the end.
* So the caller can mannipulate sg list as will when padding new data after
* the first call without calling sg_unmark_end to expend sg list.
*
* Scenario to use skb_to_sgvec_nomark:
* 1. sg_init_table
* 2. skb_to_sgvec_nomark(payload1)
* 3. skb_to_sgvec_nomark(payload2)
*
* This is equivalent to:
* 1. sg_init_table
* 2. skb_to_sgvec(payload1)
* 3. sg_unmark_end
* 4. skb_to_sgvec(payload2)
*
* When mapping mutilple payload conditionally, skb_to_sgvec_nomark
* is more preferable.
*/
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
int offset, int len)
{
return __skb_to_sgvec(skb, sg, offset, len, 0);
}
EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
/**
* skb_cow_data - Check that a socket buffer's data buffers are writable
* @skb: The socket buffer to check.
* @tailbits: Amount of trailing space to be added
* @trailer: Returned pointer to the skb where the @tailbits space begins
*
* Make sure that the data buffers attached to a socket buffer are
* writable. If they are not, private copies are made of the data buffers
* and the socket buffer is set to use these instead.
*
* If @tailbits is given, make sure that there is space to write @tailbits
* bytes of data beyond current end of socket buffer. @trailer will be
* set to point to the skb in which this space begins.
*
* The number of scatterlist elements required to completely map the
* COW'd and extended socket buffer will be returned.
*/
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
{
int copyflag;
int elt;
struct sk_buff *skb1, **skb_p;
/* If skb is cloned or its head is paged, reallocate
* head pulling out all the pages (pages are considered not writable
* at the moment even if they are anonymous).
*/
if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
__pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
return -ENOMEM;
/* Easy case. Most of packets will go this way. */
if (!skb_has_frag_list(skb)) {
/* A little of trouble, not enough of space for trailer.
* This should not happen, when stack is tuned to generate
* good frames. OK, on miss we reallocate and reserve even more
* space, 128 bytes is fair. */
if (skb_tailroom(skb) < tailbits &&
pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
return -ENOMEM;
/* Voila! */
*trailer = skb;
return 1;
}
/* Misery. We are in troubles, going to mincer fragments... */
elt = 1;
skb_p = &skb_shinfo(skb)->frag_list;
copyflag = 0;
while ((skb1 = *skb_p) != NULL) {
int ntail = 0;
/* The fragment is partially pulled by someone,
* this can happen on input. Copy it and everything
* after it. */
if (skb_shared(skb1))
copyflag = 1;
/* If the skb is the last, worry about trailer. */
if (skb1->next == NULL && tailbits) {
if (skb_shinfo(skb1)->nr_frags ||
skb_has_frag_list(skb1) ||
skb_tailroom(skb1) < tailbits)
ntail = tailbits + 128;
}
if (copyflag ||
skb_cloned(skb1) ||
ntail ||
skb_shinfo(skb1)->nr_frags ||
skb_has_frag_list(skb1)) {
struct sk_buff *skb2;
/* Fuck, we are miserable poor guys... */
if (ntail == 0)
skb2 = skb_copy(skb1, GFP_ATOMIC);
else
skb2 = skb_copy_expand(skb1,
skb_headroom(skb1),
ntail,
GFP_ATOMIC);
if (unlikely(skb2 == NULL))
return -ENOMEM;
if (skb1->sk)
skb_set_owner_w(skb2, skb1->sk);
/* Looking around. Are we still alive?
* OK, link new skb, drop old one */
skb2->next = skb1->next;
*skb_p = skb2;
kfree_skb(skb1);
skb1 = skb2;
}
elt++;
*trailer = skb1;
skb_p = &skb1->next;
}
return elt;
}
EXPORT_SYMBOL_GPL(skb_cow_data);
static void sock_rmem_free(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
}
static void skb_set_err_queue(struct sk_buff *skb)
{
/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
* So, it is safe to (mis)use it to mark skbs on the error queue.
*/
skb->pkt_type = PACKET_OUTGOING;
BUILD_BUG_ON(PACKET_OUTGOING == 0);
}
/*
* Note: We dont mem charge error packets (no sk_forward_alloc changes)
*/
int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
{
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
(unsigned int)sk->sk_rcvbuf)
return -ENOMEM;
skb_orphan(skb);
skb->sk = sk;
skb->destructor = sock_rmem_free;
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
skb_set_err_queue(skb);
/* before exiting rcu section, make sure dst is refcounted */
skb_dst_force(skb);
skb_queue_tail(&sk->sk_error_queue, skb);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
return 0;
}
EXPORT_SYMBOL(sock_queue_err_skb);
static bool is_icmp_err_skb(const struct sk_buff *skb)
{
return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
}
struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
{
struct sk_buff_head *q = &sk->sk_error_queue;
struct sk_buff *skb, *skb_next = NULL;
bool icmp_next = false;
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
skb = __skb_dequeue(q);
if (skb && (skb_next = skb_peek(q))) {
icmp_next = is_icmp_err_skb(skb_next);
if (icmp_next)
sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
}
spin_unlock_irqrestore(&q->lock, flags);
if (is_icmp_err_skb(skb) && !icmp_next)
sk->sk_err = 0;
if (skb_next)
sk->sk_error_report(sk);
return skb;
}
EXPORT_SYMBOL(sock_dequeue_err_skb);
/**
* skb_clone_sk - create clone of skb, and take reference to socket
* @skb: the skb to clone
*
* This function creates a clone of a buffer that holds a reference on
* sk_refcnt. Buffers created via this function are meant to be
* returned using sock_queue_err_skb, or free via kfree_skb.
*
* When passing buffers allocated with this function to sock_queue_err_skb
* it is necessary to wrap the call with sock_hold/sock_put in order to
* prevent the socket from being released prior to being enqueued on
* the sk_error_queue.
*/
struct sk_buff *skb_clone_sk(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct sk_buff *clone;
if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
return NULL;
clone = skb_clone(skb, GFP_ATOMIC);
if (!clone) {
sock_put(sk);
return NULL;
}
clone->sk = sk;
clone->destructor = sock_efree;
return clone;
}
EXPORT_SYMBOL(skb_clone_sk);
static void __skb_complete_tx_timestamp(struct sk_buff *skb,
struct sock *sk,
int tstype,
bool opt_stats)
{
struct sock_exterr_skb *serr;
int err;
BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = ENOMSG;
serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
serr->ee.ee_info = tstype;
serr->opt_stats = opt_stats;
serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
serr->ee.ee_data = skb_shinfo(skb)->tskey;
if (sk->sk_protocol == IPPROTO_TCP &&
sk->sk_type == SOCK_STREAM)
serr->ee.ee_data -= sk->sk_tskey;
}
err = sock_queue_err_skb(sk, skb);
if (err)
kfree_skb(skb);
}
static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
{
bool ret;
if (likely(sysctl_tstamp_allow_data || tsonly))
return true;
read_lock_bh(&sk->sk_callback_lock);
ret = sk->sk_socket && sk->sk_socket->file &&
file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
read_unlock_bh(&sk->sk_callback_lock);
return ret;
}
void skb_complete_tx_timestamp(struct sk_buff *skb,
struct skb_shared_hwtstamps *hwtstamps)
{
struct sock *sk = skb->sk;
if (!skb_may_tx_timestamp(sk, false))
goto err;
/* Take a reference to prevent skb_orphan() from freeing the socket,
* but only if the socket refcount is not zero.
*/
if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
*skb_hwtstamps(skb) = *hwtstamps;
__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
sock_put(sk);
return;
}
err:
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
void __skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps,
struct sock *sk, int tstype)
{
struct sk_buff *skb;
bool tsonly, opt_stats = false;
if (!sk)
return;
if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
return;
tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
if (!skb_may_tx_timestamp(sk, tsonly))
return;
if (tsonly) {
#ifdef CONFIG_INET
if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
sk->sk_protocol == IPPROTO_TCP &&
sk->sk_type == SOCK_STREAM) {
skb = tcp_get_timestamping_opt_stats(sk);
opt_stats = true;
} else
#endif
skb = alloc_skb(0, GFP_ATOMIC);
} else {
skb = skb_clone(orig_skb, GFP_ATOMIC);
}
if (!skb)
return;
if (tsonly) {
skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
SKBTX_ANY_TSTAMP;
skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
}
if (hwtstamps)
*skb_hwtstamps(skb) = *hwtstamps;
else
skb->tstamp = ktime_get_real();
__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
}
EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
void skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps)
{
return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
SCM_TSTAMP_SND);
}
EXPORT_SYMBOL_GPL(skb_tstamp_tx);
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
{
struct sock *sk = skb->sk;
struct sock_exterr_skb *serr;
int err = 1;
skb->wifi_acked_valid = 1;
skb->wifi_acked = acked;
serr = SKB_EXT_ERR(skb);
memset(serr, 0, sizeof(*serr));
serr->ee.ee_errno = ENOMSG;
serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
/* Take a reference to prevent skb_orphan() from freeing the socket,
* but only if the socket refcount is not zero.
*/
if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
err = sock_queue_err_skb(sk, skb);
sock_put(sk);
}
if (err)
kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
/**
* skb_partial_csum_set - set up and verify partial csum values for packet
* @skb: the skb to set
* @start: the number of bytes after skb->data to start checksumming.
* @off: the offset from start to place the checksum.
*
* For untrusted partially-checksummed packets, we need to make sure the values
* for skb->csum_start and skb->csum_offset are valid so we don't oops.
*
* This function checks and sets those values and skb->ip_summed: if this
* returns false you should drop the packet.
*/
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
{
u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
u32 csum_start = skb_headroom(skb) + (u32)start;
if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
start, off, skb_headroom(skb), skb_headlen(skb));
return false;
}
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = csum_start;
skb->csum_offset = off;
skb_set_transport_header(skb, start);
return true;
}
EXPORT_SYMBOL_GPL(skb_partial_csum_set);
static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
unsigned int max)
{
if (skb_headlen(skb) >= len)
return 0;
/* If we need to pullup then pullup to the max, so we
* won't need to do it again.
*/
if (max > skb->len)
max = skb->len;
if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
return -ENOMEM;
if (skb_headlen(skb) < len)
return -EPROTO;
return 0;
}
#define MAX_TCP_HDR_LEN (15 * 4)
static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
typeof(IPPROTO_IP) proto,
unsigned int off)
{
switch (proto) {
int err;
case IPPROTO_TCP:
err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
off + MAX_TCP_HDR_LEN);
if (!err && !skb_partial_csum_set(skb, off,
offsetof(struct tcphdr,
check)))
err = -EPROTO;
return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
case IPPROTO_UDP:
err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
off + sizeof(struct udphdr));
if (!err && !skb_partial_csum_set(skb, off,
offsetof(struct udphdr,
check)))
err = -EPROTO;
return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
}
return ERR_PTR(-EPROTO);
}
/* This value should be large enough to cover a tagged ethernet header plus
* maximally sized IP and TCP or UDP headers.
*/
#define MAX_IP_HDR_LEN 128
static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
{
unsigned int off;
bool fragment;
__sum16 *csum;
int err;
fragment = false;
err = skb_maybe_pull_tail(skb,
sizeof(struct iphdr),
MAX_IP_HDR_LEN);
if (err < 0)
goto out;
if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
fragment = true;
off = ip_hdrlen(skb);
err = -EPROTO;
if (fragment)
goto out;
csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
if (IS_ERR(csum))
return PTR_ERR(csum);
if (recalculate)
*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
skb->len - off,
ip_hdr(skb)->protocol, 0);
err = 0;
out:
return err;
}
/* This value should be large enough to cover a tagged ethernet header plus
* an IPv6 header, all options, and a maximal TCP or UDP header.
*/
#define MAX_IPV6_HDR_LEN 256
#define OPT_HDR(type, skb, off) \
(type *)(skb_network_header(skb) + (off))
static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
{
int err;
u8 nexthdr;
unsigned int off;
unsigned int len;
bool fragment;
bool done;
__sum16 *csum;
fragment = false;
done = false;
off = sizeof(struct ipv6hdr);
err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
nexthdr = ipv6_hdr(skb)->nexthdr;
len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
while (off <= len && !done) {
switch (nexthdr) {
case IPPROTO_DSTOPTS:
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING: {
struct ipv6_opt_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct ipv6_opt_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
nexthdr = hp->nexthdr;
off += ipv6_optlen(hp);
break;
}
case IPPROTO_AH: {
struct ip_auth_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct ip_auth_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct ip_auth_hdr, skb, off);
nexthdr = hp->nexthdr;
off += ipv6_authlen(hp);
break;
}
case IPPROTO_FRAGMENT: {
struct frag_hdr *hp;
err = skb_maybe_pull_tail(skb,
off +
sizeof(struct frag_hdr),
MAX_IPV6_HDR_LEN);
if (err < 0)
goto out;
hp = OPT_HDR(struct frag_hdr, skb, off);
if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
fragment = true;
nexthdr = hp->nexthdr;
off += sizeof(struct frag_hdr);
break;
}
default:
done = true;
break;
}
}
err = -EPROTO;
if (!done || fragment)
goto out;
csum = skb_checksum_setup_ip(skb, nexthdr, off);
if (IS_ERR(csum))
return PTR_ERR(csum);
if (recalculate)
*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
skb->len - off, nexthdr, 0);
err = 0;
out:
return err;
}
/**
* skb_checksum_setup - set up partial checksum offset
* @skb: the skb to set up
* @recalculate: if true the pseudo-header checksum will be recalculated
*/
int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
{
int err;
switch (skb->protocol) {
case htons(ETH_P_IP):
err = skb_checksum_setup_ipv4(skb, recalculate);
break;
case htons(ETH_P_IPV6):
err = skb_checksum_setup_ipv6(skb, recalculate);
break;
default:
err = -EPROTO;
break;
}
return err;
}
EXPORT_SYMBOL(skb_checksum_setup);
/**
* skb_checksum_maybe_trim - maybe trims the given skb
* @skb: the skb to check
* @transport_len: the data length beyond the network header
*
* Checks whether the given skb has data beyond the given transport length.
* If so, returns a cloned skb trimmed to this transport length.
* Otherwise returns the provided skb. Returns NULL in error cases
* (e.g. transport_len exceeds skb length or out-of-memory).
*
* Caller needs to set the skb transport header and free any returned skb if it
* differs from the provided skb.
*/
static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
unsigned int transport_len)
{
struct sk_buff *skb_chk;
unsigned int len = skb_transport_offset(skb) + transport_len;
int ret;
if (skb->len < len)
return NULL;
else if (skb->len == len)
return skb;
skb_chk = skb_clone(skb, GFP_ATOMIC);
if (!skb_chk)
return NULL;
ret = pskb_trim_rcsum(skb_chk, len);
if (ret) {
kfree_skb(skb_chk);
return NULL;
}
return skb_chk;
}
/**
* skb_checksum_trimmed - validate checksum of an skb
* @skb: the skb to check
* @transport_len: the data length beyond the network header
* @skb_chkf: checksum function to use
*
* Applies the given checksum function skb_chkf to the provided skb.
* Returns a checked and maybe trimmed skb. Returns NULL on error.
*
* If the skb has data beyond the given transport length, then a
* trimmed & cloned skb is checked and returned.
*
* Caller needs to set the skb transport header and free any returned skb if it
* differs from the provided skb.
*/
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
unsigned int transport_len,
__sum16(*skb_chkf)(struct sk_buff *skb))
{
struct sk_buff *skb_chk;
unsigned int offset = skb_transport_offset(skb);
__sum16 ret;
skb_chk = skb_checksum_maybe_trim(skb, transport_len);
if (!skb_chk)
goto err;
if (!pskb_may_pull(skb_chk, offset))
goto err;
skb_pull_rcsum(skb_chk, offset);
ret = skb_chkf(skb_chk);
skb_push_rcsum(skb_chk, offset);
if (ret)
goto err;
return skb_chk;
err:
if (skb_chk && skb_chk != skb)
kfree_skb(skb_chk);
return NULL;
}
EXPORT_SYMBOL(skb_checksum_trimmed);
void __skb_warn_lro_forwarding(const struct sk_buff *skb)
{
net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
skb->dev->name);
}
EXPORT_SYMBOL(__skb_warn_lro_forwarding);
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
{
if (head_stolen) {
skb_release_head_state(skb);
kmem_cache_free(skbuff_head_cache, skb);
} else {
__kfree_skb(skb);
}
}
EXPORT_SYMBOL(kfree_skb_partial);
/**
* skb_try_coalesce - try to merge skb to prior one
* @to: prior buffer
* @from: buffer to add
* @fragstolen: pointer to boolean
* @delta_truesize: how much more was allocated than was requested
*/
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
bool *fragstolen, int *delta_truesize)
{
struct skb_shared_info *to_shinfo, *from_shinfo;
int i, delta, len = from->len;
*fragstolen = false;
if (skb_cloned(to))
return false;
if (len <= skb_tailroom(to)) {
if (len)
BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
*delta_truesize = 0;
return true;
}
to_shinfo = skb_shinfo(to);
from_shinfo = skb_shinfo(from);
if (to_shinfo->frag_list || from_shinfo->frag_list)
return false;
if (skb_zcopy(to) || skb_zcopy(from))
return false;
if (skb_headlen(from) != 0) {
struct page *page;
unsigned int offset;
if (to_shinfo->nr_frags +
from_shinfo->nr_frags >= MAX_SKB_FRAGS)
return false;
if (skb_head_is_locked(from))
return false;
delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
page = virt_to_head_page(from->head);
offset = from->data - (unsigned char *)page_address(page);
skb_fill_page_desc(to, to_shinfo->nr_frags,
page, offset, skb_headlen(from));
*fragstolen = true;
} else {
if (to_shinfo->nr_frags +
from_shinfo->nr_frags > MAX_SKB_FRAGS)
return false;
delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
}
WARN_ON_ONCE(delta < len);
memcpy(to_shinfo->frags + to_shinfo->nr_frags,
from_shinfo->frags,
from_shinfo->nr_frags * sizeof(skb_frag_t));
to_shinfo->nr_frags += from_shinfo->nr_frags;
if (!skb_cloned(from))
from_shinfo->nr_frags = 0;
/* if the skb is not cloned this does nothing
* since we set nr_frags to 0.
*/
for (i = 0; i < from_shinfo->nr_frags; i++)
__skb_frag_ref(&from_shinfo->frags[i]);
to->truesize += delta;
to->len += len;
to->data_len += len;
*delta_truesize = delta;
return true;
}
EXPORT_SYMBOL(skb_try_coalesce);
/**
* skb_scrub_packet - scrub an skb
*
* @skb: buffer to clean
* @xnet: packet is crossing netns
*
* skb_scrub_packet can be used after encapsulating or decapsulting a packet
* into/from a tunnel. Some information have to be cleared during these
* operations.
* skb_scrub_packet can also be used to clean a skb before injecting it in
* another namespace (@xnet == true). We have to clear all information in the
* skb that could impact namespace isolation.
*/
void skb_scrub_packet(struct sk_buff *skb, bool xnet)
{
skb->pkt_type = PACKET_HOST;
skb->skb_iif = 0;
skb->ignore_df = 0;
skb_dst_drop(skb);
secpath_reset(skb);
nf_reset(skb);
nf_reset_trace(skb);
#ifdef CONFIG_NET_SWITCHDEV
skb->offload_fwd_mark = 0;
skb->offload_l3_fwd_mark = 0;
#endif
if (!xnet)
return;
ipvs_reset(skb);
skb->mark = 0;
skb->tstamp = 0;
}
EXPORT_SYMBOL_GPL(skb_scrub_packet);
/**
* skb_gso_transport_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_transport_seglen is used to determine the real size of the
* individual segments, including Layer4 headers (TCP/UDP).
*
* The MAC/L2 or network (IP, IPv6) headers are not accounted for.
*/
static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
{
const struct skb_shared_info *shinfo = skb_shinfo(skb);
unsigned int thlen = 0;
if (skb->encapsulation) {
thlen = skb_inner_transport_header(skb) -
skb_transport_header(skb);
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
thlen += inner_tcp_hdrlen(skb);
} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
thlen = tcp_hdrlen(skb);
} else if (unlikely(skb_is_gso_sctp(skb))) {
thlen = sizeof(struct sctphdr);
} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
thlen = sizeof(struct udphdr);
}
/* UFO sets gso_size to the size of the fragmentation
* payload, i.e. the size of the L4 (UDP) header is already
* accounted for.
*/
return thlen + shinfo->gso_size;
}
/**
* skb_gso_network_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_network_seglen is used to determine the real size of the
* individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
*
* The MAC/L2 header is not accounted for.
*/
static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
unsigned int hdr_len = skb_transport_header(skb) -
skb_network_header(skb);
return hdr_len + skb_gso_transport_seglen(skb);
}
/**
* skb_gso_mac_seglen - Return length of individual segments of a gso packet
*
* @skb: GSO skb
*
* skb_gso_mac_seglen is used to determine the real size of the
* individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
* headers (TCP/UDP).
*/
static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
{
unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
return hdr_len + skb_gso_transport_seglen(skb);
}
/**
* skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
*
* There are a couple of instances where we have a GSO skb, and we
* want to determine what size it would be after it is segmented.
*
* We might want to check:
* - L3+L4+payload size (e.g. IP forwarding)
* - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
*
* This is a helper to do that correctly considering GSO_BY_FRAGS.
*
* @skb: GSO skb
*
* @seg_len: The segmented length (from skb_gso_*_seglen). In the
* GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
*
* @max_len: The maximum permissible length.
*
* Returns true if the segmented length <= max length.
*/
static inline bool skb_gso_size_check(const struct sk_buff *skb,
unsigned int seg_len,
unsigned int max_len) {
const struct skb_shared_info *shinfo = skb_shinfo(skb);
const struct sk_buff *iter;
if (shinfo->gso_size != GSO_BY_FRAGS)
return seg_len <= max_len;
/* Undo this so we can re-use header sizes */
seg_len -= GSO_BY_FRAGS;
skb_walk_frags(skb, iter) {
if (seg_len + skb_headlen(iter) > max_len)
return false;
}
return true;
}
/**
* skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
*
* @skb: GSO skb
* @mtu: MTU to validate against
*
* skb_gso_validate_network_len validates if a given skb will fit a
* wanted MTU once split. It considers L3 headers, L4 headers, and the
* payload.
*/
bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
{
return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
}
EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
/**
* skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
*
* @skb: GSO skb
* @len: length to validate against
*
* skb_gso_validate_mac_len validates if a given skb will fit a wanted
* length once split, including L2, L3 and L4 headers and the payload.
*/
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
{
return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
}
EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
{
int mac_len;
if (skb_cow(skb, skb_headroom(skb)) < 0) {
kfree_skb(skb);
return NULL;
}
mac_len = skb->data - skb_mac_header(skb);
if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
mac_len - VLAN_HLEN - ETH_TLEN);
}
skb->mac_header += VLAN_HLEN;
return skb;
}
struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
{
struct vlan_hdr *vhdr;
u16 vlan_tci;
if (unlikely(skb_vlan_tag_present(skb))) {
/* vlan_tci is already set-up so leave this for another time */
return skb;
}
skb = skb_share_check(skb, GFP_ATOMIC);
if (unlikely(!skb))
goto err_free;
if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
goto err_free;
vhdr = (struct vlan_hdr *)skb->data;
vlan_tci = ntohs(vhdr->h_vlan_TCI);
__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
skb_pull_rcsum(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vhdr);
skb = skb_reorder_vlan_header(skb);
if (unlikely(!skb))
goto err_free;
skb_reset_network_header(skb);
skb_reset_transport_header(skb);
skb_reset_mac_len(skb);
return skb;
err_free:
kfree_skb(skb);
return NULL;
}
EXPORT_SYMBOL(skb_vlan_untag);
int skb_ensure_writable(struct sk_buff *skb, int write_len)
{
if (!pskb_may_pull(skb, write_len))
return -ENOMEM;
if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
return 0;
return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}
EXPORT_SYMBOL(skb_ensure_writable);
/* remove VLAN header from packet and update csum accordingly.
* expects a non skb_vlan_tag_present skb with a vlan tag payload
*/
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
{
struct vlan_hdr *vhdr;
int offset = skb->data - skb_mac_header(skb);
int err;
if (WARN_ONCE(offset,
"__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
offset)) {
return -EINVAL;
}
err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
if (unlikely(err))
return err;
skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
*vlan_tci = ntohs(vhdr->h_vlan_TCI);
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
vlan_set_encap_proto(skb, vhdr);
skb->mac_header += VLAN_HLEN;
if (skb_network_offset(skb) < ETH_HLEN)
skb_set_network_header(skb, ETH_HLEN);
skb_reset_mac_len(skb);
return err;
}
EXPORT_SYMBOL(__skb_vlan_pop);
/* Pop a vlan tag either from hwaccel or from payload.
* Expects skb->data at mac header.
*/
int skb_vlan_pop(struct sk_buff *skb)
{
u16 vlan_tci;
__be16 vlan_proto;
int err;
if (likely(skb_vlan_tag_present(skb))) {
__vlan_hwaccel_clear_tag(skb);
} else {
if (unlikely(!eth_type_vlan(skb->protocol)))
return 0;
err = __skb_vlan_pop(skb, &vlan_tci);
if (err)
return err;
}
/* move next vlan tag to hw accel tag */
if (likely(!eth_type_vlan(skb->protocol)))
return 0;
vlan_proto = skb->protocol;
err = __skb_vlan_pop(skb, &vlan_tci);
if (unlikely(err))
return err;
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
return 0;
}
EXPORT_SYMBOL(skb_vlan_pop);
/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
* Expects skb->data at mac header.
*/
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
{
if (skb_vlan_tag_present(skb)) {
int offset = skb->data - skb_mac_header(skb);
int err;
if (WARN_ONCE(offset,
"skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
offset)) {
return -EINVAL;
}
err = __vlan_insert_tag(skb, skb->vlan_proto,
skb_vlan_tag_get(skb));
if (err)
return err;
skb->protocol = skb->vlan_proto;
skb->mac_len += VLAN_HLEN;
skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
}
__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
return 0;
}
EXPORT_SYMBOL(skb_vlan_push);
/**
* alloc_skb_with_frags - allocate skb with page frags
*
* @header_len: size of linear part
* @data_len: needed length in frags
* @max_page_order: max page order desired.
* @errcode: pointer to error code if any
* @gfp_mask: allocation mask
*
* This can be used to allocate a paged skb, given a maximal order for frags.
*/
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
unsigned long data_len,
int max_page_order,
int *errcode,
gfp_t gfp_mask)
{
int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
unsigned long chunk;
struct sk_buff *skb;
struct page *page;
int i;
*errcode = -EMSGSIZE;
/* Note this test could be relaxed, if we succeed to allocate
* high order pages...
*/
if (npages > MAX_SKB_FRAGS)
return NULL;
*errcode = -ENOBUFS;
skb = alloc_skb(header_len, gfp_mask);
if (!skb)
return NULL;
skb->truesize += npages << PAGE_SHIFT;
for (i = 0; npages > 0; i++) {
int order = max_page_order;
while (order) {
if (npages >= 1 << order) {
page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
__GFP_COMP |
__GFP_NOWARN,
order);
if (page)
goto fill_page;
/* Do not retry other high order allocations */
order = 1;
max_page_order = 0;
}
order--;
}
page = alloc_page(gfp_mask);
if (!page)
goto failure;
fill_page:
chunk = min_t(unsigned long, data_len,
PAGE_SIZE << order);
skb_fill_page_desc(skb, i, page, 0, chunk);
data_len -= chunk;
npages -= 1 << order;
}
return skb;
failure:
kfree_skb(skb);
return NULL;
}
EXPORT_SYMBOL(alloc_skb_with_frags);
/* carve out the first off bytes from skb when off < headlen */
static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
const int headlen, gfp_t gfp_mask)
{
int i;
int size = skb_end_offset(skb);
int new_hlen = headlen - off;
u8 *data;
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
return -ENOMEM;
size = SKB_WITH_OVERHEAD(ksize(data));
/* Copy real data, and all frags */
skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
skb->len -= off;
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb),
offsetof(struct skb_shared_info,
frags[skb_shinfo(skb)->nr_frags]));
if (skb_cloned(skb)) {
/* drop the old head gracefully */
if (skb_orphan_frags(skb, gfp_mask)) {
kfree(data);
return -ENOMEM;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
skb_frag_ref(skb, i);
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
skb_release_data(skb);
} else {
/* we can reuse existing recount- all we did was
* relocate values
*/
skb_free_head(skb);
}
skb->head = data;
skb->data = data;
skb->head_frag = 0;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
#else
skb->end = skb->head + size;
#endif
skb_set_tail_pointer(skb, skb_headlen(skb));
skb_headers_offset_update(skb, 0);
skb->cloned = 0;
skb->hdr_len = 0;
skb->nohdr = 0;
atomic_set(&skb_shinfo(skb)->dataref, 1);
return 0;
}
static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
/* carve out the first eat bytes from skb's frag_list. May recurse into
* pskb_carve()
*/
static int pskb_carve_frag_list(struct sk_buff *skb,
struct skb_shared_info *shinfo, int eat,
gfp_t gfp_mask)
{
struct sk_buff *list = shinfo->frag_list;
struct sk_buff *clone = NULL;
struct sk_buff *insp = NULL;
do {
if (!list) {
pr_err("Not enough bytes to eat. Want %d\n", eat);
return -EFAULT;
}
if (list->len <= eat) {
/* Eaten as whole. */
eat -= list->len;
list = list->next;
insp = list;
} else {
/* Eaten partially. */
if (skb_shared(list)) {
clone = skb_clone(list, gfp_mask);
if (!clone)
return -ENOMEM;
insp = list->next;
list = clone;
} else {
/* This may be pulled without problems. */
insp = list;
}
if (pskb_carve(list, eat, gfp_mask) < 0) {
kfree_skb(clone);
return -ENOMEM;
}
break;
}
} while (eat);
/* Free pulled out fragments. */
while ((list = shinfo->frag_list) != insp) {
shinfo->frag_list = list->next;
kfree_skb(list);
}
/* And insert new clone at head. */
if (clone) {
clone->next = list;
shinfo->frag_list = clone;
}
return 0;
}
/* carve off first len bytes from skb. Split line (off) is in the
* non-linear part of skb
*/
static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
int pos, gfp_t gfp_mask)
{
int i, k = 0;
int size = skb_end_offset(skb);
u8 *data;
const int nfrags = skb_shinfo(skb)->nr_frags;
struct skb_shared_info *shinfo;
size = SKB_DATA_ALIGN(size);
if (skb_pfmemalloc(skb))
gfp_mask |= __GFP_MEMALLOC;
data = kmalloc_reserve(size +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
gfp_mask, NUMA_NO_NODE, NULL);
if (!data)
return -ENOMEM;
size = SKB_WITH_OVERHEAD(ksize(data));
memcpy((struct skb_shared_info *)(data + size),
skb_shinfo(skb), offsetof(struct skb_shared_info,
frags[skb_shinfo(skb)->nr_frags]));
if (skb_orphan_frags(skb, gfp_mask)) {
kfree(data);
return -ENOMEM;
}
shinfo = (struct skb_shared_info *)(data + size);
for (i = 0; i < nfrags; i++) {
int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
if (pos + fsize > off) {
shinfo->frags[k] = skb_shinfo(skb)->frags[i];
if (pos < off) {
/* Split frag.
* We have two variants in this case:
* 1. Move all the frag to the second
* part, if it is possible. F.e.
* this approach is mandatory for TUX,
* where splitting is expensive.
* 2. Split is accurately. We make this.
*/
shinfo->frags[0].page_offset += off - pos;
skb_frag_size_sub(&shinfo->frags[0], off - pos);
}
skb_frag_ref(skb, i);
k++;
}
pos += fsize;
}
shinfo->nr_frags = k;
if (skb_has_frag_list(skb))
skb_clone_fraglist(skb);
if (k == 0) {
/* split line is in frag list */
pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
}
skb_release_data(skb);
skb->head = data;
skb->head_frag = 0;
skb->data = data;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb->end = size;
#else
skb->end = skb->head + size;
#endif
skb_reset_tail_pointer(skb);
skb_headers_offset_update(skb, 0);
skb->cloned = 0;
skb->hdr_len = 0;
skb->nohdr = 0;
skb->len -= off;
skb->data_len = skb->len;
atomic_set(&skb_shinfo(skb)->dataref, 1);
return 0;
}
/* remove len bytes from the beginning of the skb */
static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
{
int headlen = skb_headlen(skb);
if (len < headlen)
return pskb_carve_inside_header(skb, len, headlen, gfp);
else
return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
}
/* Extract to_copy bytes starting at off from skb, and return this in
* a new skb
*/
struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
int to_copy, gfp_t gfp)
{
struct sk_buff *clone = skb_clone(skb, gfp);
if (!clone)
return NULL;
if (pskb_carve(clone, off, gfp) < 0 ||
pskb_trim(clone, to_copy)) {
kfree_skb(clone);
return NULL;
}
return clone;
}
EXPORT_SYMBOL(pskb_extract);
/**
* skb_condense - try to get rid of fragments/frag_list if possible
* @skb: buffer
*
* Can be used to save memory before skb is added to a busy queue.
* If packet has bytes in frags and enough tail room in skb->head,
* pull all of them, so that we can free the frags right now and adjust
* truesize.
* Notes:
* We do not reallocate skb->head thus can not fail.
* Caller must re-evaluate skb->truesize if needed.
*/
void skb_condense(struct sk_buff *skb)
{
if (skb->data_len) {
if (skb->data_len > skb->end - skb->tail ||
skb_cloned(skb))
return;
/* Nice, we can free page frag(s) right now */
__pskb_pull_tail(skb, skb->data_len);
}
/* At this point, skb->truesize might be over estimated,
* because skb had a fragment, and fragments do not tell
* their truesize.
* When we pulled its content into skb->head, fragment
* was freed, but __pskb_pull_tail() could not possibly
* adjust skb->truesize, not knowing the frag truesize.
*/
skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
}
#ifdef CONFIG_SKB_EXTENSIONS
static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
{
return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
}
static struct skb_ext *skb_ext_alloc(void)
{
struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
if (new) {
memset(new->offset, 0, sizeof(new->offset));
refcount_set(&new->refcnt, 1);
}
return new;
}
static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
unsigned int old_active)
{
struct skb_ext *new;
if (refcount_read(&old->refcnt) == 1)
return old;
new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
if (!new)
return NULL;
memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
refcount_set(&new->refcnt, 1);
#ifdef CONFIG_XFRM
if (old_active & (1 << SKB_EXT_SEC_PATH)) {
struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
unsigned int i;
for (i = 0; i < sp->len; i++)
xfrm_state_hold(sp->xvec[i]);
}
#endif
__skb_ext_put(old);
return new;
}
/**
* skb_ext_add - allocate space for given extension, COW if needed
* @skb: buffer
* @id: extension to allocate space for
*
* Allocates enough space for the given extension.
* If the extension is already present, a pointer to that extension
* is returned.
*
* If the skb was cloned, COW applies and the returned memory can be
* modified without changing the extension space of clones buffers.
*
* Returns pointer to the extension or NULL on allocation failure.
*/
void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
{
struct skb_ext *new, *old = NULL;
unsigned int newlen, newoff;
if (skb->active_extensions) {
old = skb->extensions;
new = skb_ext_maybe_cow(old, skb->active_extensions);
if (!new)
return NULL;
if (__skb_ext_exist(new, id))
goto set_active;
newoff = new->chunks;
} else {
newoff = SKB_EXT_CHUNKSIZEOF(*new);
new = skb_ext_alloc();
if (!new)
return NULL;
}
newlen = newoff + skb_ext_type_len[id];
new->chunks = newlen;
new->offset[id] = newoff;
set_active:
skb->extensions = new;
skb->active_extensions |= 1 << id;
return skb_ext_get_ptr(new, id);
}
EXPORT_SYMBOL(skb_ext_add);
#ifdef CONFIG_XFRM
static void skb_ext_put_sp(struct sec_path *sp)
{
unsigned int i;
for (i = 0; i < sp->len; i++)
xfrm_state_put(sp->xvec[i]);
}
#endif
void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
{
struct skb_ext *ext = skb->extensions;
skb->active_extensions &= ~(1 << id);
if (skb->active_extensions == 0) {
skb->extensions = NULL;
__skb_ext_put(ext);
#ifdef CONFIG_XFRM
} else if (id == SKB_EXT_SEC_PATH &&
refcount_read(&ext->refcnt) == 1) {
struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
skb_ext_put_sp(sp);
sp->len = 0;
#endif
}
}
EXPORT_SYMBOL(__skb_ext_del);
void __skb_ext_put(struct skb_ext *ext)
{
/* If this is last clone, nothing can increment
* it after check passes. Avoids one atomic op.
*/
if (refcount_read(&ext->refcnt) == 1)
goto free_now;
if (!refcount_dec_and_test(&ext->refcnt))
return;
free_now:
#ifdef CONFIG_XFRM
if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
#endif
kmem_cache_free(skbuff_ext_cache, ext);
}
EXPORT_SYMBOL(__skb_ext_put);
#endif /* CONFIG_SKB_EXTENSIONS */