2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/drivers/spi/spi-fsl-qspi.c
Han Xu d6b197a148
spi: spi-fsl-qspi: change i.MX7D RX FIFO size
The RX FIFO should be 128 byte rather than 512 byte. It's a typo on
reference manual.

Signed-off-by: Han Xu <han.xu@nxp.com>
Link: https://lore.kernel.org/r/20190710023128.13115-3-han.xu@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-07-10 16:31:35 +01:00

967 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale QuadSPI driver.
*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
* Copyright (C) 2018 Bootlin
* Copyright (C) 2018 exceet electronics GmbH
* Copyright (C) 2018 Kontron Electronics GmbH
*
* Transition to SPI MEM interface:
* Authors:
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
* Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
* Suresh Gupta <suresh.gupta@nxp.com>
*
* Based on the original fsl-quadspi.c spi-nor driver:
* Author: Freescale Semiconductor, Inc.
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (15).
*/
#define SEQID_LUT 15
/* Registers used by the driver */
#define QUADSPI_MCR 0x00
#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
#define QUADSPI_MCR_MDIS_MASK BIT(14)
#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
#define QUADSPI_IPCR 0x08
#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
#define QUADSPI_BUF3CR 0x1c
#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
#define QUADSPI_BFGENCR 0x20
#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
#define QUADSPI_BUF0IND 0x30
#define QUADSPI_BUF1IND 0x34
#define QUADSPI_BUF2IND 0x38
#define QUADSPI_SFAR 0x100
#define QUADSPI_SMPR 0x108
#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
#define QUADSPI_SMPR_HSENA_MASK BIT(0)
#define QUADSPI_RBCT 0x110
#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
#define QUADSPI_TBDR 0x154
#define QUADSPI_SR 0x15c
#define QUADSPI_SR_IP_ACC_MASK BIT(1)
#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
#define QUADSPI_FR 0x160
#define QUADSPI_FR_TFF_MASK BIT(0)
#define QUADSPI_SPTRCLR 0x16c
#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
#define QUADSPI_SFA1AD 0x180
#define QUADSPI_SFA2AD 0x184
#define QUADSPI_SFB1AD 0x188
#define QUADSPI_SFB2AD 0x18c
#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
#define QUADSPI_LUTKEY 0x300
#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
#define QUADSPI_LCKCR 0x304
#define QUADSPI_LCKER_LOCK BIT(0)
#define QUADSPI_LCKER_UNLOCK BIT(1)
#define QUADSPI_RSER 0x164
#define QUADSPI_RSER_TFIE BIT(0)
#define QUADSPI_LUT_BASE 0x310
#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define QUADSPI_LUT_REG(idx) \
(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
/* Instruction set for the LUT register */
#define LUT_STOP 0
#define LUT_CMD 1
#define LUT_ADDR 2
#define LUT_DUMMY 3
#define LUT_MODE 4
#define LUT_MODE2 5
#define LUT_MODE4 6
#define LUT_FSL_READ 7
#define LUT_FSL_WRITE 8
#define LUT_JMP_ON_CS 9
#define LUT_ADDR_DDR 10
#define LUT_MODE_DDR 11
#define LUT_MODE2_DDR 12
#define LUT_MODE4_DDR 13
#define LUT_FSL_READ_DDR 14
#define LUT_FSL_WRITE_DDR 15
#define LUT_DATA_LEARN 16
/*
* The PAD definitions for LUT register.
*
* The pad stands for the number of IO lines [0:3].
* For example, the quad read needs four IO lines,
* so you should use LUT_PAD(4).
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
/* Controller needs driver to swap endianness */
#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
/*
* TKT253890, the controller needs the driver to fill the txfifo with
* 16 bytes at least to trigger a data transfer, even though the extra
* data won't be transferred.
*/
#define QUADSPI_QUIRK_TKT253890 BIT(2)
/* TKT245618, the controller cannot wake up from wait mode */
#define QUADSPI_QUIRK_TKT245618 BIT(3)
/*
* Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
* internally. No need to add it when setting SFXXAD and SFAR registers
*/
#define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
struct fsl_qspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static const struct fsl_qspi_devtype_data vybrid_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx6sx_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx7d_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx6ul_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data ls1021a_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.ahb_buf_size = SZ_1K,
.quirks = 0,
.little_endian = false,
};
static const struct fsl_qspi_devtype_data ls2080a_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
.little_endian = true,
};
struct fsl_qspi {
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
const struct fsl_qspi_devtype_data *devtype_data;
struct mutex lock;
struct pm_qos_request pm_qos_req;
int selected;
};
static inline int needs_swap_endian(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
}
static inline int needs_4x_clock(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
}
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
}
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
}
static inline int needs_amba_base_offset(struct fsl_qspi *q)
{
return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
}
/*
* An IC bug makes it necessary to rearrange the 32-bit data.
* Later chips, such as IMX6SLX, have fixed this bug.
*/
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
return needs_swap_endian(q) ? __swab32(a) : a;
}
/*
* R/W functions for big- or little-endian registers:
* The QSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the QSPI controller can use
* big-endian or little-endian.
*/
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
if (q->devtype_data->little_endian)
iowrite32(val, addr);
else
iowrite32be(val, addr);
}
static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
if (q->devtype_data->little_endian)
return ioread32(addr);
return ioread32be(addr);
}
static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
struct fsl_qspi *q = dev_id;
u32 reg;
/* clear interrupt */
reg = qspi_readl(q, q->iobase + QUADSPI_FR);
qspi_writel(q, reg, q->iobase + QUADSPI_FR);
if (reg & QUADSPI_FR_TFF_MASK)
complete(&q->c);
dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
return IRQ_HANDLED;
}
static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
return 0;
}
return -ENOTSUPP;
}
static bool fsl_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
int ret;
ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
if (op->data.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
if (ret)
return false;
/*
* The number of instructions needed for the op, needs
* to fit into a single LUT entry.
*/
if (op->addr.nbytes +
(op->dummy.nbytes ? 1:0) +
(op->data.nbytes ? 1:0) > 6)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.nbytes &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > q->devtype_data->ahb_buf_size ||
(op->data.nbytes > q->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > q->devtype_data->txfifo)
return false;
return true;
}
static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/*
* For some unknown reason, using LUT_ADDR doesn't work in some
* cases (at least with only one byte long addresses), so
* let's use LUT_MODE to write the address bytes one by one
*/
for (i = 0; i < op->addr.nbytes; i++) {
u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
LUT_PAD(op->addr.buswidth),
addrbyte);
lutidx++;
}
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
LUT_PAD(op->dummy.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_FSL_READ : LUT_FSL_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
/* lock LUT */
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
int ret;
ret = clk_prepare_enable(q->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(q->clk);
if (ret) {
clk_disable_unprepare(q->clk_en);
return ret;
}
if (needs_wakeup_wait_mode(q))
pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
return 0;
}
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
if (needs_wakeup_wait_mode(q))
pm_qos_remove_request(&q->pm_qos_req);
clk_disable_unprepare(q->clk);
clk_disable_unprepare(q->clk_en);
}
/*
* If we have changed the content of the flash by writing or erasing, or if we
* read from flash with a different offset into the page buffer, we need to
* invalidate the AHB buffer. If we do not do so, we may read out the wrong
* data. The spec tells us reset the AHB domain and Serial Flash domain at
* the same time.
*/
static void fsl_qspi_invalidate(struct fsl_qspi *q)
{
u32 reg;
reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}
static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
{
unsigned long rate = spi->max_speed_hz;
int ret;
if (q->selected == spi->chip_select)
return;
if (needs_4x_clock(q))
rate *= 4;
fsl_qspi_clk_disable_unprep(q);
ret = clk_set_rate(q->clk, rate);
if (ret)
return;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return;
q->selected = spi->chip_select;
fsl_qspi_invalidate(q);
}
static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
{
memcpy_fromio(op->data.buf.in,
q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
op->data.nbytes);
}
static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int i;
u32 val;
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
memcpy(&val, op->data.buf.out + i, 4);
val = fsl_qspi_endian_xchg(q, val);
qspi_writel(q, val, base + QUADSPI_TBDR);
}
if (i < op->data.nbytes) {
memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
val = fsl_qspi_endian_xchg(q, val);
qspi_writel(q, val, base + QUADSPI_TBDR);
}
if (needs_fill_txfifo(q)) {
for (i = op->data.nbytes; i < 16; i += 4)
qspi_writel(q, 0, base + QUADSPI_TBDR);
}
}
static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int i;
u8 *buf = op->data.buf.in;
u32 val;
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
val = fsl_qspi_endian_xchg(q, val);
memcpy(buf + i, &val, 4);
}
if (i < op->data.nbytes) {
val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
val = fsl_qspi_endian_xchg(q, val);
memcpy(buf + i, &val, op->data.nbytes - i);
}
}
static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int err = 0;
init_completion(&q->c);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
base + QUADSPI_IPCR);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
fsl_qspi_read_rxfifo(q, op);
return err;
}
static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
u32 mask, u32 delay_us, u32 timeout_us)
{
u32 reg;
if (!q->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
timeout_us);
}
static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
void __iomem *base = q->iobase;
u32 addr_offset = 0;
int err = 0;
mutex_lock(&q->lock);
/* wait for the controller being ready */
fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
fsl_qspi_select_mem(q, mem->spi);
if (needs_amba_base_offset(q))
addr_offset = q->memmap_phy;
qspi_writel(q,
q->selected * q->devtype_data->ahb_buf_size + addr_offset,
base + QUADSPI_SFAR);
qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
base + QUADSPI_MCR);
qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
base + QUADSPI_SPTRCLR);
fsl_qspi_prepare_lut(q, op);
/*
* If we have large chunks of data, we read them through the AHB bus
* by accessing the mapped memory. In all other cases we use
* IP commands to access the flash.
*/
if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN) {
fsl_qspi_read_ahb(q, op);
} else {
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
fsl_qspi_fill_txfifo(q, op);
err = fsl_qspi_do_op(q, op);
}
/* Invalidate the data in the AHB buffer. */
fsl_qspi_invalidate(q);
mutex_unlock(&q->lock);
return err;
}
static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > q->devtype_data->txfifo)
op->data.nbytes = q->devtype_data->txfifo;
} else {
if (op->data.nbytes > q->devtype_data->ahb_buf_size)
op->data.nbytes = q->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
return 0;
}
static int fsl_qspi_default_setup(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
u32 reg, addr_offset = 0;
int ret;
/* disable and unprepare clock to avoid glitch pass to controller */
fsl_qspi_clk_disable_unprep(q);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(q->clk, 66000000);
if (ret)
return ret;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return ret;
/* Reset the module */
qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
base + QUADSPI_MCR);
udelay(1);
/* Disable the module */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
reg = qspi_readl(q, base + QUADSPI_SMPR);
qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* We only use the buffer3 for AHB read */
qspi_writel(q, 0, base + QUADSPI_BUF0IND);
qspi_writel(q, 0, base + QUADSPI_BUF1IND);
qspi_writel(q, 0, base + QUADSPI_BUF2IND);
qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
q->iobase + QUADSPI_BFGENCR);
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
base + QUADSPI_BUF3CR);
if (needs_amba_base_offset(q))
addr_offset = q->memmap_phy;
/*
* In HW there can be a maximum of four chips on two buses with
* two chip selects on each bus. We use four chip selects in SW
* to differentiate between the four chips.
* We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
* SFB2AD accordingly.
*/
qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
base + QUADSPI_SFA1AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
base + QUADSPI_SFA2AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
base + QUADSPI_SFB1AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
base + QUADSPI_SFB2AD);
q->selected = -1;
/* Enable the module */
qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
base + QUADSPI_MCR);
/* clear all interrupt status */
qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
/* enable the interrupt */
qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
return 0;
}
static const char *fsl_qspi_get_name(struct spi_mem *mem)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
struct device *dev = &mem->spi->dev;
const char *name;
/*
* In order to keep mtdparts compatible with the old MTD driver at
* mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
* platform_device of the controller.
*/
if (of_get_available_child_count(q->dev->of_node) == 1)
return dev_name(q->dev);
name = devm_kasprintf(dev, GFP_KERNEL,
"%s-%d", dev_name(q->dev),
mem->spi->chip_select);
if (!name) {
dev_err(dev, "failed to get memory for custom flash name\n");
return ERR_PTR(-ENOMEM);
}
return name;
}
static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
.adjust_op_size = fsl_qspi_adjust_op_size,
.supports_op = fsl_qspi_supports_op,
.exec_op = fsl_qspi_exec_op,
.get_name = fsl_qspi_get_name,
};
static int fsl_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct resource *res;
struct fsl_qspi *q;
int ret;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
if (!ctlr)
return -ENOMEM;
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD;
q = spi_controller_get_devdata(ctlr);
q->dev = dev;
q->devtype_data = of_device_get_match_data(dev);
if (!q->devtype_data) {
ret = -ENODEV;
goto err_put_ctrl;
}
platform_set_drvdata(pdev, q);
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
q->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(q->iobase)) {
ret = PTR_ERR(q->iobase);
goto err_put_ctrl;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory");
q->ahb_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(q->ahb_addr)) {
ret = PTR_ERR(q->ahb_addr);
goto err_put_ctrl;
}
q->memmap_phy = res->start;
/* find the clocks */
q->clk_en = devm_clk_get(dev, "qspi_en");
if (IS_ERR(q->clk_en)) {
ret = PTR_ERR(q->clk_en);
goto err_put_ctrl;
}
q->clk = devm_clk_get(dev, "qspi");
if (IS_ERR(q->clk)) {
ret = PTR_ERR(q->clk);
goto err_put_ctrl;
}
ret = fsl_qspi_clk_prep_enable(q);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto err_put_ctrl;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "failed to get the irq: %d\n", ret);
goto err_disable_clk;
}
ret = devm_request_irq(dev, ret,
fsl_qspi_irq_handler, 0, pdev->name, q);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto err_disable_clk;
}
mutex_init(&q->lock);
ctlr->bus_num = -1;
ctlr->num_chipselect = 4;
ctlr->mem_ops = &fsl_qspi_mem_ops;
fsl_qspi_default_setup(q);
ctlr->dev.of_node = np;
ret = devm_spi_register_controller(dev, ctlr);
if (ret)
goto err_destroy_mutex;
return 0;
err_destroy_mutex:
mutex_destroy(&q->lock);
err_disable_clk:
fsl_qspi_clk_disable_unprep(q);
err_put_ctrl:
spi_controller_put(ctlr);
dev_err(dev, "Freescale QuadSPI probe failed\n");
return ret;
}
static int fsl_qspi_remove(struct platform_device *pdev)
{
struct fsl_qspi *q = platform_get_drvdata(pdev);
/* disable the hardware */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
fsl_qspi_clk_disable_unprep(q);
mutex_destroy(&q->lock);
return 0;
}
static int fsl_qspi_suspend(struct device *dev)
{
return 0;
}
static int fsl_qspi_resume(struct device *dev)
{
struct fsl_qspi *q = dev_get_drvdata(dev);
fsl_qspi_default_setup(q);
return 0;
}
static const struct of_device_id fsl_qspi_dt_ids[] = {
{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
static const struct dev_pm_ops fsl_qspi_pm_ops = {
.suspend = fsl_qspi_suspend,
.resume = fsl_qspi_resume,
};
static struct platform_driver fsl_qspi_driver = {
.driver = {
.name = "fsl-quadspi",
.of_match_table = fsl_qspi_dt_ids,
.pm = &fsl_qspi_pm_ops,
},
.probe = fsl_qspi_probe,
.remove = fsl_qspi_remove,
};
module_platform_driver(fsl_qspi_driver);
MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
MODULE_LICENSE("GPL v2");