mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 07:06:40 +08:00
ab263f47c9
Protect the task lookups in audit_receive_msg() with rcu_read_lock() instead of tasklist_lock and use lock/unlock_sighand to protect against the exit race. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1507 lines
39 KiB
C
1507 lines
39 KiB
C
/* audit.c -- Auditing support
|
|
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
|
|
* System-call specific features have moved to auditsc.c
|
|
*
|
|
* Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
|
|
*
|
|
* Goals: 1) Integrate fully with Security Modules.
|
|
* 2) Minimal run-time overhead:
|
|
* a) Minimal when syscall auditing is disabled (audit_enable=0).
|
|
* b) Small when syscall auditing is enabled and no audit record
|
|
* is generated (defer as much work as possible to record
|
|
* generation time):
|
|
* i) context is allocated,
|
|
* ii) names from getname are stored without a copy, and
|
|
* iii) inode information stored from path_lookup.
|
|
* 3) Ability to disable syscall auditing at boot time (audit=0).
|
|
* 4) Usable by other parts of the kernel (if audit_log* is called,
|
|
* then a syscall record will be generated automatically for the
|
|
* current syscall).
|
|
* 5) Netlink interface to user-space.
|
|
* 6) Support low-overhead kernel-based filtering to minimize the
|
|
* information that must be passed to user-space.
|
|
*
|
|
* Example user-space utilities: http://people.redhat.com/sgrubb/audit/
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/types.h>
|
|
#include <asm/atomic.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/audit.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/tty.h>
|
|
|
|
#include "audit.h"
|
|
|
|
/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
|
|
* (Initialization happens after skb_init is called.) */
|
|
#define AUDIT_DISABLED -1
|
|
#define AUDIT_UNINITIALIZED 0
|
|
#define AUDIT_INITIALIZED 1
|
|
static int audit_initialized;
|
|
|
|
#define AUDIT_OFF 0
|
|
#define AUDIT_ON 1
|
|
#define AUDIT_LOCKED 2
|
|
int audit_enabled;
|
|
int audit_ever_enabled;
|
|
|
|
/* Default state when kernel boots without any parameters. */
|
|
static int audit_default;
|
|
|
|
/* If auditing cannot proceed, audit_failure selects what happens. */
|
|
static int audit_failure = AUDIT_FAIL_PRINTK;
|
|
|
|
/*
|
|
* If audit records are to be written to the netlink socket, audit_pid
|
|
* contains the pid of the auditd process and audit_nlk_pid contains
|
|
* the pid to use to send netlink messages to that process.
|
|
*/
|
|
int audit_pid;
|
|
static int audit_nlk_pid;
|
|
|
|
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
|
|
* to that number per second. This prevents DoS attacks, but results in
|
|
* audit records being dropped. */
|
|
static int audit_rate_limit;
|
|
|
|
/* Number of outstanding audit_buffers allowed. */
|
|
static int audit_backlog_limit = 64;
|
|
static int audit_backlog_wait_time = 60 * HZ;
|
|
static int audit_backlog_wait_overflow = 0;
|
|
|
|
/* The identity of the user shutting down the audit system. */
|
|
uid_t audit_sig_uid = -1;
|
|
pid_t audit_sig_pid = -1;
|
|
u32 audit_sig_sid = 0;
|
|
|
|
/* Records can be lost in several ways:
|
|
0) [suppressed in audit_alloc]
|
|
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
|
|
2) out of memory in audit_log_move [alloc_skb]
|
|
3) suppressed due to audit_rate_limit
|
|
4) suppressed due to audit_backlog_limit
|
|
*/
|
|
static atomic_t audit_lost = ATOMIC_INIT(0);
|
|
|
|
/* The netlink socket. */
|
|
static struct sock *audit_sock;
|
|
|
|
/* Hash for inode-based rules */
|
|
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
|
|
|
|
/* The audit_freelist is a list of pre-allocated audit buffers (if more
|
|
* than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
|
|
* being placed on the freelist). */
|
|
static DEFINE_SPINLOCK(audit_freelist_lock);
|
|
static int audit_freelist_count;
|
|
static LIST_HEAD(audit_freelist);
|
|
|
|
static struct sk_buff_head audit_skb_queue;
|
|
/* queue of skbs to send to auditd when/if it comes back */
|
|
static struct sk_buff_head audit_skb_hold_queue;
|
|
static struct task_struct *kauditd_task;
|
|
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
|
|
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
|
|
|
|
/* Serialize requests from userspace. */
|
|
DEFINE_MUTEX(audit_cmd_mutex);
|
|
|
|
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
|
|
* audit records. Since printk uses a 1024 byte buffer, this buffer
|
|
* should be at least that large. */
|
|
#define AUDIT_BUFSIZ 1024
|
|
|
|
/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
|
|
* audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
|
|
#define AUDIT_MAXFREE (2*NR_CPUS)
|
|
|
|
/* The audit_buffer is used when formatting an audit record. The caller
|
|
* locks briefly to get the record off the freelist or to allocate the
|
|
* buffer, and locks briefly to send the buffer to the netlink layer or
|
|
* to place it on a transmit queue. Multiple audit_buffers can be in
|
|
* use simultaneously. */
|
|
struct audit_buffer {
|
|
struct list_head list;
|
|
struct sk_buff *skb; /* formatted skb ready to send */
|
|
struct audit_context *ctx; /* NULL or associated context */
|
|
gfp_t gfp_mask;
|
|
};
|
|
|
|
struct audit_reply {
|
|
int pid;
|
|
struct sk_buff *skb;
|
|
};
|
|
|
|
static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
|
|
{
|
|
if (ab) {
|
|
struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
|
|
nlh->nlmsg_pid = pid;
|
|
}
|
|
}
|
|
|
|
void audit_panic(const char *message)
|
|
{
|
|
switch (audit_failure)
|
|
{
|
|
case AUDIT_FAIL_SILENT:
|
|
break;
|
|
case AUDIT_FAIL_PRINTK:
|
|
if (printk_ratelimit())
|
|
printk(KERN_ERR "audit: %s\n", message);
|
|
break;
|
|
case AUDIT_FAIL_PANIC:
|
|
/* test audit_pid since printk is always losey, why bother? */
|
|
if (audit_pid)
|
|
panic("audit: %s\n", message);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int audit_rate_check(void)
|
|
{
|
|
static unsigned long last_check = 0;
|
|
static int messages = 0;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
unsigned long now;
|
|
unsigned long elapsed;
|
|
int retval = 0;
|
|
|
|
if (!audit_rate_limit) return 1;
|
|
|
|
spin_lock_irqsave(&lock, flags);
|
|
if (++messages < audit_rate_limit) {
|
|
retval = 1;
|
|
} else {
|
|
now = jiffies;
|
|
elapsed = now - last_check;
|
|
if (elapsed > HZ) {
|
|
last_check = now;
|
|
messages = 0;
|
|
retval = 1;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* audit_log_lost - conditionally log lost audit message event
|
|
* @message: the message stating reason for lost audit message
|
|
*
|
|
* Emit at least 1 message per second, even if audit_rate_check is
|
|
* throttling.
|
|
* Always increment the lost messages counter.
|
|
*/
|
|
void audit_log_lost(const char *message)
|
|
{
|
|
static unsigned long last_msg = 0;
|
|
static DEFINE_SPINLOCK(lock);
|
|
unsigned long flags;
|
|
unsigned long now;
|
|
int print;
|
|
|
|
atomic_inc(&audit_lost);
|
|
|
|
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
|
|
|
|
if (!print) {
|
|
spin_lock_irqsave(&lock, flags);
|
|
now = jiffies;
|
|
if (now - last_msg > HZ) {
|
|
print = 1;
|
|
last_msg = now;
|
|
}
|
|
spin_unlock_irqrestore(&lock, flags);
|
|
}
|
|
|
|
if (print) {
|
|
if (printk_ratelimit())
|
|
printk(KERN_WARNING
|
|
"audit: audit_lost=%d audit_rate_limit=%d "
|
|
"audit_backlog_limit=%d\n",
|
|
atomic_read(&audit_lost),
|
|
audit_rate_limit,
|
|
audit_backlog_limit);
|
|
audit_panic(message);
|
|
}
|
|
}
|
|
|
|
static int audit_log_config_change(char *function_name, int new, int old,
|
|
uid_t loginuid, u32 sessionid, u32 sid,
|
|
int allow_changes)
|
|
{
|
|
struct audit_buffer *ab;
|
|
int rc = 0;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
|
|
audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
|
|
old, loginuid, sessionid);
|
|
if (sid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
rc = security_secid_to_secctx(sid, &ctx, &len);
|
|
if (rc) {
|
|
audit_log_format(ab, " sid=%u", sid);
|
|
allow_changes = 0; /* Something weird, deny request */
|
|
} else {
|
|
audit_log_format(ab, " subj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
audit_log_format(ab, " res=%d", allow_changes);
|
|
audit_log_end(ab);
|
|
return rc;
|
|
}
|
|
|
|
static int audit_do_config_change(char *function_name, int *to_change,
|
|
int new, uid_t loginuid, u32 sessionid,
|
|
u32 sid)
|
|
{
|
|
int allow_changes, rc = 0, old = *to_change;
|
|
|
|
/* check if we are locked */
|
|
if (audit_enabled == AUDIT_LOCKED)
|
|
allow_changes = 0;
|
|
else
|
|
allow_changes = 1;
|
|
|
|
if (audit_enabled != AUDIT_OFF) {
|
|
rc = audit_log_config_change(function_name, new, old, loginuid,
|
|
sessionid, sid, allow_changes);
|
|
if (rc)
|
|
allow_changes = 0;
|
|
}
|
|
|
|
/* If we are allowed, make the change */
|
|
if (allow_changes == 1)
|
|
*to_change = new;
|
|
/* Not allowed, update reason */
|
|
else if (rc == 0)
|
|
rc = -EPERM;
|
|
return rc;
|
|
}
|
|
|
|
static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
|
|
u32 sid)
|
|
{
|
|
return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
|
|
limit, loginuid, sessionid, sid);
|
|
}
|
|
|
|
static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
|
|
u32 sid)
|
|
{
|
|
return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
|
|
limit, loginuid, sessionid, sid);
|
|
}
|
|
|
|
static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
|
|
{
|
|
int rc;
|
|
if (state < AUDIT_OFF || state > AUDIT_LOCKED)
|
|
return -EINVAL;
|
|
|
|
rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
|
|
loginuid, sessionid, sid);
|
|
|
|
if (!rc)
|
|
audit_ever_enabled |= !!state;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
|
|
{
|
|
if (state != AUDIT_FAIL_SILENT
|
|
&& state != AUDIT_FAIL_PRINTK
|
|
&& state != AUDIT_FAIL_PANIC)
|
|
return -EINVAL;
|
|
|
|
return audit_do_config_change("audit_failure", &audit_failure, state,
|
|
loginuid, sessionid, sid);
|
|
}
|
|
|
|
/*
|
|
* Queue skbs to be sent to auditd when/if it comes back. These skbs should
|
|
* already have been sent via prink/syslog and so if these messages are dropped
|
|
* it is not a huge concern since we already passed the audit_log_lost()
|
|
* notification and stuff. This is just nice to get audit messages during
|
|
* boot before auditd is running or messages generated while auditd is stopped.
|
|
* This only holds messages is audit_default is set, aka booting with audit=1
|
|
* or building your kernel that way.
|
|
*/
|
|
static void audit_hold_skb(struct sk_buff *skb)
|
|
{
|
|
if (audit_default &&
|
|
skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
|
|
skb_queue_tail(&audit_skb_hold_queue, skb);
|
|
else
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* For one reason or another this nlh isn't getting delivered to the userspace
|
|
* audit daemon, just send it to printk.
|
|
*/
|
|
static void audit_printk_skb(struct sk_buff *skb)
|
|
{
|
|
struct nlmsghdr *nlh = nlmsg_hdr(skb);
|
|
char *data = NLMSG_DATA(nlh);
|
|
|
|
if (nlh->nlmsg_type != AUDIT_EOE) {
|
|
if (printk_ratelimit())
|
|
printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
|
|
else
|
|
audit_log_lost("printk limit exceeded\n");
|
|
}
|
|
|
|
audit_hold_skb(skb);
|
|
}
|
|
|
|
static void kauditd_send_skb(struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
/* take a reference in case we can't send it and we want to hold it */
|
|
skb_get(skb);
|
|
err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
|
|
if (err < 0) {
|
|
BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
|
|
printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
|
|
audit_log_lost("auditd dissapeared\n");
|
|
audit_pid = 0;
|
|
/* we might get lucky and get this in the next auditd */
|
|
audit_hold_skb(skb);
|
|
} else
|
|
/* drop the extra reference if sent ok */
|
|
consume_skb(skb);
|
|
}
|
|
|
|
static int kauditd_thread(void *dummy)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
set_freezable();
|
|
while (!kthread_should_stop()) {
|
|
/*
|
|
* if auditd just started drain the queue of messages already
|
|
* sent to syslog/printk. remember loss here is ok. we already
|
|
* called audit_log_lost() if it didn't go out normally. so the
|
|
* race between the skb_dequeue and the next check for audit_pid
|
|
* doesn't matter.
|
|
*
|
|
* if you ever find kauditd to be too slow we can get a perf win
|
|
* by doing our own locking and keeping better track if there
|
|
* are messages in this queue. I don't see the need now, but
|
|
* in 5 years when I want to play with this again I'll see this
|
|
* note and still have no friggin idea what i'm thinking today.
|
|
*/
|
|
if (audit_default && audit_pid) {
|
|
skb = skb_dequeue(&audit_skb_hold_queue);
|
|
if (unlikely(skb)) {
|
|
while (skb && audit_pid) {
|
|
kauditd_send_skb(skb);
|
|
skb = skb_dequeue(&audit_skb_hold_queue);
|
|
}
|
|
}
|
|
}
|
|
|
|
skb = skb_dequeue(&audit_skb_queue);
|
|
wake_up(&audit_backlog_wait);
|
|
if (skb) {
|
|
if (audit_pid)
|
|
kauditd_send_skb(skb);
|
|
else
|
|
audit_printk_skb(skb);
|
|
} else {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&kauditd_wait, &wait);
|
|
|
|
if (!skb_queue_len(&audit_skb_queue)) {
|
|
try_to_freeze();
|
|
schedule();
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&kauditd_wait, &wait);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
|
|
{
|
|
struct task_struct *tsk;
|
|
int err;
|
|
|
|
rcu_read_lock();
|
|
tsk = find_task_by_vpid(pid);
|
|
if (!tsk) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
get_task_struct(tsk);
|
|
rcu_read_unlock();
|
|
err = tty_audit_push_task(tsk, loginuid, sessionid);
|
|
put_task_struct(tsk);
|
|
return err;
|
|
}
|
|
|
|
int audit_send_list(void *_dest)
|
|
{
|
|
struct audit_netlink_list *dest = _dest;
|
|
int pid = dest->pid;
|
|
struct sk_buff *skb;
|
|
|
|
/* wait for parent to finish and send an ACK */
|
|
mutex_lock(&audit_cmd_mutex);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
|
|
while ((skb = __skb_dequeue(&dest->q)) != NULL)
|
|
netlink_unicast(audit_sock, skb, pid, 0);
|
|
|
|
kfree(dest);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
|
|
int multi, const void *payload, int size)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct nlmsghdr *nlh;
|
|
void *data;
|
|
int flags = multi ? NLM_F_MULTI : 0;
|
|
int t = done ? NLMSG_DONE : type;
|
|
|
|
skb = nlmsg_new(size, GFP_KERNEL);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
nlh = NLMSG_NEW(skb, pid, seq, t, size, flags);
|
|
data = NLMSG_DATA(nlh);
|
|
memcpy(data, payload, size);
|
|
return skb;
|
|
|
|
nlmsg_failure: /* Used by NLMSG_NEW */
|
|
if (skb)
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
static int audit_send_reply_thread(void *arg)
|
|
{
|
|
struct audit_reply *reply = (struct audit_reply *)arg;
|
|
|
|
mutex_lock(&audit_cmd_mutex);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
|
|
/* Ignore failure. It'll only happen if the sender goes away,
|
|
because our timeout is set to infinite. */
|
|
netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
|
|
kfree(reply);
|
|
return 0;
|
|
}
|
|
/**
|
|
* audit_send_reply - send an audit reply message via netlink
|
|
* @pid: process id to send reply to
|
|
* @seq: sequence number
|
|
* @type: audit message type
|
|
* @done: done (last) flag
|
|
* @multi: multi-part message flag
|
|
* @payload: payload data
|
|
* @size: payload size
|
|
*
|
|
* Allocates an skb, builds the netlink message, and sends it to the pid.
|
|
* No failure notifications.
|
|
*/
|
|
static void audit_send_reply(int pid, int seq, int type, int done, int multi,
|
|
const void *payload, int size)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct task_struct *tsk;
|
|
struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
|
|
GFP_KERNEL);
|
|
|
|
if (!reply)
|
|
return;
|
|
|
|
skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
reply->pid = pid;
|
|
reply->skb = skb;
|
|
|
|
tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
|
|
if (!IS_ERR(tsk))
|
|
return;
|
|
kfree_skb(skb);
|
|
out:
|
|
kfree(reply);
|
|
}
|
|
|
|
/*
|
|
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
|
|
* control messages.
|
|
*/
|
|
static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (msg_type) {
|
|
case AUDIT_GET:
|
|
case AUDIT_LIST:
|
|
case AUDIT_LIST_RULES:
|
|
case AUDIT_SET:
|
|
case AUDIT_ADD:
|
|
case AUDIT_ADD_RULE:
|
|
case AUDIT_DEL:
|
|
case AUDIT_DEL_RULE:
|
|
case AUDIT_SIGNAL_INFO:
|
|
case AUDIT_TTY_GET:
|
|
case AUDIT_TTY_SET:
|
|
case AUDIT_TRIM:
|
|
case AUDIT_MAKE_EQUIV:
|
|
if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
|
|
err = -EPERM;
|
|
break;
|
|
case AUDIT_USER:
|
|
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
|
|
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
|
|
if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
|
|
err = -EPERM;
|
|
break;
|
|
default: /* bad msg */
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
|
|
u32 pid, u32 uid, uid_t auid, u32 ses,
|
|
u32 sid)
|
|
{
|
|
int rc = 0;
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
if (!audit_enabled) {
|
|
*ab = NULL;
|
|
return rc;
|
|
}
|
|
|
|
*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
|
|
audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
|
|
pid, uid, auid, ses);
|
|
if (sid) {
|
|
rc = security_secid_to_secctx(sid, &ctx, &len);
|
|
if (rc)
|
|
audit_log_format(*ab, " ssid=%u", sid);
|
|
else {
|
|
audit_log_format(*ab, " subj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
|
|
{
|
|
u32 uid, pid, seq, sid;
|
|
void *data;
|
|
struct audit_status *status_get, status_set;
|
|
int err;
|
|
struct audit_buffer *ab;
|
|
u16 msg_type = nlh->nlmsg_type;
|
|
uid_t loginuid; /* loginuid of sender */
|
|
u32 sessionid;
|
|
struct audit_sig_info *sig_data;
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
|
|
err = audit_netlink_ok(skb, msg_type);
|
|
if (err)
|
|
return err;
|
|
|
|
/* As soon as there's any sign of userspace auditd,
|
|
* start kauditd to talk to it */
|
|
if (!kauditd_task)
|
|
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
|
|
if (IS_ERR(kauditd_task)) {
|
|
err = PTR_ERR(kauditd_task);
|
|
kauditd_task = NULL;
|
|
return err;
|
|
}
|
|
|
|
pid = NETLINK_CREDS(skb)->pid;
|
|
uid = NETLINK_CREDS(skb)->uid;
|
|
loginuid = NETLINK_CB(skb).loginuid;
|
|
sessionid = NETLINK_CB(skb).sessionid;
|
|
sid = NETLINK_CB(skb).sid;
|
|
seq = nlh->nlmsg_seq;
|
|
data = NLMSG_DATA(nlh);
|
|
|
|
switch (msg_type) {
|
|
case AUDIT_GET:
|
|
status_set.enabled = audit_enabled;
|
|
status_set.failure = audit_failure;
|
|
status_set.pid = audit_pid;
|
|
status_set.rate_limit = audit_rate_limit;
|
|
status_set.backlog_limit = audit_backlog_limit;
|
|
status_set.lost = atomic_read(&audit_lost);
|
|
status_set.backlog = skb_queue_len(&audit_skb_queue);
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
|
|
&status_set, sizeof(status_set));
|
|
break;
|
|
case AUDIT_SET:
|
|
if (nlh->nlmsg_len < sizeof(struct audit_status))
|
|
return -EINVAL;
|
|
status_get = (struct audit_status *)data;
|
|
if (status_get->mask & AUDIT_STATUS_ENABLED) {
|
|
err = audit_set_enabled(status_get->enabled,
|
|
loginuid, sessionid, sid);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_FAILURE) {
|
|
err = audit_set_failure(status_get->failure,
|
|
loginuid, sessionid, sid);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_PID) {
|
|
int new_pid = status_get->pid;
|
|
|
|
if (audit_enabled != AUDIT_OFF)
|
|
audit_log_config_change("audit_pid", new_pid,
|
|
audit_pid, loginuid,
|
|
sessionid, sid, 1);
|
|
|
|
audit_pid = new_pid;
|
|
audit_nlk_pid = NETLINK_CB(skb).pid;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
|
|
err = audit_set_rate_limit(status_get->rate_limit,
|
|
loginuid, sessionid, sid);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
|
|
err = audit_set_backlog_limit(status_get->backlog_limit,
|
|
loginuid, sessionid, sid);
|
|
break;
|
|
case AUDIT_USER:
|
|
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
|
|
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
|
|
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
|
|
return 0;
|
|
|
|
err = audit_filter_user(&NETLINK_CB(skb));
|
|
if (err == 1) {
|
|
err = 0;
|
|
if (msg_type == AUDIT_USER_TTY) {
|
|
err = audit_prepare_user_tty(pid, loginuid,
|
|
sessionid);
|
|
if (err)
|
|
break;
|
|
}
|
|
audit_log_common_recv_msg(&ab, msg_type, pid, uid,
|
|
loginuid, sessionid, sid);
|
|
|
|
if (msg_type != AUDIT_USER_TTY)
|
|
audit_log_format(ab, " msg='%.1024s'",
|
|
(char *)data);
|
|
else {
|
|
int size;
|
|
|
|
audit_log_format(ab, " msg=");
|
|
size = nlmsg_len(nlh);
|
|
if (size > 0 &&
|
|
((unsigned char *)data)[size - 1] == '\0')
|
|
size--;
|
|
audit_log_n_untrustedstring(ab, data, size);
|
|
}
|
|
audit_set_pid(ab, pid);
|
|
audit_log_end(ab);
|
|
}
|
|
break;
|
|
case AUDIT_ADD:
|
|
case AUDIT_DEL:
|
|
if (nlmsg_len(nlh) < sizeof(struct audit_rule))
|
|
return -EINVAL;
|
|
if (audit_enabled == AUDIT_LOCKED) {
|
|
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
|
|
uid, loginuid, sessionid, sid);
|
|
|
|
audit_log_format(ab, " audit_enabled=%d res=0",
|
|
audit_enabled);
|
|
audit_log_end(ab);
|
|
return -EPERM;
|
|
}
|
|
/* fallthrough */
|
|
case AUDIT_LIST:
|
|
err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
|
|
uid, seq, data, nlmsg_len(nlh),
|
|
loginuid, sessionid, sid);
|
|
break;
|
|
case AUDIT_ADD_RULE:
|
|
case AUDIT_DEL_RULE:
|
|
if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
|
|
return -EINVAL;
|
|
if (audit_enabled == AUDIT_LOCKED) {
|
|
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
|
|
uid, loginuid, sessionid, sid);
|
|
|
|
audit_log_format(ab, " audit_enabled=%d res=0",
|
|
audit_enabled);
|
|
audit_log_end(ab);
|
|
return -EPERM;
|
|
}
|
|
/* fallthrough */
|
|
case AUDIT_LIST_RULES:
|
|
err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
|
|
uid, seq, data, nlmsg_len(nlh),
|
|
loginuid, sessionid, sid);
|
|
break;
|
|
case AUDIT_TRIM:
|
|
audit_trim_trees();
|
|
|
|
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
|
|
uid, loginuid, sessionid, sid);
|
|
|
|
audit_log_format(ab, " op=trim res=1");
|
|
audit_log_end(ab);
|
|
break;
|
|
case AUDIT_MAKE_EQUIV: {
|
|
void *bufp = data;
|
|
u32 sizes[2];
|
|
size_t msglen = nlmsg_len(nlh);
|
|
char *old, *new;
|
|
|
|
err = -EINVAL;
|
|
if (msglen < 2 * sizeof(u32))
|
|
break;
|
|
memcpy(sizes, bufp, 2 * sizeof(u32));
|
|
bufp += 2 * sizeof(u32);
|
|
msglen -= 2 * sizeof(u32);
|
|
old = audit_unpack_string(&bufp, &msglen, sizes[0]);
|
|
if (IS_ERR(old)) {
|
|
err = PTR_ERR(old);
|
|
break;
|
|
}
|
|
new = audit_unpack_string(&bufp, &msglen, sizes[1]);
|
|
if (IS_ERR(new)) {
|
|
err = PTR_ERR(new);
|
|
kfree(old);
|
|
break;
|
|
}
|
|
/* OK, here comes... */
|
|
err = audit_tag_tree(old, new);
|
|
|
|
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
|
|
uid, loginuid, sessionid, sid);
|
|
|
|
audit_log_format(ab, " op=make_equiv old=");
|
|
audit_log_untrustedstring(ab, old);
|
|
audit_log_format(ab, " new=");
|
|
audit_log_untrustedstring(ab, new);
|
|
audit_log_format(ab, " res=%d", !err);
|
|
audit_log_end(ab);
|
|
kfree(old);
|
|
kfree(new);
|
|
break;
|
|
}
|
|
case AUDIT_SIGNAL_INFO:
|
|
len = 0;
|
|
if (audit_sig_sid) {
|
|
err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
|
|
if (err)
|
|
return err;
|
|
}
|
|
sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
|
|
if (!sig_data) {
|
|
if (audit_sig_sid)
|
|
security_release_secctx(ctx, len);
|
|
return -ENOMEM;
|
|
}
|
|
sig_data->uid = audit_sig_uid;
|
|
sig_data->pid = audit_sig_pid;
|
|
if (audit_sig_sid) {
|
|
memcpy(sig_data->ctx, ctx, len);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
|
|
0, 0, sig_data, sizeof(*sig_data) + len);
|
|
kfree(sig_data);
|
|
break;
|
|
case AUDIT_TTY_GET: {
|
|
struct audit_tty_status s;
|
|
struct task_struct *tsk;
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock();
|
|
tsk = find_task_by_vpid(pid);
|
|
if (tsk && lock_task_sighand(tsk, &flags)) {
|
|
s.enabled = tsk->signal->audit_tty != 0;
|
|
unlock_task_sighand(tsk, &flags);
|
|
} else
|
|
err = -ESRCH;
|
|
rcu_read_unlock();
|
|
|
|
if (!err)
|
|
audit_send_reply(NETLINK_CB(skb).pid, seq,
|
|
AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
|
|
break;
|
|
}
|
|
case AUDIT_TTY_SET: {
|
|
struct audit_tty_status *s;
|
|
struct task_struct *tsk;
|
|
unsigned long flags;
|
|
|
|
if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
|
|
return -EINVAL;
|
|
s = data;
|
|
if (s->enabled != 0 && s->enabled != 1)
|
|
return -EINVAL;
|
|
rcu_read_lock();
|
|
tsk = find_task_by_vpid(pid);
|
|
if (tsk && lock_task_sighand(tsk, &flags)) {
|
|
tsk->signal->audit_tty = s->enabled != 0;
|
|
unlock_task_sighand(tsk, &flags);
|
|
} else
|
|
err = -ESRCH;
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return err < 0 ? err : 0;
|
|
}
|
|
|
|
/*
|
|
* Get message from skb. Each message is processed by audit_receive_msg.
|
|
* Malformed skbs with wrong length are discarded silently.
|
|
*/
|
|
static void audit_receive_skb(struct sk_buff *skb)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
/*
|
|
* len MUST be signed for NLMSG_NEXT to be able to dec it below 0
|
|
* if the nlmsg_len was not aligned
|
|
*/
|
|
int len;
|
|
int err;
|
|
|
|
nlh = nlmsg_hdr(skb);
|
|
len = skb->len;
|
|
|
|
while (NLMSG_OK(nlh, len)) {
|
|
err = audit_receive_msg(skb, nlh);
|
|
/* if err or if this message says it wants a response */
|
|
if (err || (nlh->nlmsg_flags & NLM_F_ACK))
|
|
netlink_ack(skb, nlh, err);
|
|
|
|
nlh = NLMSG_NEXT(nlh, len);
|
|
}
|
|
}
|
|
|
|
/* Receive messages from netlink socket. */
|
|
static void audit_receive(struct sk_buff *skb)
|
|
{
|
|
mutex_lock(&audit_cmd_mutex);
|
|
audit_receive_skb(skb);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
}
|
|
|
|
/* Initialize audit support at boot time. */
|
|
static int __init audit_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (audit_initialized == AUDIT_DISABLED)
|
|
return 0;
|
|
|
|
printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
|
|
audit_default ? "enabled" : "disabled");
|
|
audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
|
|
audit_receive, NULL, THIS_MODULE);
|
|
if (!audit_sock)
|
|
audit_panic("cannot initialize netlink socket");
|
|
else
|
|
audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
|
|
|
|
skb_queue_head_init(&audit_skb_queue);
|
|
skb_queue_head_init(&audit_skb_hold_queue);
|
|
audit_initialized = AUDIT_INITIALIZED;
|
|
audit_enabled = audit_default;
|
|
audit_ever_enabled |= !!audit_default;
|
|
|
|
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
|
|
|
|
for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
|
|
INIT_LIST_HEAD(&audit_inode_hash[i]);
|
|
|
|
return 0;
|
|
}
|
|
__initcall(audit_init);
|
|
|
|
/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
|
|
static int __init audit_enable(char *str)
|
|
{
|
|
audit_default = !!simple_strtol(str, NULL, 0);
|
|
if (!audit_default)
|
|
audit_initialized = AUDIT_DISABLED;
|
|
|
|
printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
|
|
|
|
if (audit_initialized == AUDIT_INITIALIZED) {
|
|
audit_enabled = audit_default;
|
|
audit_ever_enabled |= !!audit_default;
|
|
} else if (audit_initialized == AUDIT_UNINITIALIZED) {
|
|
printk(" (after initialization)");
|
|
} else {
|
|
printk(" (until reboot)");
|
|
}
|
|
printk("\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("audit=", audit_enable);
|
|
|
|
static void audit_buffer_free(struct audit_buffer *ab)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
if (ab->skb)
|
|
kfree_skb(ab->skb);
|
|
|
|
spin_lock_irqsave(&audit_freelist_lock, flags);
|
|
if (audit_freelist_count > AUDIT_MAXFREE)
|
|
kfree(ab);
|
|
else {
|
|
audit_freelist_count++;
|
|
list_add(&ab->list, &audit_freelist);
|
|
}
|
|
spin_unlock_irqrestore(&audit_freelist_lock, flags);
|
|
}
|
|
|
|
static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
|
|
gfp_t gfp_mask, int type)
|
|
{
|
|
unsigned long flags;
|
|
struct audit_buffer *ab = NULL;
|
|
struct nlmsghdr *nlh;
|
|
|
|
spin_lock_irqsave(&audit_freelist_lock, flags);
|
|
if (!list_empty(&audit_freelist)) {
|
|
ab = list_entry(audit_freelist.next,
|
|
struct audit_buffer, list);
|
|
list_del(&ab->list);
|
|
--audit_freelist_count;
|
|
}
|
|
spin_unlock_irqrestore(&audit_freelist_lock, flags);
|
|
|
|
if (!ab) {
|
|
ab = kmalloc(sizeof(*ab), gfp_mask);
|
|
if (!ab)
|
|
goto err;
|
|
}
|
|
|
|
ab->ctx = ctx;
|
|
ab->gfp_mask = gfp_mask;
|
|
|
|
ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
|
|
if (!ab->skb)
|
|
goto nlmsg_failure;
|
|
|
|
nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
|
|
|
|
return ab;
|
|
|
|
nlmsg_failure: /* Used by NLMSG_NEW */
|
|
kfree_skb(ab->skb);
|
|
ab->skb = NULL;
|
|
err:
|
|
audit_buffer_free(ab);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* audit_serial - compute a serial number for the audit record
|
|
*
|
|
* Compute a serial number for the audit record. Audit records are
|
|
* written to user-space as soon as they are generated, so a complete
|
|
* audit record may be written in several pieces. The timestamp of the
|
|
* record and this serial number are used by the user-space tools to
|
|
* determine which pieces belong to the same audit record. The
|
|
* (timestamp,serial) tuple is unique for each syscall and is live from
|
|
* syscall entry to syscall exit.
|
|
*
|
|
* NOTE: Another possibility is to store the formatted records off the
|
|
* audit context (for those records that have a context), and emit them
|
|
* all at syscall exit. However, this could delay the reporting of
|
|
* significant errors until syscall exit (or never, if the system
|
|
* halts).
|
|
*/
|
|
unsigned int audit_serial(void)
|
|
{
|
|
static DEFINE_SPINLOCK(serial_lock);
|
|
static unsigned int serial = 0;
|
|
|
|
unsigned long flags;
|
|
unsigned int ret;
|
|
|
|
spin_lock_irqsave(&serial_lock, flags);
|
|
do {
|
|
ret = ++serial;
|
|
} while (unlikely(!ret));
|
|
spin_unlock_irqrestore(&serial_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void audit_get_stamp(struct audit_context *ctx,
|
|
struct timespec *t, unsigned int *serial)
|
|
{
|
|
if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
|
|
*t = CURRENT_TIME;
|
|
*serial = audit_serial();
|
|
}
|
|
}
|
|
|
|
/* Obtain an audit buffer. This routine does locking to obtain the
|
|
* audit buffer, but then no locking is required for calls to
|
|
* audit_log_*format. If the tsk is a task that is currently in a
|
|
* syscall, then the syscall is marked as auditable and an audit record
|
|
* will be written at syscall exit. If there is no associated task, tsk
|
|
* should be NULL. */
|
|
|
|
/**
|
|
* audit_log_start - obtain an audit buffer
|
|
* @ctx: audit_context (may be NULL)
|
|
* @gfp_mask: type of allocation
|
|
* @type: audit message type
|
|
*
|
|
* Returns audit_buffer pointer on success or NULL on error.
|
|
*
|
|
* Obtain an audit buffer. This routine does locking to obtain the
|
|
* audit buffer, but then no locking is required for calls to
|
|
* audit_log_*format. If the task (ctx) is a task that is currently in a
|
|
* syscall, then the syscall is marked as auditable and an audit record
|
|
* will be written at syscall exit. If there is no associated task, then
|
|
* task context (ctx) should be NULL.
|
|
*/
|
|
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
|
|
int type)
|
|
{
|
|
struct audit_buffer *ab = NULL;
|
|
struct timespec t;
|
|
unsigned int uninitialized_var(serial);
|
|
int reserve;
|
|
unsigned long timeout_start = jiffies;
|
|
|
|
if (audit_initialized != AUDIT_INITIALIZED)
|
|
return NULL;
|
|
|
|
if (unlikely(audit_filter_type(type)))
|
|
return NULL;
|
|
|
|
if (gfp_mask & __GFP_WAIT)
|
|
reserve = 0;
|
|
else
|
|
reserve = 5; /* Allow atomic callers to go up to five
|
|
entries over the normal backlog limit */
|
|
|
|
while (audit_backlog_limit
|
|
&& skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
|
|
if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
|
|
&& time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
|
|
|
|
/* Wait for auditd to drain the queue a little */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&audit_backlog_wait, &wait);
|
|
|
|
if (audit_backlog_limit &&
|
|
skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
|
|
schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&audit_backlog_wait, &wait);
|
|
continue;
|
|
}
|
|
if (audit_rate_check() && printk_ratelimit())
|
|
printk(KERN_WARNING
|
|
"audit: audit_backlog=%d > "
|
|
"audit_backlog_limit=%d\n",
|
|
skb_queue_len(&audit_skb_queue),
|
|
audit_backlog_limit);
|
|
audit_log_lost("backlog limit exceeded");
|
|
audit_backlog_wait_time = audit_backlog_wait_overflow;
|
|
wake_up(&audit_backlog_wait);
|
|
return NULL;
|
|
}
|
|
|
|
ab = audit_buffer_alloc(ctx, gfp_mask, type);
|
|
if (!ab) {
|
|
audit_log_lost("out of memory in audit_log_start");
|
|
return NULL;
|
|
}
|
|
|
|
audit_get_stamp(ab->ctx, &t, &serial);
|
|
|
|
audit_log_format(ab, "audit(%lu.%03lu:%u): ",
|
|
t.tv_sec, t.tv_nsec/1000000, serial);
|
|
return ab;
|
|
}
|
|
|
|
/**
|
|
* audit_expand - expand skb in the audit buffer
|
|
* @ab: audit_buffer
|
|
* @extra: space to add at tail of the skb
|
|
*
|
|
* Returns 0 (no space) on failed expansion, or available space if
|
|
* successful.
|
|
*/
|
|
static inline int audit_expand(struct audit_buffer *ab, int extra)
|
|
{
|
|
struct sk_buff *skb = ab->skb;
|
|
int oldtail = skb_tailroom(skb);
|
|
int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
|
|
int newtail = skb_tailroom(skb);
|
|
|
|
if (ret < 0) {
|
|
audit_log_lost("out of memory in audit_expand");
|
|
return 0;
|
|
}
|
|
|
|
skb->truesize += newtail - oldtail;
|
|
return newtail;
|
|
}
|
|
|
|
/*
|
|
* Format an audit message into the audit buffer. If there isn't enough
|
|
* room in the audit buffer, more room will be allocated and vsnprint
|
|
* will be called a second time. Currently, we assume that a printk
|
|
* can't format message larger than 1024 bytes, so we don't either.
|
|
*/
|
|
static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
|
|
va_list args)
|
|
{
|
|
int len, avail;
|
|
struct sk_buff *skb;
|
|
va_list args2;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
if (avail == 0) {
|
|
avail = audit_expand(ab, AUDIT_BUFSIZ);
|
|
if (!avail)
|
|
goto out;
|
|
}
|
|
va_copy(args2, args);
|
|
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
|
|
if (len >= avail) {
|
|
/* The printk buffer is 1024 bytes long, so if we get
|
|
* here and AUDIT_BUFSIZ is at least 1024, then we can
|
|
* log everything that printk could have logged. */
|
|
avail = audit_expand(ab,
|
|
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
|
|
if (!avail)
|
|
goto out;
|
|
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
|
|
}
|
|
va_end(args2);
|
|
if (len > 0)
|
|
skb_put(skb, len);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* audit_log_format - format a message into the audit buffer.
|
|
* @ab: audit_buffer
|
|
* @fmt: format string
|
|
* @...: optional parameters matching @fmt string
|
|
*
|
|
* All the work is done in audit_log_vformat.
|
|
*/
|
|
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!ab)
|
|
return;
|
|
va_start(args, fmt);
|
|
audit_log_vformat(ab, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
/**
|
|
* audit_log_hex - convert a buffer to hex and append it to the audit skb
|
|
* @ab: the audit_buffer
|
|
* @buf: buffer to convert to hex
|
|
* @len: length of @buf to be converted
|
|
*
|
|
* No return value; failure to expand is silently ignored.
|
|
*
|
|
* This function will take the passed buf and convert it into a string of
|
|
* ascii hex digits. The new string is placed onto the skb.
|
|
*/
|
|
void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
|
|
size_t len)
|
|
{
|
|
int i, avail, new_len;
|
|
unsigned char *ptr;
|
|
struct sk_buff *skb;
|
|
static const unsigned char *hex = "0123456789ABCDEF";
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
new_len = len<<1;
|
|
if (new_len >= avail) {
|
|
/* Round the buffer request up to the next multiple */
|
|
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
|
|
avail = audit_expand(ab, new_len);
|
|
if (!avail)
|
|
return;
|
|
}
|
|
|
|
ptr = skb_tail_pointer(skb);
|
|
for (i=0; i<len; i++) {
|
|
*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
|
|
*ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
|
|
}
|
|
*ptr = 0;
|
|
skb_put(skb, len << 1); /* new string is twice the old string */
|
|
}
|
|
|
|
/*
|
|
* Format a string of no more than slen characters into the audit buffer,
|
|
* enclosed in quote marks.
|
|
*/
|
|
void audit_log_n_string(struct audit_buffer *ab, const char *string,
|
|
size_t slen)
|
|
{
|
|
int avail, new_len;
|
|
unsigned char *ptr;
|
|
struct sk_buff *skb;
|
|
|
|
if (!ab)
|
|
return;
|
|
|
|
BUG_ON(!ab->skb);
|
|
skb = ab->skb;
|
|
avail = skb_tailroom(skb);
|
|
new_len = slen + 3; /* enclosing quotes + null terminator */
|
|
if (new_len > avail) {
|
|
avail = audit_expand(ab, new_len);
|
|
if (!avail)
|
|
return;
|
|
}
|
|
ptr = skb_tail_pointer(skb);
|
|
*ptr++ = '"';
|
|
memcpy(ptr, string, slen);
|
|
ptr += slen;
|
|
*ptr++ = '"';
|
|
*ptr = 0;
|
|
skb_put(skb, slen + 2); /* don't include null terminator */
|
|
}
|
|
|
|
/**
|
|
* audit_string_contains_control - does a string need to be logged in hex
|
|
* @string: string to be checked
|
|
* @len: max length of the string to check
|
|
*/
|
|
int audit_string_contains_control(const char *string, size_t len)
|
|
{
|
|
const unsigned char *p;
|
|
for (p = string; p < (const unsigned char *)string + len; p++) {
|
|
if (*p == '"' || *p < 0x21 || *p > 0x7e)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* audit_log_n_untrustedstring - log a string that may contain random characters
|
|
* @ab: audit_buffer
|
|
* @len: length of string (not including trailing null)
|
|
* @string: string to be logged
|
|
*
|
|
* This code will escape a string that is passed to it if the string
|
|
* contains a control character, unprintable character, double quote mark,
|
|
* or a space. Unescaped strings will start and end with a double quote mark.
|
|
* Strings that are escaped are printed in hex (2 digits per char).
|
|
*
|
|
* The caller specifies the number of characters in the string to log, which may
|
|
* or may not be the entire string.
|
|
*/
|
|
void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
|
|
size_t len)
|
|
{
|
|
if (audit_string_contains_control(string, len))
|
|
audit_log_n_hex(ab, string, len);
|
|
else
|
|
audit_log_n_string(ab, string, len);
|
|
}
|
|
|
|
/**
|
|
* audit_log_untrustedstring - log a string that may contain random characters
|
|
* @ab: audit_buffer
|
|
* @string: string to be logged
|
|
*
|
|
* Same as audit_log_n_untrustedstring(), except that strlen is used to
|
|
* determine string length.
|
|
*/
|
|
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
|
|
{
|
|
audit_log_n_untrustedstring(ab, string, strlen(string));
|
|
}
|
|
|
|
/* This is a helper-function to print the escaped d_path */
|
|
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
|
|
struct path *path)
|
|
{
|
|
char *p, *pathname;
|
|
|
|
if (prefix)
|
|
audit_log_format(ab, " %s", prefix);
|
|
|
|
/* We will allow 11 spaces for ' (deleted)' to be appended */
|
|
pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
|
|
if (!pathname) {
|
|
audit_log_string(ab, "<no_memory>");
|
|
return;
|
|
}
|
|
p = d_path(path, pathname, PATH_MAX+11);
|
|
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
|
|
/* FIXME: can we save some information here? */
|
|
audit_log_string(ab, "<too_long>");
|
|
} else
|
|
audit_log_untrustedstring(ab, p);
|
|
kfree(pathname);
|
|
}
|
|
|
|
void audit_log_key(struct audit_buffer *ab, char *key)
|
|
{
|
|
audit_log_format(ab, " key=");
|
|
if (key)
|
|
audit_log_untrustedstring(ab, key);
|
|
else
|
|
audit_log_format(ab, "(null)");
|
|
}
|
|
|
|
/**
|
|
* audit_log_end - end one audit record
|
|
* @ab: the audit_buffer
|
|
*
|
|
* The netlink_* functions cannot be called inside an irq context, so
|
|
* the audit buffer is placed on a queue and a tasklet is scheduled to
|
|
* remove them from the queue outside the irq context. May be called in
|
|
* any context.
|
|
*/
|
|
void audit_log_end(struct audit_buffer *ab)
|
|
{
|
|
if (!ab)
|
|
return;
|
|
if (!audit_rate_check()) {
|
|
audit_log_lost("rate limit exceeded");
|
|
} else {
|
|
struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
|
|
nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
|
|
|
|
if (audit_pid) {
|
|
skb_queue_tail(&audit_skb_queue, ab->skb);
|
|
wake_up_interruptible(&kauditd_wait);
|
|
} else {
|
|
audit_printk_skb(ab->skb);
|
|
}
|
|
ab->skb = NULL;
|
|
}
|
|
audit_buffer_free(ab);
|
|
}
|
|
|
|
/**
|
|
* audit_log - Log an audit record
|
|
* @ctx: audit context
|
|
* @gfp_mask: type of allocation
|
|
* @type: audit message type
|
|
* @fmt: format string to use
|
|
* @...: variable parameters matching the format string
|
|
*
|
|
* This is a convenience function that calls audit_log_start,
|
|
* audit_log_vformat, and audit_log_end. It may be called
|
|
* in any context.
|
|
*/
|
|
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
|
|
const char *fmt, ...)
|
|
{
|
|
struct audit_buffer *ab;
|
|
va_list args;
|
|
|
|
ab = audit_log_start(ctx, gfp_mask, type);
|
|
if (ab) {
|
|
va_start(args, fmt);
|
|
audit_log_vformat(ab, fmt, args);
|
|
va_end(args);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(audit_log_start);
|
|
EXPORT_SYMBOL(audit_log_end);
|
|
EXPORT_SYMBOL(audit_log_format);
|
|
EXPORT_SYMBOL(audit_log);
|