2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 04:24:02 +08:00
linux-next/drivers/usb/storage/datafab.c
Huajun Li e73b2db6c9 usb: Disable dynamic id of USB storage subdrivers
Storage subdrivers, like alauda, datafab and others, don't support
dynamic  id currently, and it needs lots of work but with very little
gain to enable the feature, so disable them in the patch.

Signed-off-by: Huajun Li <huajun.li.lee@gmail.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-24 14:31:03 -08:00

758 lines
20 KiB
C

/* Driver for Datafab USB Compact Flash reader
*
* datafab driver v0.1:
*
* First release
*
* Current development and maintenance by:
* (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org)
*
* Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver
* which I used as a template for this driver.
*
* Some bugfixes and scatter-gather code by Gregory P. Smith
* (greg-usb@electricrain.com)
*
* Fix for media change by Joerg Schneider (js@joergschneider.com)
*
* Other contributors:
* (c) 2002 Alan Stern <stern@rowland.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This driver attempts to support USB CompactFlash reader/writer devices
* based on Datafab USB-to-ATA chips. It was specifically developed for the
* Datafab MDCFE-B USB CompactFlash reader but has since been found to work
* with a variety of Datafab-based devices from a number of manufacturers.
* I've received a report of this driver working with a Datafab-based
* SmartMedia device though please be aware that I'm personally unable to
* test SmartMedia support.
*
* This driver supports reading and writing. If you're truly paranoid,
* however, you can force the driver into a write-protected state by setting
* the WP enable bits in datafab_handle_mode_sense(). See the comments
* in that routine.
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include "usb.h"
#include "transport.h"
#include "protocol.h"
#include "debug.h"
MODULE_DESCRIPTION("Driver for Datafab USB Compact Flash reader");
MODULE_AUTHOR("Jimmie Mayfield <mayfield+datafab@sackheads.org>");
MODULE_LICENSE("GPL");
struct datafab_info {
unsigned long sectors; /* total sector count */
unsigned long ssize; /* sector size in bytes */
signed char lun; /* used for dual-slot readers */
/* the following aren't used yet */
unsigned char sense_key;
unsigned long sense_asc; /* additional sense code */
unsigned long sense_ascq; /* additional sense code qualifier */
};
static int datafab_determine_lun(struct us_data *us,
struct datafab_info *info);
/*
* The table of devices
*/
#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
vendorName, productName, useProtocol, useTransport, \
initFunction, flags) \
{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
.driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
static struct usb_device_id datafab_usb_ids[] = {
# include "unusual_datafab.h"
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, datafab_usb_ids);
#undef UNUSUAL_DEV
/*
* The flags table
*/
#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
vendor_name, product_name, use_protocol, use_transport, \
init_function, Flags) \
{ \
.vendorName = vendor_name, \
.productName = product_name, \
.useProtocol = use_protocol, \
.useTransport = use_transport, \
.initFunction = init_function, \
}
static struct us_unusual_dev datafab_unusual_dev_list[] = {
# include "unusual_datafab.h"
{ } /* Terminating entry */
};
#undef UNUSUAL_DEV
static inline int
datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) {
if (len == 0)
return USB_STOR_XFER_GOOD;
US_DEBUGP("datafab_bulk_read: len = %d\n", len);
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
data, len, NULL);
}
static inline int
datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) {
if (len == 0)
return USB_STOR_XFER_GOOD;
US_DEBUGP("datafab_bulk_write: len = %d\n", len);
return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
data, len, NULL);
}
static int datafab_read_data(struct us_data *us,
struct datafab_info *info,
u32 sector,
u32 sectors)
{
unsigned char *command = us->iobuf;
unsigned char *buffer;
unsigned char thistime;
unsigned int totallen, alloclen;
int len, result;
unsigned int sg_offset = 0;
struct scatterlist *sg = NULL;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Datafab
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
//
if (sectors > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
result = datafab_determine_lun(us, info);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
}
totallen = sectors * info->ssize;
// Since we don't read more than 64 KB at a time, we have to create
// a bounce buffer and move the data a piece at a time between the
// bounce buffer and the actual transfer buffer.
alloclen = min(totallen, 65536u);
buffer = kmalloc(alloclen, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
do {
// loop, never allocate or transfer more than 64k at once
// (min(128k, 255*info->ssize) is the real limit)
len = min(totallen, alloclen);
thistime = (len / info->ssize) & 0xff;
command[0] = 0;
command[1] = thistime;
command[2] = sector & 0xFF;
command[3] = (sector >> 8) & 0xFF;
command[4] = (sector >> 16) & 0xFF;
command[5] = 0xE0 + (info->lun << 4);
command[5] |= (sector >> 24) & 0x0F;
command[6] = 0x20;
command[7] = 0x01;
// send the read command
result = datafab_bulk_write(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
goto leave;
// read the result
result = datafab_bulk_read(us, buffer, len);
if (result != USB_STOR_XFER_GOOD)
goto leave;
// Store the data in the transfer buffer
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg, &sg_offset, TO_XFER_BUF);
sector += thistime;
totallen -= len;
} while (totallen > 0);
kfree(buffer);
return USB_STOR_TRANSPORT_GOOD;
leave:
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
static int datafab_write_data(struct us_data *us,
struct datafab_info *info,
u32 sector,
u32 sectors)
{
unsigned char *command = us->iobuf;
unsigned char *reply = us->iobuf;
unsigned char *buffer;
unsigned char thistime;
unsigned int totallen, alloclen;
int len, result;
unsigned int sg_offset = 0;
struct scatterlist *sg = NULL;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Datafab
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
//
if (sectors > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
result = datafab_determine_lun(us, info);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
}
totallen = sectors * info->ssize;
// Since we don't write more than 64 KB at a time, we have to create
// a bounce buffer and move the data a piece at a time between the
// bounce buffer and the actual transfer buffer.
alloclen = min(totallen, 65536u);
buffer = kmalloc(alloclen, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
do {
// loop, never allocate or transfer more than 64k at once
// (min(128k, 255*info->ssize) is the real limit)
len = min(totallen, alloclen);
thistime = (len / info->ssize) & 0xff;
// Get the data from the transfer buffer
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg, &sg_offset, FROM_XFER_BUF);
command[0] = 0;
command[1] = thistime;
command[2] = sector & 0xFF;
command[3] = (sector >> 8) & 0xFF;
command[4] = (sector >> 16) & 0xFF;
command[5] = 0xE0 + (info->lun << 4);
command[5] |= (sector >> 24) & 0x0F;
command[6] = 0x30;
command[7] = 0x02;
// send the command
result = datafab_bulk_write(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
goto leave;
// send the data
result = datafab_bulk_write(us, buffer, len);
if (result != USB_STOR_XFER_GOOD)
goto leave;
// read the result
result = datafab_bulk_read(us, reply, 2);
if (result != USB_STOR_XFER_GOOD)
goto leave;
if (reply[0] != 0x50 && reply[1] != 0) {
US_DEBUGP("datafab_write_data: Gah! "
"write return code: %02x %02x\n",
reply[0], reply[1]);
result = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
sector += thistime;
totallen -= len;
} while (totallen > 0);
kfree(buffer);
return USB_STOR_TRANSPORT_GOOD;
leave:
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
static int datafab_determine_lun(struct us_data *us,
struct datafab_info *info)
{
// Dual-slot readers can be thought of as dual-LUN devices.
// We need to determine which card slot is being used.
// We'll send an IDENTIFY DEVICE command and see which LUN responds...
//
// There might be a better way of doing this?
static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
unsigned char *command = us->iobuf;
unsigned char *buf;
int count = 0, rc;
if (!info)
return USB_STOR_TRANSPORT_ERROR;
memcpy(command, scommand, 8);
buf = kmalloc(512, GFP_NOIO);
if (!buf)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("datafab_determine_lun: locating...\n");
// we'll try 3 times before giving up...
//
while (count++ < 3) {
command[5] = 0xa0;
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_XFER_GOOD) {
rc = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
rc = datafab_bulk_read(us, buf, 512);
if (rc == USB_STOR_XFER_GOOD) {
info->lun = 0;
rc = USB_STOR_TRANSPORT_GOOD;
goto leave;
}
command[5] = 0xb0;
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_XFER_GOOD) {
rc = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
rc = datafab_bulk_read(us, buf, 512);
if (rc == USB_STOR_XFER_GOOD) {
info->lun = 1;
rc = USB_STOR_TRANSPORT_GOOD;
goto leave;
}
msleep(20);
}
rc = USB_STOR_TRANSPORT_ERROR;
leave:
kfree(buf);
return rc;
}
static int datafab_id_device(struct us_data *us,
struct datafab_info *info)
{
// this is a variation of the ATA "IDENTIFY DEVICE" command...according
// to the ATA spec, 'Sector Count' isn't used but the Windows driver
// sets this bit so we do too...
//
static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
unsigned char *command = us->iobuf;
unsigned char *reply;
int rc;
if (!info)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
rc = datafab_determine_lun(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
}
memcpy(command, scommand, 8);
reply = kmalloc(512, GFP_NOIO);
if (!reply)
return USB_STOR_TRANSPORT_ERROR;
command[5] += (info->lun << 4);
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_XFER_GOOD) {
rc = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
// we'll go ahead and extract the media capacity while we're here...
//
rc = datafab_bulk_read(us, reply, 512);
if (rc == USB_STOR_XFER_GOOD) {
// capacity is at word offset 57-58
//
info->sectors = ((u32)(reply[117]) << 24) |
((u32)(reply[116]) << 16) |
((u32)(reply[115]) << 8) |
((u32)(reply[114]) );
rc = USB_STOR_TRANSPORT_GOOD;
goto leave;
}
rc = USB_STOR_TRANSPORT_ERROR;
leave:
kfree(reply);
return rc;
}
static int datafab_handle_mode_sense(struct us_data *us,
struct scsi_cmnd * srb,
int sense_6)
{
static unsigned char rw_err_page[12] = {
0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0
};
static unsigned char cache_page[12] = {
0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static unsigned char rbac_page[12] = {
0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0
};
static unsigned char timer_page[8] = {
0x1C, 0x6, 0, 0, 0, 0
};
unsigned char pc, page_code;
unsigned int i = 0;
struct datafab_info *info = (struct datafab_info *) (us->extra);
unsigned char *ptr = us->iobuf;
// most of this stuff is just a hack to get things working. the
// datafab reader doesn't present a SCSI interface so we
// fudge the SCSI commands...
//
pc = srb->cmnd[2] >> 6;
page_code = srb->cmnd[2] & 0x3F;
switch (pc) {
case 0x0:
US_DEBUGP("datafab_handle_mode_sense: Current values\n");
break;
case 0x1:
US_DEBUGP("datafab_handle_mode_sense: Changeable values\n");
break;
case 0x2:
US_DEBUGP("datafab_handle_mode_sense: Default values\n");
break;
case 0x3:
US_DEBUGP("datafab_handle_mode_sense: Saves values\n");
break;
}
memset(ptr, 0, 8);
if (sense_6) {
ptr[2] = 0x00; // WP enable: 0x80
i = 4;
} else {
ptr[3] = 0x00; // WP enable: 0x80
i = 8;
}
switch (page_code) {
default:
// vendor-specific mode
info->sense_key = 0x05;
info->sense_asc = 0x24;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
case 0x1:
memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
i += sizeof(rw_err_page);
break;
case 0x8:
memcpy(ptr + i, cache_page, sizeof(cache_page));
i += sizeof(cache_page);
break;
case 0x1B:
memcpy(ptr + i, rbac_page, sizeof(rbac_page));
i += sizeof(rbac_page);
break;
case 0x1C:
memcpy(ptr + i, timer_page, sizeof(timer_page));
i += sizeof(timer_page);
break;
case 0x3F: // retrieve all pages
memcpy(ptr + i, timer_page, sizeof(timer_page));
i += sizeof(timer_page);
memcpy(ptr + i, rbac_page, sizeof(rbac_page));
i += sizeof(rbac_page);
memcpy(ptr + i, cache_page, sizeof(cache_page));
i += sizeof(cache_page);
memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
i += sizeof(rw_err_page);
break;
}
if (sense_6)
ptr[0] = i - 1;
else
((__be16 *) ptr)[0] = cpu_to_be16(i - 2);
usb_stor_set_xfer_buf(ptr, i, srb);
return USB_STOR_TRANSPORT_GOOD;
}
static void datafab_info_destructor(void *extra)
{
// this routine is a placeholder...
// currently, we don't allocate any extra memory so we're okay
}
// Transport for the Datafab MDCFE-B
//
static int datafab_transport(struct scsi_cmnd *srb, struct us_data *us)
{
struct datafab_info *info;
int rc;
unsigned long block, blocks;
unsigned char *ptr = us->iobuf;
static unsigned char inquiry_reply[8] = {
0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
};
if (!us->extra) {
us->extra = kzalloc(sizeof(struct datafab_info), GFP_NOIO);
if (!us->extra) {
US_DEBUGP("datafab_transport: Gah! "
"Can't allocate storage for Datafab info struct!\n");
return USB_STOR_TRANSPORT_ERROR;
}
us->extra_destructor = datafab_info_destructor;
((struct datafab_info *)us->extra)->lun = -1;
}
info = (struct datafab_info *) (us->extra);
if (srb->cmnd[0] == INQUIRY) {
US_DEBUGP("datafab_transport: INQUIRY. Returning bogus response");
memcpy(ptr, inquiry_reply, sizeof(inquiry_reply));
fill_inquiry_response(us, ptr, 36);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == READ_CAPACITY) {
info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec
rc = datafab_id_device(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("datafab_transport: READ_CAPACITY: %ld sectors, %ld bytes per sector\n",
info->sectors, info->ssize);
// build the reply
// we need the last sector, not the number of sectors
((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1);
((__be32 *) ptr)[1] = cpu_to_be32(info->ssize);
usb_stor_set_xfer_buf(ptr, 8, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == MODE_SELECT_10) {
US_DEBUGP("datafab_transport: Gah! MODE_SELECT_10.\n");
return USB_STOR_TRANSPORT_ERROR;
}
// don't bother implementing READ_6 or WRITE_6.
//
if (srb->cmnd[0] == READ_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("datafab_transport: READ_10: read block 0x%04lx count %ld\n", block, blocks);
return datafab_read_data(us, info, block, blocks);
}
if (srb->cmnd[0] == READ_12) {
// we'll probably never see a READ_12 but we'll do it anyway...
//
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("datafab_transport: READ_12: read block 0x%04lx count %ld\n", block, blocks);
return datafab_read_data(us, info, block, blocks);
}
if (srb->cmnd[0] == WRITE_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("datafab_transport: WRITE_10: write block 0x%04lx count %ld\n", block, blocks);
return datafab_write_data(us, info, block, blocks);
}
if (srb->cmnd[0] == WRITE_12) {
// we'll probably never see a WRITE_12 but we'll do it anyway...
//
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("datafab_transport: WRITE_12: write block 0x%04lx count %ld\n", block, blocks);
return datafab_write_data(us, info, block, blocks);
}
if (srb->cmnd[0] == TEST_UNIT_READY) {
US_DEBUGP("datafab_transport: TEST_UNIT_READY.\n");
return datafab_id_device(us, info);
}
if (srb->cmnd[0] == REQUEST_SENSE) {
US_DEBUGP("datafab_transport: REQUEST_SENSE. Returning faked response\n");
// this response is pretty bogus right now. eventually if necessary
// we can set the correct sense data. so far though it hasn't been
// necessary
//
memset(ptr, 0, 18);
ptr[0] = 0xF0;
ptr[2] = info->sense_key;
ptr[7] = 11;
ptr[12] = info->sense_asc;
ptr[13] = info->sense_ascq;
usb_stor_set_xfer_buf(ptr, 18, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == MODE_SENSE) {
US_DEBUGP("datafab_transport: MODE_SENSE_6 detected\n");
return datafab_handle_mode_sense(us, srb, 1);
}
if (srb->cmnd[0] == MODE_SENSE_10) {
US_DEBUGP("datafab_transport: MODE_SENSE_10 detected\n");
return datafab_handle_mode_sense(us, srb, 0);
}
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
// sure. whatever. not like we can stop the user from
// popping the media out of the device (no locking doors, etc)
//
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == START_STOP) {
/* this is used by sd.c'check_scsidisk_media_change to detect
media change */
US_DEBUGP("datafab_transport: START_STOP.\n");
/* the first datafab_id_device after a media change returns
an error (determined experimentally) */
rc = datafab_id_device(us, info);
if (rc == USB_STOR_TRANSPORT_GOOD) {
info->sense_key = NO_SENSE;
srb->result = SUCCESS;
} else {
info->sense_key = UNIT_ATTENTION;
srb->result = SAM_STAT_CHECK_CONDITION;
}
return rc;
}
US_DEBUGP("datafab_transport: Gah! Unknown command: %d (0x%x)\n",
srb->cmnd[0], srb->cmnd[0]);
info->sense_key = 0x05;
info->sense_asc = 0x20;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
static int datafab_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct us_data *us;
int result;
result = usb_stor_probe1(&us, intf, id,
(id - datafab_usb_ids) + datafab_unusual_dev_list);
if (result)
return result;
us->transport_name = "Datafab Bulk-Only";
us->transport = datafab_transport;
us->transport_reset = usb_stor_Bulk_reset;
us->max_lun = 1;
result = usb_stor_probe2(us);
return result;
}
static struct usb_driver datafab_driver = {
.name = "ums-datafab",
.probe = datafab_probe,
.disconnect = usb_stor_disconnect,
.suspend = usb_stor_suspend,
.resume = usb_stor_resume,
.reset_resume = usb_stor_reset_resume,
.pre_reset = usb_stor_pre_reset,
.post_reset = usb_stor_post_reset,
.id_table = datafab_usb_ids,
.soft_unbind = 1,
.no_dynamic_id = 1,
};
module_usb_driver(datafab_driver);