2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 23:53:55 +08:00
linux-next/drivers/iio/magnetometer/hid-sensor-magn-3d.c
Ye Xiang 0e41fd515f iio: hid-sensors: Move get sensitivity attribute to hid-sensor-common
No functional change has been made with this patch. The main intent here
is to reduce code repetition of getting sensitivity attribute.

In the current implementation, sensor_hub_input_get_attribute_info() is
called from multiple drivers to get attribute info for sensitivity
field. Moving this to common place will avoid code repetition.

Signed-off-by: Ye Xiang <xiang.ye@intel.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210201054921.18214-2-xiang.ye@intel.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2021-03-11 20:47:09 +00:00

590 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* HID Sensors Driver
* Copyright (c) 2012, Intel Corporation.
*/
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hid-sensor-hub.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include "../common/hid-sensors/hid-sensor-trigger.h"
enum magn_3d_channel {
CHANNEL_SCAN_INDEX_X,
CHANNEL_SCAN_INDEX_Y,
CHANNEL_SCAN_INDEX_Z,
CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP,
CHANNEL_SCAN_INDEX_NORTH_TRUE_TILT_COMP,
CHANNEL_SCAN_INDEX_NORTH_MAGN,
CHANNEL_SCAN_INDEX_NORTH_TRUE,
CHANNEL_SCAN_INDEX_TIMESTAMP,
MAGN_3D_CHANNEL_MAX,
};
struct common_attributes {
int scale_pre_decml;
int scale_post_decml;
int scale_precision;
int value_offset;
};
struct magn_3d_state {
struct hid_sensor_hub_callbacks callbacks;
struct hid_sensor_common magn_flux_attributes;
struct hid_sensor_common rot_attributes;
struct hid_sensor_hub_attribute_info magn[MAGN_3D_CHANNEL_MAX];
/* dynamically sized array to hold sensor values */
u32 *iio_vals;
/* array of pointers to sensor value */
u32 *magn_val_addr[MAGN_3D_CHANNEL_MAX];
struct common_attributes magn_flux_attr;
struct common_attributes rot_attr;
s64 timestamp;
};
static const u32 magn_3d_addresses[MAGN_3D_CHANNEL_MAX] = {
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS,
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS,
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS,
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH,
HID_USAGE_SENSOR_ORIENT_MAGN_NORTH,
HID_USAGE_SENSOR_ORIENT_TRUE_NORTH,
HID_USAGE_SENSOR_TIME_TIMESTAMP,
};
static const u32 magn_3d_sensitivity_addresses[] = {
HID_USAGE_SENSOR_DATA_ORIENTATION,
HID_USAGE_SENSOR_ORIENT_MAGN_FLUX,
};
/* Channel definitions */
static const struct iio_chan_spec magn_3d_channels[] = {
{
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_X,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_Y,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_MAGN,
.modified = 1,
.channel2 = IIO_MOD_Z,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_MAGN_TILT_COMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_TRUE_TILT_COMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_MAGN,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
}, {
.type = IIO_ROT,
.modified = 1,
.channel2 = IIO_MOD_NORTH_TRUE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_HYSTERESIS),
},
IIO_CHAN_SOFT_TIMESTAMP(7)
};
/* Adjust channel real bits based on report descriptor */
static void magn_3d_adjust_channel_bit_mask(struct iio_chan_spec *channels,
int channel, int size)
{
channels[channel].scan_type.sign = 's';
/* Real storage bits will change based on the report desc. */
channels[channel].scan_type.realbits = size * 8;
/* Maximum size of a sample to capture is u32 */
channels[channel].scan_type.storagebits = sizeof(u32) * 8;
}
/* Channel read_raw handler */
static int magn_3d_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2,
long mask)
{
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int report_id = -1;
u32 address;
int ret_type;
s32 min;
*val = 0;
*val2 = 0;
switch (mask) {
case IIO_CHAN_INFO_RAW:
hid_sensor_power_state(&magn_state->magn_flux_attributes, true);
report_id = magn_state->magn[chan->address].report_id;
min = magn_state->magn[chan->address].logical_minimum;
address = magn_3d_addresses[chan->address];
if (report_id >= 0)
*val = sensor_hub_input_attr_get_raw_value(
magn_state->magn_flux_attributes.hsdev,
HID_USAGE_SENSOR_COMPASS_3D, address,
report_id,
SENSOR_HUB_SYNC,
min < 0);
else {
*val = 0;
hid_sensor_power_state(
&magn_state->magn_flux_attributes,
false);
return -EINVAL;
}
hid_sensor_power_state(&magn_state->magn_flux_attributes,
false);
ret_type = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.scale_pre_decml;
*val2 = magn_state->magn_flux_attr.scale_post_decml;
ret_type = magn_state->magn_flux_attr.scale_precision;
break;
case IIO_ROT:
*val = magn_state->rot_attr.scale_pre_decml;
*val2 = magn_state->rot_attr.scale_post_decml;
ret_type = magn_state->rot_attr.scale_precision;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_MAGN:
*val = magn_state->magn_flux_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
case IIO_ROT:
*val = magn_state->rot_attr.value_offset;
ret_type = IIO_VAL_INT;
break;
default:
ret_type = -EINVAL;
}
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret_type = hid_sensor_read_samp_freq_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_MAGN:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret_type = hid_sensor_read_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret_type = -EINVAL;
}
break;
default:
ret_type = -EINVAL;
break;
}
return ret_type;
}
/* Channel write_raw handler */
static int magn_3d_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int ret = 0;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
ret = hid_sensor_write_samp_freq_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_CHAN_INFO_HYSTERESIS:
switch (chan->type) {
case IIO_MAGN:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->magn_flux_attributes, val, val2);
break;
case IIO_ROT:
ret = hid_sensor_write_raw_hyst_value(
&magn_state->rot_attributes, val, val2);
break;
default:
ret = -EINVAL;
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct iio_info magn_3d_info = {
.read_raw = &magn_3d_read_raw,
.write_raw = &magn_3d_write_raw,
};
/* Callback handler to send event after all samples are received and captured */
static int magn_3d_proc_event(struct hid_sensor_hub_device *hsdev,
unsigned usage_id,
void *priv)
{
struct iio_dev *indio_dev = platform_get_drvdata(priv);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
dev_dbg(&indio_dev->dev, "magn_3d_proc_event\n");
if (atomic_read(&magn_state->magn_flux_attributes.data_ready)) {
if (!magn_state->timestamp)
magn_state->timestamp = iio_get_time_ns(indio_dev);
iio_push_to_buffers_with_timestamp(indio_dev,
magn_state->iio_vals,
magn_state->timestamp);
magn_state->timestamp = 0;
}
return 0;
}
/* Capture samples in local storage */
static int magn_3d_capture_sample(struct hid_sensor_hub_device *hsdev,
unsigned usage_id,
size_t raw_len, char *raw_data,
void *priv)
{
struct iio_dev *indio_dev = platform_get_drvdata(priv);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
int offset;
int ret = 0;
u32 *iio_val = NULL;
switch (usage_id) {
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS:
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Y_AXIS:
case HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_Z_AXIS:
offset = (usage_id - HID_USAGE_SENSOR_ORIENT_MAGN_FLUX_X_AXIS)
+ CHANNEL_SCAN_INDEX_X;
break;
case HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH:
case HID_USAGE_SENSOR_ORIENT_COMP_TRUE_NORTH:
case HID_USAGE_SENSOR_ORIENT_MAGN_NORTH:
case HID_USAGE_SENSOR_ORIENT_TRUE_NORTH:
offset = (usage_id - HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH)
+ CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP;
break;
case HID_USAGE_SENSOR_TIME_TIMESTAMP:
magn_state->timestamp =
hid_sensor_convert_timestamp(&magn_state->magn_flux_attributes,
*(s64 *)raw_data);
return ret;
default:
return -EINVAL;
}
iio_val = magn_state->magn_val_addr[offset];
if (iio_val != NULL)
*iio_val = *((u32 *)raw_data);
else
ret = -EINVAL;
return ret;
}
/* Parse report which is specific to an usage id*/
static int magn_3d_parse_report(struct platform_device *pdev,
struct hid_sensor_hub_device *hsdev,
struct iio_chan_spec **channels,
int *chan_count,
unsigned usage_id,
struct magn_3d_state *st)
{
int i;
int attr_count = 0;
struct iio_chan_spec *_channels;
/* Scan for each usage attribute supported */
for (i = 0; i < MAGN_3D_CHANNEL_MAX; i++) {
int status;
u32 address = magn_3d_addresses[i];
/* Check if usage attribute exists in the sensor hub device */
status = sensor_hub_input_get_attribute_info(hsdev,
HID_INPUT_REPORT,
usage_id,
address,
&(st->magn[i]));
if (!status)
attr_count++;
}
if (attr_count <= 0) {
dev_err(&pdev->dev,
"failed to find any supported usage attributes in report\n");
return -EINVAL;
}
dev_dbg(&pdev->dev, "magn_3d Found %d usage attributes\n",
attr_count);
dev_dbg(&pdev->dev, "magn_3d X: %x:%x Y: %x:%x Z: %x:%x\n",
st->magn[0].index,
st->magn[0].report_id,
st->magn[1].index, st->magn[1].report_id,
st->magn[2].index, st->magn[2].report_id);
/* Setup IIO channel array */
_channels = devm_kcalloc(&pdev->dev, attr_count,
sizeof(struct iio_chan_spec),
GFP_KERNEL);
if (!_channels) {
dev_err(&pdev->dev,
"failed to allocate space for iio channels\n");
return -ENOMEM;
}
/* attr_count include timestamp channel, and the iio_vals should be aligned to 8byte */
st->iio_vals = devm_kcalloc(&pdev->dev,
((attr_count + 1) % 2 + (attr_count + 1) / 2) * 2,
sizeof(u32), GFP_KERNEL);
if (!st->iio_vals) {
dev_err(&pdev->dev,
"failed to allocate space for iio values array\n");
return -ENOMEM;
}
for (i = 0, *chan_count = 0;
i < MAGN_3D_CHANNEL_MAX && *chan_count < attr_count;
i++){
if (st->magn[i].index >= 0) {
/* Setup IIO channel struct */
(_channels[*chan_count]) = magn_3d_channels[i];
(_channels[*chan_count]).scan_index = *chan_count;
(_channels[*chan_count]).address = i;
if (i != CHANNEL_SCAN_INDEX_TIMESTAMP) {
/* Set magn_val_addr to iio value address */
st->magn_val_addr[i] = &st->iio_vals[*chan_count];
magn_3d_adjust_channel_bit_mask(_channels,
*chan_count,
st->magn[i].size);
}
(*chan_count)++;
}
}
if (*chan_count <= 0) {
dev_err(&pdev->dev,
"failed to find any magnetic channels setup\n");
return -EINVAL;
}
*channels = _channels;
dev_dbg(&pdev->dev, "magn_3d Setup %d IIO channels\n",
*chan_count);
st->magn_flux_attr.scale_precision = hid_sensor_format_scale(
HID_USAGE_SENSOR_COMPASS_3D,
&st->magn[CHANNEL_SCAN_INDEX_X],
&st->magn_flux_attr.scale_pre_decml,
&st->magn_flux_attr.scale_post_decml);
st->rot_attr.scale_precision
= hid_sensor_format_scale(
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->magn[CHANNEL_SCAN_INDEX_NORTH_MAGN_TILT_COMP],
&st->rot_attr.scale_pre_decml,
&st->rot_attr.scale_post_decml);
if (st->rot_attributes.sensitivity.index < 0) {
sensor_hub_input_get_attribute_info(hsdev,
HID_FEATURE_REPORT, usage_id,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS |
HID_USAGE_SENSOR_ORIENT_COMP_MAGN_NORTH,
&st->rot_attributes.sensitivity);
dev_dbg(&pdev->dev, "Sensitivity index:report %d:%d\n",
st->rot_attributes.sensitivity.index,
st->rot_attributes.sensitivity.report_id);
}
return 0;
}
/* Function to initialize the processing for usage id */
static int hid_magn_3d_probe(struct platform_device *pdev)
{
int ret = 0;
static char *name = "magn_3d";
struct iio_dev *indio_dev;
struct magn_3d_state *magn_state;
struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
struct iio_chan_spec *channels;
int chan_count = 0;
indio_dev = devm_iio_device_alloc(&pdev->dev,
sizeof(struct magn_3d_state));
if (indio_dev == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
magn_state = iio_priv(indio_dev);
magn_state->magn_flux_attributes.hsdev = hsdev;
magn_state->magn_flux_attributes.pdev = pdev;
ret = hid_sensor_parse_common_attributes(hsdev,
HID_USAGE_SENSOR_COMPASS_3D,
&magn_state->magn_flux_attributes,
magn_3d_sensitivity_addresses,
ARRAY_SIZE(magn_3d_sensitivity_addresses));
if (ret) {
dev_err(&pdev->dev, "failed to setup common attributes\n");
return ret;
}
magn_state->rot_attributes = magn_state->magn_flux_attributes;
/* sensitivity of rot_attribute is not the same as magn_flux_attributes */
magn_state->rot_attributes.sensitivity.index = -1;
ret = magn_3d_parse_report(pdev, hsdev,
&channels, &chan_count,
HID_USAGE_SENSOR_COMPASS_3D, magn_state);
if (ret) {
dev_err(&pdev->dev, "failed to parse report\n");
return ret;
}
indio_dev->channels = channels;
indio_dev->num_channels = chan_count;
indio_dev->info = &magn_3d_info;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
atomic_set(&magn_state->magn_flux_attributes.data_ready, 0);
ret = hid_sensor_setup_trigger(indio_dev, name,
&magn_state->magn_flux_attributes);
if (ret < 0) {
dev_err(&pdev->dev, "trigger setup failed\n");
return ret;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&pdev->dev, "device register failed\n");
goto error_remove_trigger;
}
magn_state->callbacks.send_event = magn_3d_proc_event;
magn_state->callbacks.capture_sample = magn_3d_capture_sample;
magn_state->callbacks.pdev = pdev;
ret = sensor_hub_register_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D,
&magn_state->callbacks);
if (ret < 0) {
dev_err(&pdev->dev, "callback reg failed\n");
goto error_iio_unreg;
}
return ret;
error_iio_unreg:
iio_device_unregister(indio_dev);
error_remove_trigger:
hid_sensor_remove_trigger(indio_dev, &magn_state->magn_flux_attributes);
return ret;
}
/* Function to deinitialize the processing for usage id */
static int hid_magn_3d_remove(struct platform_device *pdev)
{
struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct magn_3d_state *magn_state = iio_priv(indio_dev);
sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_COMPASS_3D);
iio_device_unregister(indio_dev);
hid_sensor_remove_trigger(indio_dev, &magn_state->magn_flux_attributes);
return 0;
}
static const struct platform_device_id hid_magn_3d_ids[] = {
{
/* Format: HID-SENSOR-usage_id_in_hex_lowercase */
.name = "HID-SENSOR-200083",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, hid_magn_3d_ids);
static struct platform_driver hid_magn_3d_platform_driver = {
.id_table = hid_magn_3d_ids,
.driver = {
.name = KBUILD_MODNAME,
.pm = &hid_sensor_pm_ops,
},
.probe = hid_magn_3d_probe,
.remove = hid_magn_3d_remove,
};
module_platform_driver(hid_magn_3d_platform_driver);
MODULE_DESCRIPTION("HID Sensor Magnetometer 3D");
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@intel.com>");
MODULE_LICENSE("GPL");