mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
e229b429bb
Here is the large set of char/misc/whatever driver subsystem updates for 5.12-rc1. Over time it seems like this tree is collecting more and more tiny driver subsystems in one place, making it easier for those maintainers, which is why this is getting larger. Included in here are: - coresight driver updates - habannalabs driver updates - virtual acrn driver addition (proper acks from the x86 maintainers) - broadcom misc driver addition - speakup driver updates - soundwire driver updates - fpga driver updates - amba driver updates - mei driver updates - vfio driver updates - greybus driver updates - nvmeem driver updates - phy driver updates - mhi driver updates - interconnect driver udpates - fsl-mc bus driver updates - random driver fix - some small misc driver updates (rtsx, pvpanic, etc.) All of these have been in linux-next for a while, with the only reported issue being a merge conflict in include/linux/mod_devicetable.h that you will hit in your tree due to the dfl_device_id addition from the fpga subsystem in here. The resolution should be simple. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYDZf9w8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+yk3xgCcCEN+pCJTum+uAzSNH3YKs/onaDgAnRSVwOUw tNW6n1JhXLYl9f5JdhvS =MOHs -----END PGP SIGNATURE----- Merge tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc Pull char/misc driver updates from Greg KH: "Here is the large set of char/misc/whatever driver subsystem updates for 5.12-rc1. Over time it seems like this tree is collecting more and more tiny driver subsystems in one place, making it easier for those maintainers, which is why this is getting larger. Included in here are: - coresight driver updates - habannalabs driver updates - virtual acrn driver addition (proper acks from the x86 maintainers) - broadcom misc driver addition - speakup driver updates - soundwire driver updates - fpga driver updates - amba driver updates - mei driver updates - vfio driver updates - greybus driver updates - nvmeem driver updates - phy driver updates - mhi driver updates - interconnect driver udpates - fsl-mc bus driver updates - random driver fix - some small misc driver updates (rtsx, pvpanic, etc.) All of these have been in linux-next for a while, with the only reported issue being a merge conflict due to the dfl_device_id addition from the fpga subsystem in here" * tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (311 commits) spmi: spmi-pmic-arb: Fix hw_irq overflow Documentation: coresight: Add PID tracing description coresight: etm-perf: Support PID tracing for kernel at EL2 coresight: etm-perf: Clarify comment on perf options ACRN: update MAINTAINERS: mailing list is subscribers-only regmap: sdw-mbq: use MODULE_LICENSE("GPL") regmap: sdw: use no_pm routines for SoundWire 1.2 MBQ regmap: sdw: use _no_pm functions in regmap_read/write soundwire: intel: fix possible crash when no device is detected MAINTAINERS: replace my with email with replacements mhi: Fix double dma free uapi: map_to_7segment: Update example in documentation uio: uio_pci_generic: don't fail probe if pdev->irq equals to IRQ_NOTCONNECTED drivers/misc/vmw_vmci: restrict too big queue size in qp_host_alloc_queue firewire: replace tricky statement by two simple ones vme: make remove callback return void firmware: google: make coreboot driver's remove callback return void firmware: xilinx: Use explicit values for all enum values sample/acrn: Introduce a sample of HSM ioctl interface usage virt: acrn: Introduce an interface for Service VM to control vCPU ...
2317 lines
67 KiB
C
2317 lines
67 KiB
C
/*
|
|
* random.c -- A strong random number generator
|
|
*
|
|
* Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
|
|
* Rights Reserved.
|
|
*
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
|
*
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
|
|
* rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, and the entire permission notice in its entirety,
|
|
* including the disclaimer of warranties.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* ALTERNATIVELY, this product may be distributed under the terms of
|
|
* the GNU General Public License, in which case the provisions of the GPL are
|
|
* required INSTEAD OF the above restrictions. (This clause is
|
|
* necessary due to a potential bad interaction between the GPL and
|
|
* the restrictions contained in a BSD-style copyright.)
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
|
|
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* (now, with legal B.S. out of the way.....)
|
|
*
|
|
* This routine gathers environmental noise from device drivers, etc.,
|
|
* and returns good random numbers, suitable for cryptographic use.
|
|
* Besides the obvious cryptographic uses, these numbers are also good
|
|
* for seeding TCP sequence numbers, and other places where it is
|
|
* desirable to have numbers which are not only random, but hard to
|
|
* predict by an attacker.
|
|
*
|
|
* Theory of operation
|
|
* ===================
|
|
*
|
|
* Computers are very predictable devices. Hence it is extremely hard
|
|
* to produce truly random numbers on a computer --- as opposed to
|
|
* pseudo-random numbers, which can easily generated by using a
|
|
* algorithm. Unfortunately, it is very easy for attackers to guess
|
|
* the sequence of pseudo-random number generators, and for some
|
|
* applications this is not acceptable. So instead, we must try to
|
|
* gather "environmental noise" from the computer's environment, which
|
|
* must be hard for outside attackers to observe, and use that to
|
|
* generate random numbers. In a Unix environment, this is best done
|
|
* from inside the kernel.
|
|
*
|
|
* Sources of randomness from the environment include inter-keyboard
|
|
* timings, inter-interrupt timings from some interrupts, and other
|
|
* events which are both (a) non-deterministic and (b) hard for an
|
|
* outside observer to measure. Randomness from these sources are
|
|
* added to an "entropy pool", which is mixed using a CRC-like function.
|
|
* This is not cryptographically strong, but it is adequate assuming
|
|
* the randomness is not chosen maliciously, and it is fast enough that
|
|
* the overhead of doing it on every interrupt is very reasonable.
|
|
* As random bytes are mixed into the entropy pool, the routines keep
|
|
* an *estimate* of how many bits of randomness have been stored into
|
|
* the random number generator's internal state.
|
|
*
|
|
* When random bytes are desired, they are obtained by taking the SHA
|
|
* hash of the contents of the "entropy pool". The SHA hash avoids
|
|
* exposing the internal state of the entropy pool. It is believed to
|
|
* be computationally infeasible to derive any useful information
|
|
* about the input of SHA from its output. Even if it is possible to
|
|
* analyze SHA in some clever way, as long as the amount of data
|
|
* returned from the generator is less than the inherent entropy in
|
|
* the pool, the output data is totally unpredictable. For this
|
|
* reason, the routine decreases its internal estimate of how many
|
|
* bits of "true randomness" are contained in the entropy pool as it
|
|
* outputs random numbers.
|
|
*
|
|
* If this estimate goes to zero, the routine can still generate
|
|
* random numbers; however, an attacker may (at least in theory) be
|
|
* able to infer the future output of the generator from prior
|
|
* outputs. This requires successful cryptanalysis of SHA, which is
|
|
* not believed to be feasible, but there is a remote possibility.
|
|
* Nonetheless, these numbers should be useful for the vast majority
|
|
* of purposes.
|
|
*
|
|
* Exported interfaces ---- output
|
|
* ===============================
|
|
*
|
|
* There are four exported interfaces; two for use within the kernel,
|
|
* and two or use from userspace.
|
|
*
|
|
* Exported interfaces ---- userspace output
|
|
* -----------------------------------------
|
|
*
|
|
* The userspace interfaces are two character devices /dev/random and
|
|
* /dev/urandom. /dev/random is suitable for use when very high
|
|
* quality randomness is desired (for example, for key generation or
|
|
* one-time pads), as it will only return a maximum of the number of
|
|
* bits of randomness (as estimated by the random number generator)
|
|
* contained in the entropy pool.
|
|
*
|
|
* The /dev/urandom device does not have this limit, and will return
|
|
* as many bytes as are requested. As more and more random bytes are
|
|
* requested without giving time for the entropy pool to recharge,
|
|
* this will result in random numbers that are merely cryptographically
|
|
* strong. For many applications, however, this is acceptable.
|
|
*
|
|
* Exported interfaces ---- kernel output
|
|
* --------------------------------------
|
|
*
|
|
* The primary kernel interface is
|
|
*
|
|
* void get_random_bytes(void *buf, int nbytes);
|
|
*
|
|
* This interface will return the requested number of random bytes,
|
|
* and place it in the requested buffer. This is equivalent to a
|
|
* read from /dev/urandom.
|
|
*
|
|
* For less critical applications, there are the functions:
|
|
*
|
|
* u32 get_random_u32()
|
|
* u64 get_random_u64()
|
|
* unsigned int get_random_int()
|
|
* unsigned long get_random_long()
|
|
*
|
|
* These are produced by a cryptographic RNG seeded from get_random_bytes,
|
|
* and so do not deplete the entropy pool as much. These are recommended
|
|
* for most in-kernel operations *if the result is going to be stored in
|
|
* the kernel*.
|
|
*
|
|
* Specifically, the get_random_int() family do not attempt to do
|
|
* "anti-backtracking". If you capture the state of the kernel (e.g.
|
|
* by snapshotting the VM), you can figure out previous get_random_int()
|
|
* return values. But if the value is stored in the kernel anyway,
|
|
* this is not a problem.
|
|
*
|
|
* It *is* safe to expose get_random_int() output to attackers (e.g. as
|
|
* network cookies); given outputs 1..n, it's not feasible to predict
|
|
* outputs 0 or n+1. The only concern is an attacker who breaks into
|
|
* the kernel later; the get_random_int() engine is not reseeded as
|
|
* often as the get_random_bytes() one.
|
|
*
|
|
* get_random_bytes() is needed for keys that need to stay secret after
|
|
* they are erased from the kernel. For example, any key that will
|
|
* be wrapped and stored encrypted. And session encryption keys: we'd
|
|
* like to know that after the session is closed and the keys erased,
|
|
* the plaintext is unrecoverable to someone who recorded the ciphertext.
|
|
*
|
|
* But for network ports/cookies, stack canaries, PRNG seeds, address
|
|
* space layout randomization, session *authentication* keys, or other
|
|
* applications where the sensitive data is stored in the kernel in
|
|
* plaintext for as long as it's sensitive, the get_random_int() family
|
|
* is just fine.
|
|
*
|
|
* Consider ASLR. We want to keep the address space secret from an
|
|
* outside attacker while the process is running, but once the address
|
|
* space is torn down, it's of no use to an attacker any more. And it's
|
|
* stored in kernel data structures as long as it's alive, so worrying
|
|
* about an attacker's ability to extrapolate it from the get_random_int()
|
|
* CRNG is silly.
|
|
*
|
|
* Even some cryptographic keys are safe to generate with get_random_int().
|
|
* In particular, keys for SipHash are generally fine. Here, knowledge
|
|
* of the key authorizes you to do something to a kernel object (inject
|
|
* packets to a network connection, or flood a hash table), and the
|
|
* key is stored with the object being protected. Once it goes away,
|
|
* we no longer care if anyone knows the key.
|
|
*
|
|
* prandom_u32()
|
|
* -------------
|
|
*
|
|
* For even weaker applications, see the pseudorandom generator
|
|
* prandom_u32(), prandom_max(), and prandom_bytes(). If the random
|
|
* numbers aren't security-critical at all, these are *far* cheaper.
|
|
* Useful for self-tests, random error simulation, randomized backoffs,
|
|
* and any other application where you trust that nobody is trying to
|
|
* maliciously mess with you by guessing the "random" numbers.
|
|
*
|
|
* Exported interfaces ---- input
|
|
* ==============================
|
|
*
|
|
* The current exported interfaces for gathering environmental noise
|
|
* from the devices are:
|
|
*
|
|
* void add_device_randomness(const void *buf, unsigned int size);
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
|
* unsigned int value);
|
|
* void add_interrupt_randomness(int irq, int irq_flags);
|
|
* void add_disk_randomness(struct gendisk *disk);
|
|
*
|
|
* add_device_randomness() is for adding data to the random pool that
|
|
* is likely to differ between two devices (or possibly even per boot).
|
|
* This would be things like MAC addresses or serial numbers, or the
|
|
* read-out of the RTC. This does *not* add any actual entropy to the
|
|
* pool, but it initializes the pool to different values for devices
|
|
* that might otherwise be identical and have very little entropy
|
|
* available to them (particularly common in the embedded world).
|
|
*
|
|
* add_input_randomness() uses the input layer interrupt timing, as well as
|
|
* the event type information from the hardware.
|
|
*
|
|
* add_interrupt_randomness() uses the interrupt timing as random
|
|
* inputs to the entropy pool. Using the cycle counters and the irq source
|
|
* as inputs, it feeds the randomness roughly once a second.
|
|
*
|
|
* add_disk_randomness() uses what amounts to the seek time of block
|
|
* layer request events, on a per-disk_devt basis, as input to the
|
|
* entropy pool. Note that high-speed solid state drives with very low
|
|
* seek times do not make for good sources of entropy, as their seek
|
|
* times are usually fairly consistent.
|
|
*
|
|
* All of these routines try to estimate how many bits of randomness a
|
|
* particular randomness source. They do this by keeping track of the
|
|
* first and second order deltas of the event timings.
|
|
*
|
|
* Ensuring unpredictability at system startup
|
|
* ============================================
|
|
*
|
|
* When any operating system starts up, it will go through a sequence
|
|
* of actions that are fairly predictable by an adversary, especially
|
|
* if the start-up does not involve interaction with a human operator.
|
|
* This reduces the actual number of bits of unpredictability in the
|
|
* entropy pool below the value in entropy_count. In order to
|
|
* counteract this effect, it helps to carry information in the
|
|
* entropy pool across shut-downs and start-ups. To do this, put the
|
|
* following lines an appropriate script which is run during the boot
|
|
* sequence:
|
|
*
|
|
* echo "Initializing random number generator..."
|
|
* random_seed=/var/run/random-seed
|
|
* # Carry a random seed from start-up to start-up
|
|
* # Load and then save the whole entropy pool
|
|
* if [ -f $random_seed ]; then
|
|
* cat $random_seed >/dev/urandom
|
|
* else
|
|
* touch $random_seed
|
|
* fi
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* and the following lines in an appropriate script which is run as
|
|
* the system is shutdown:
|
|
*
|
|
* # Carry a random seed from shut-down to start-up
|
|
* # Save the whole entropy pool
|
|
* echo "Saving random seed..."
|
|
* random_seed=/var/run/random-seed
|
|
* touch $random_seed
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* For example, on most modern systems using the System V init
|
|
* scripts, such code fragments would be found in
|
|
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
|
|
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
|
|
*
|
|
* Effectively, these commands cause the contents of the entropy pool
|
|
* to be saved at shut-down time and reloaded into the entropy pool at
|
|
* start-up. (The 'dd' in the addition to the bootup script is to
|
|
* make sure that /etc/random-seed is different for every start-up,
|
|
* even if the system crashes without executing rc.0.) Even with
|
|
* complete knowledge of the start-up activities, predicting the state
|
|
* of the entropy pool requires knowledge of the previous history of
|
|
* the system.
|
|
*
|
|
* Configuring the /dev/random driver under Linux
|
|
* ==============================================
|
|
*
|
|
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
|
|
* the /dev/mem major number (#1). So if your system does not have
|
|
* /dev/random and /dev/urandom created already, they can be created
|
|
* by using the commands:
|
|
*
|
|
* mknod /dev/random c 1 8
|
|
* mknod /dev/urandom c 1 9
|
|
*
|
|
* Acknowledgements:
|
|
* =================
|
|
*
|
|
* Ideas for constructing this random number generator were derived
|
|
* from Pretty Good Privacy's random number generator, and from private
|
|
* discussions with Phil Karn. Colin Plumb provided a faster random
|
|
* number generator, which speed up the mixing function of the entropy
|
|
* pool, taken from PGPfone. Dale Worley has also contributed many
|
|
* useful ideas and suggestions to improve this driver.
|
|
*
|
|
* Any flaws in the design are solely my responsibility, and should
|
|
* not be attributed to the Phil, Colin, or any of authors of PGP.
|
|
*
|
|
* Further background information on this topic may be obtained from
|
|
* RFC 1750, "Randomness Recommendations for Security", by Donald
|
|
* Eastlake, Steve Crocker, and Jeff Schiller.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/utsname.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/fips.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/uuid.h>
|
|
#include <crypto/chacha.h>
|
|
#include <crypto/sha1.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/io.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/random.h>
|
|
|
|
/* #define ADD_INTERRUPT_BENCH */
|
|
|
|
/*
|
|
* Configuration information
|
|
*/
|
|
#define INPUT_POOL_SHIFT 12
|
|
#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
|
|
#define OUTPUT_POOL_SHIFT 10
|
|
#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
|
|
#define EXTRACT_SIZE 10
|
|
|
|
|
|
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
|
|
|
|
/*
|
|
* To allow fractional bits to be tracked, the entropy_count field is
|
|
* denominated in units of 1/8th bits.
|
|
*
|
|
* 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
|
|
* credit_entropy_bits() needs to be 64 bits wide.
|
|
*/
|
|
#define ENTROPY_SHIFT 3
|
|
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
|
|
|
|
/*
|
|
* If the entropy count falls under this number of bits, then we
|
|
* should wake up processes which are selecting or polling on write
|
|
* access to /dev/random.
|
|
*/
|
|
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
|
|
|
|
/*
|
|
* Originally, we used a primitive polynomial of degree .poolwords
|
|
* over GF(2). The taps for various sizes are defined below. They
|
|
* were chosen to be evenly spaced except for the last tap, which is 1
|
|
* to get the twisting happening as fast as possible.
|
|
*
|
|
* For the purposes of better mixing, we use the CRC-32 polynomial as
|
|
* well to make a (modified) twisted Generalized Feedback Shift
|
|
* Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
|
|
* generators. ACM Transactions on Modeling and Computer Simulation
|
|
* 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
|
|
* GFSR generators II. ACM Transactions on Modeling and Computer
|
|
* Simulation 4:254-266)
|
|
*
|
|
* Thanks to Colin Plumb for suggesting this.
|
|
*
|
|
* The mixing operation is much less sensitive than the output hash,
|
|
* where we use SHA-1. All that we want of mixing operation is that
|
|
* it be a good non-cryptographic hash; i.e. it not produce collisions
|
|
* when fed "random" data of the sort we expect to see. As long as
|
|
* the pool state differs for different inputs, we have preserved the
|
|
* input entropy and done a good job. The fact that an intelligent
|
|
* attacker can construct inputs that will produce controlled
|
|
* alterations to the pool's state is not important because we don't
|
|
* consider such inputs to contribute any randomness. The only
|
|
* property we need with respect to them is that the attacker can't
|
|
* increase his/her knowledge of the pool's state. Since all
|
|
* additions are reversible (knowing the final state and the input,
|
|
* you can reconstruct the initial state), if an attacker has any
|
|
* uncertainty about the initial state, he/she can only shuffle that
|
|
* uncertainty about, but never cause any collisions (which would
|
|
* decrease the uncertainty).
|
|
*
|
|
* Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
|
|
* Videau in their paper, "The Linux Pseudorandom Number Generator
|
|
* Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
|
|
* paper, they point out that we are not using a true Twisted GFSR,
|
|
* since Matsumoto & Kurita used a trinomial feedback polynomial (that
|
|
* is, with only three taps, instead of the six that we are using).
|
|
* As a result, the resulting polynomial is neither primitive nor
|
|
* irreducible, and hence does not have a maximal period over
|
|
* GF(2**32). They suggest a slight change to the generator
|
|
* polynomial which improves the resulting TGFSR polynomial to be
|
|
* irreducible, which we have made here.
|
|
*/
|
|
static const struct poolinfo {
|
|
int poolbitshift, poolwords, poolbytes, poolfracbits;
|
|
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
|
|
int tap1, tap2, tap3, tap4, tap5;
|
|
} poolinfo_table[] = {
|
|
/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
|
|
/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
|
|
{ S(128), 104, 76, 51, 25, 1 },
|
|
};
|
|
|
|
/*
|
|
* Static global variables
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
|
static struct fasync_struct *fasync;
|
|
|
|
static DEFINE_SPINLOCK(random_ready_list_lock);
|
|
static LIST_HEAD(random_ready_list);
|
|
|
|
struct crng_state {
|
|
__u32 state[16];
|
|
unsigned long init_time;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static struct crng_state primary_crng = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
|
|
};
|
|
|
|
/*
|
|
* crng_init = 0 --> Uninitialized
|
|
* 1 --> Initialized
|
|
* 2 --> Initialized from input_pool
|
|
*
|
|
* crng_init is protected by primary_crng->lock, and only increases
|
|
* its value (from 0->1->2).
|
|
*/
|
|
static int crng_init = 0;
|
|
#define crng_ready() (likely(crng_init > 1))
|
|
static int crng_init_cnt = 0;
|
|
static unsigned long crng_global_init_time = 0;
|
|
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
|
|
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
|
|
static void _crng_backtrack_protect(struct crng_state *crng,
|
|
__u8 tmp[CHACHA_BLOCK_SIZE], int used);
|
|
static void process_random_ready_list(void);
|
|
static void _get_random_bytes(void *buf, int nbytes);
|
|
|
|
static struct ratelimit_state unseeded_warning =
|
|
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
|
|
static struct ratelimit_state urandom_warning =
|
|
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
|
|
|
|
static int ratelimit_disable __read_mostly;
|
|
|
|
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
|
|
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
|
|
|
|
/**********************************************************************
|
|
*
|
|
* OS independent entropy store. Here are the functions which handle
|
|
* storing entropy in an entropy pool.
|
|
*
|
|
**********************************************************************/
|
|
|
|
struct entropy_store;
|
|
struct entropy_store {
|
|
/* read-only data: */
|
|
const struct poolinfo *poolinfo;
|
|
__u32 *pool;
|
|
const char *name;
|
|
|
|
/* read-write data: */
|
|
spinlock_t lock;
|
|
unsigned short add_ptr;
|
|
unsigned short input_rotate;
|
|
int entropy_count;
|
|
unsigned int initialized:1;
|
|
unsigned int last_data_init:1;
|
|
__u8 last_data[EXTRACT_SIZE];
|
|
};
|
|
|
|
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
|
|
size_t nbytes, int min, int rsvd);
|
|
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
|
|
size_t nbytes, int fips);
|
|
|
|
static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
|
|
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
|
|
|
|
static struct entropy_store input_pool = {
|
|
.poolinfo = &poolinfo_table[0],
|
|
.name = "input",
|
|
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
|
|
.pool = input_pool_data
|
|
};
|
|
|
|
static __u32 const twist_table[8] = {
|
|
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
|
|
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
|
|
|
|
/*
|
|
* This function adds bytes into the entropy "pool". It does not
|
|
* update the entropy estimate. The caller should call
|
|
* credit_entropy_bits if this is appropriate.
|
|
*
|
|
* The pool is stirred with a primitive polynomial of the appropriate
|
|
* degree, and then twisted. We twist by three bits at a time because
|
|
* it's cheap to do so and helps slightly in the expected case where
|
|
* the entropy is concentrated in the low-order bits.
|
|
*/
|
|
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
|
|
int nbytes)
|
|
{
|
|
unsigned long i, tap1, tap2, tap3, tap4, tap5;
|
|
int input_rotate;
|
|
int wordmask = r->poolinfo->poolwords - 1;
|
|
const char *bytes = in;
|
|
__u32 w;
|
|
|
|
tap1 = r->poolinfo->tap1;
|
|
tap2 = r->poolinfo->tap2;
|
|
tap3 = r->poolinfo->tap3;
|
|
tap4 = r->poolinfo->tap4;
|
|
tap5 = r->poolinfo->tap5;
|
|
|
|
input_rotate = r->input_rotate;
|
|
i = r->add_ptr;
|
|
|
|
/* mix one byte at a time to simplify size handling and churn faster */
|
|
while (nbytes--) {
|
|
w = rol32(*bytes++, input_rotate);
|
|
i = (i - 1) & wordmask;
|
|
|
|
/* XOR in the various taps */
|
|
w ^= r->pool[i];
|
|
w ^= r->pool[(i + tap1) & wordmask];
|
|
w ^= r->pool[(i + tap2) & wordmask];
|
|
w ^= r->pool[(i + tap3) & wordmask];
|
|
w ^= r->pool[(i + tap4) & wordmask];
|
|
w ^= r->pool[(i + tap5) & wordmask];
|
|
|
|
/* Mix the result back in with a twist */
|
|
r->pool[i] = (w >> 3) ^ twist_table[w & 7];
|
|
|
|
/*
|
|
* Normally, we add 7 bits of rotation to the pool.
|
|
* At the beginning of the pool, add an extra 7 bits
|
|
* rotation, so that successive passes spread the
|
|
* input bits across the pool evenly.
|
|
*/
|
|
input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
|
|
}
|
|
|
|
r->input_rotate = input_rotate;
|
|
r->add_ptr = i;
|
|
}
|
|
|
|
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
|
|
int nbytes)
|
|
{
|
|
trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
|
|
_mix_pool_bytes(r, in, nbytes);
|
|
}
|
|
|
|
static void mix_pool_bytes(struct entropy_store *r, const void *in,
|
|
int nbytes)
|
|
{
|
|
unsigned long flags;
|
|
|
|
trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
|
|
spin_lock_irqsave(&r->lock, flags);
|
|
_mix_pool_bytes(r, in, nbytes);
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
|
}
|
|
|
|
struct fast_pool {
|
|
__u32 pool[4];
|
|
unsigned long last;
|
|
unsigned short reg_idx;
|
|
unsigned char count;
|
|
};
|
|
|
|
/*
|
|
* This is a fast mixing routine used by the interrupt randomness
|
|
* collector. It's hardcoded for an 128 bit pool and assumes that any
|
|
* locks that might be needed are taken by the caller.
|
|
*/
|
|
static void fast_mix(struct fast_pool *f)
|
|
{
|
|
__u32 a = f->pool[0], b = f->pool[1];
|
|
__u32 c = f->pool[2], d = f->pool[3];
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
f->pool[0] = a; f->pool[1] = b;
|
|
f->pool[2] = c; f->pool[3] = d;
|
|
f->count++;
|
|
}
|
|
|
|
static void process_random_ready_list(void)
|
|
{
|
|
unsigned long flags;
|
|
struct random_ready_callback *rdy, *tmp;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
|
|
struct module *owner = rdy->owner;
|
|
|
|
list_del_init(&rdy->list);
|
|
rdy->func(rdy);
|
|
module_put(owner);
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Credit (or debit) the entropy store with n bits of entropy.
|
|
* Use credit_entropy_bits_safe() if the value comes from userspace
|
|
* or otherwise should be checked for extreme values.
|
|
*/
|
|
static void credit_entropy_bits(struct entropy_store *r, int nbits)
|
|
{
|
|
int entropy_count, orig, has_initialized = 0;
|
|
const int pool_size = r->poolinfo->poolfracbits;
|
|
int nfrac = nbits << ENTROPY_SHIFT;
|
|
|
|
if (!nbits)
|
|
return;
|
|
|
|
retry:
|
|
entropy_count = orig = READ_ONCE(r->entropy_count);
|
|
if (nfrac < 0) {
|
|
/* Debit */
|
|
entropy_count += nfrac;
|
|
} else {
|
|
/*
|
|
* Credit: we have to account for the possibility of
|
|
* overwriting already present entropy. Even in the
|
|
* ideal case of pure Shannon entropy, new contributions
|
|
* approach the full value asymptotically:
|
|
*
|
|
* entropy <- entropy + (pool_size - entropy) *
|
|
* (1 - exp(-add_entropy/pool_size))
|
|
*
|
|
* For add_entropy <= pool_size/2 then
|
|
* (1 - exp(-add_entropy/pool_size)) >=
|
|
* (add_entropy/pool_size)*0.7869...
|
|
* so we can approximate the exponential with
|
|
* 3/4*add_entropy/pool_size and still be on the
|
|
* safe side by adding at most pool_size/2 at a time.
|
|
*
|
|
* The use of pool_size-2 in the while statement is to
|
|
* prevent rounding artifacts from making the loop
|
|
* arbitrarily long; this limits the loop to log2(pool_size)*2
|
|
* turns no matter how large nbits is.
|
|
*/
|
|
int pnfrac = nfrac;
|
|
const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
|
|
/* The +2 corresponds to the /4 in the denominator */
|
|
|
|
do {
|
|
unsigned int anfrac = min(pnfrac, pool_size/2);
|
|
unsigned int add =
|
|
((pool_size - entropy_count)*anfrac*3) >> s;
|
|
|
|
entropy_count += add;
|
|
pnfrac -= anfrac;
|
|
} while (unlikely(entropy_count < pool_size-2 && pnfrac));
|
|
}
|
|
|
|
if (WARN_ON(entropy_count < 0)) {
|
|
pr_warn("negative entropy/overflow: pool %s count %d\n",
|
|
r->name, entropy_count);
|
|
entropy_count = 0;
|
|
} else if (entropy_count > pool_size)
|
|
entropy_count = pool_size;
|
|
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
|
|
goto retry;
|
|
|
|
if (has_initialized) {
|
|
r->initialized = 1;
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
}
|
|
|
|
trace_credit_entropy_bits(r->name, nbits,
|
|
entropy_count >> ENTROPY_SHIFT, _RET_IP_);
|
|
|
|
if (r == &input_pool) {
|
|
int entropy_bits = entropy_count >> ENTROPY_SHIFT;
|
|
|
|
if (crng_init < 2) {
|
|
if (entropy_bits < 128)
|
|
return;
|
|
crng_reseed(&primary_crng, r);
|
|
entropy_bits = ENTROPY_BITS(r);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
|
|
{
|
|
const int nbits_max = r->poolinfo->poolwords * 32;
|
|
|
|
if (nbits < 0)
|
|
return -EINVAL;
|
|
|
|
/* Cap the value to avoid overflows */
|
|
nbits = min(nbits, nbits_max);
|
|
|
|
credit_entropy_bits(r, nbits);
|
|
return 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* CRNG using CHACHA20
|
|
*
|
|
*********************************************************************/
|
|
|
|
#define CRNG_RESEED_INTERVAL (300*HZ)
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Hack to deal with crazy userspace progams when they are all trying
|
|
* to access /dev/urandom in parallel. The programs are almost
|
|
* certainly doing something terribly wrong, but we'll work around
|
|
* their brain damage.
|
|
*/
|
|
static struct crng_state **crng_node_pool __read_mostly;
|
|
#endif
|
|
|
|
static void invalidate_batched_entropy(void);
|
|
static void numa_crng_init(void);
|
|
|
|
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
|
|
static int __init parse_trust_cpu(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_cpu);
|
|
}
|
|
early_param("random.trust_cpu", parse_trust_cpu);
|
|
|
|
static bool crng_init_try_arch(struct crng_state *crng)
|
|
{
|
|
int i;
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
crng->state[i] ^= rv;
|
|
}
|
|
|
|
return arch_init;
|
|
}
|
|
|
|
static bool __init crng_init_try_arch_early(struct crng_state *crng)
|
|
{
|
|
int i;
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
if (!arch_get_random_seed_long_early(&rv) &&
|
|
!arch_get_random_long_early(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
crng->state[i] ^= rv;
|
|
}
|
|
|
|
return arch_init;
|
|
}
|
|
|
|
static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
|
|
{
|
|
memcpy(&crng->state[0], "expand 32-byte k", 16);
|
|
_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
|
|
crng_init_try_arch(crng);
|
|
crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
|
|
}
|
|
|
|
static void __init crng_initialize_primary(struct crng_state *crng)
|
|
{
|
|
memcpy(&crng->state[0], "expand 32-byte k", 16);
|
|
_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
|
|
if (crng_init_try_arch_early(crng) && trust_cpu) {
|
|
invalidate_batched_entropy();
|
|
numa_crng_init();
|
|
crng_init = 2;
|
|
pr_notice("crng done (trusting CPU's manufacturer)\n");
|
|
}
|
|
crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static void do_numa_crng_init(struct work_struct *work)
|
|
{
|
|
int i;
|
|
struct crng_state *crng;
|
|
struct crng_state **pool;
|
|
|
|
pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
|
|
for_each_online_node(i) {
|
|
crng = kmalloc_node(sizeof(struct crng_state),
|
|
GFP_KERNEL | __GFP_NOFAIL, i);
|
|
spin_lock_init(&crng->lock);
|
|
crng_initialize_secondary(crng);
|
|
pool[i] = crng;
|
|
}
|
|
mb();
|
|
if (cmpxchg(&crng_node_pool, NULL, pool)) {
|
|
for_each_node(i)
|
|
kfree(pool[i]);
|
|
kfree(pool);
|
|
}
|
|
}
|
|
|
|
static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
|
|
|
|
static void numa_crng_init(void)
|
|
{
|
|
schedule_work(&numa_crng_init_work);
|
|
}
|
|
#else
|
|
static void numa_crng_init(void) {}
|
|
#endif
|
|
|
|
/*
|
|
* crng_fast_load() can be called by code in the interrupt service
|
|
* path. So we can't afford to dilly-dally.
|
|
*/
|
|
static int crng_fast_load(const char *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
char *p;
|
|
|
|
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
|
|
return 0;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
p = (unsigned char *) &primary_crng.state[4];
|
|
while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
|
|
p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
|
|
cp++; crng_init_cnt++; len--;
|
|
}
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
|
|
invalidate_batched_entropy();
|
|
crng_init = 1;
|
|
pr_notice("fast init done\n");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* crng_slow_load() is called by add_device_randomness, which has two
|
|
* attributes. (1) We can't trust the buffer passed to it is
|
|
* guaranteed to be unpredictable (so it might not have any entropy at
|
|
* all), and (2) it doesn't have the performance constraints of
|
|
* crng_fast_load().
|
|
*
|
|
* So we do something more comprehensive which is guaranteed to touch
|
|
* all of the primary_crng's state, and which uses a LFSR with a
|
|
* period of 255 as part of the mixing algorithm. Finally, we do
|
|
* *not* advance crng_init_cnt since buffer we may get may be something
|
|
* like a fixed DMI table (for example), which might very well be
|
|
* unique to the machine, but is otherwise unvarying.
|
|
*/
|
|
static int crng_slow_load(const char *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
static unsigned char lfsr = 1;
|
|
unsigned char tmp;
|
|
unsigned i, max = CHACHA_KEY_SIZE;
|
|
const char * src_buf = cp;
|
|
char * dest_buf = (char *) &primary_crng.state[4];
|
|
|
|
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
|
|
return 0;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
if (len > max)
|
|
max = len;
|
|
|
|
for (i = 0; i < max ; i++) {
|
|
tmp = lfsr;
|
|
lfsr >>= 1;
|
|
if (tmp & 1)
|
|
lfsr ^= 0xE1;
|
|
tmp = dest_buf[i % CHACHA_KEY_SIZE];
|
|
dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
|
|
lfsr += (tmp << 3) | (tmp >> 5);
|
|
}
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
|
|
{
|
|
unsigned long flags;
|
|
int i, num;
|
|
union {
|
|
__u8 block[CHACHA_BLOCK_SIZE];
|
|
__u32 key[8];
|
|
} buf;
|
|
|
|
if (r) {
|
|
num = extract_entropy(r, &buf, 32, 16, 0);
|
|
if (num == 0)
|
|
return;
|
|
} else {
|
|
_extract_crng(&primary_crng, buf.block);
|
|
_crng_backtrack_protect(&primary_crng, buf.block,
|
|
CHACHA_KEY_SIZE);
|
|
}
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned long rv;
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv))
|
|
rv = random_get_entropy();
|
|
crng->state[i+4] ^= buf.key[i] ^ rv;
|
|
}
|
|
memzero_explicit(&buf, sizeof(buf));
|
|
crng->init_time = jiffies;
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
if (crng == &primary_crng && crng_init < 2) {
|
|
invalidate_batched_entropy();
|
|
numa_crng_init();
|
|
crng_init = 2;
|
|
process_random_ready_list();
|
|
wake_up_interruptible(&crng_init_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
pr_notice("crng init done\n");
|
|
if (unseeded_warning.missed) {
|
|
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
|
|
unseeded_warning.missed);
|
|
unseeded_warning.missed = 0;
|
|
}
|
|
if (urandom_warning.missed) {
|
|
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
|
|
urandom_warning.missed);
|
|
urandom_warning.missed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _extract_crng(struct crng_state *crng,
|
|
__u8 out[CHACHA_BLOCK_SIZE])
|
|
{
|
|
unsigned long v, flags;
|
|
|
|
if (crng_ready() &&
|
|
(time_after(crng_global_init_time, crng->init_time) ||
|
|
time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
|
|
crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
if (arch_get_random_long(&v))
|
|
crng->state[14] ^= v;
|
|
chacha20_block(&crng->state[0], out);
|
|
if (crng->state[12] == 0)
|
|
crng->state[13]++;
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
}
|
|
|
|
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
|
|
{
|
|
struct crng_state *crng = NULL;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (crng_node_pool)
|
|
crng = crng_node_pool[numa_node_id()];
|
|
if (crng == NULL)
|
|
#endif
|
|
crng = &primary_crng;
|
|
_extract_crng(crng, out);
|
|
}
|
|
|
|
/*
|
|
* Use the leftover bytes from the CRNG block output (if there is
|
|
* enough) to mutate the CRNG key to provide backtracking protection.
|
|
*/
|
|
static void _crng_backtrack_protect(struct crng_state *crng,
|
|
__u8 tmp[CHACHA_BLOCK_SIZE], int used)
|
|
{
|
|
unsigned long flags;
|
|
__u32 *s, *d;
|
|
int i;
|
|
|
|
used = round_up(used, sizeof(__u32));
|
|
if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
|
|
extract_crng(tmp);
|
|
used = 0;
|
|
}
|
|
spin_lock_irqsave(&crng->lock, flags);
|
|
s = (__u32 *) &tmp[used];
|
|
d = &crng->state[4];
|
|
for (i=0; i < 8; i++)
|
|
*d++ ^= *s++;
|
|
spin_unlock_irqrestore(&crng->lock, flags);
|
|
}
|
|
|
|
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
|
|
{
|
|
struct crng_state *crng = NULL;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (crng_node_pool)
|
|
crng = crng_node_pool[numa_node_id()];
|
|
if (crng == NULL)
|
|
#endif
|
|
crng = &primary_crng;
|
|
_crng_backtrack_protect(crng, tmp, used);
|
|
}
|
|
|
|
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
|
|
{
|
|
ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
|
|
__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
|
|
int large_request = (nbytes > 256);
|
|
|
|
while (nbytes) {
|
|
if (large_request && need_resched()) {
|
|
if (signal_pending(current)) {
|
|
if (ret == 0)
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
schedule();
|
|
}
|
|
|
|
extract_crng(tmp);
|
|
i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
|
|
if (copy_to_user(buf, tmp, i)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
nbytes -= i;
|
|
buf += i;
|
|
ret += i;
|
|
}
|
|
crng_backtrack_protect(tmp, i);
|
|
|
|
/* Wipe data just written to memory */
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy input management
|
|
*
|
|
*********************************************************************/
|
|
|
|
/* There is one of these per entropy source */
|
|
struct timer_rand_state {
|
|
cycles_t last_time;
|
|
long last_delta, last_delta2;
|
|
};
|
|
|
|
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
|
|
|
|
/*
|
|
* Add device- or boot-specific data to the input pool to help
|
|
* initialize it.
|
|
*
|
|
* None of this adds any entropy; it is meant to avoid the problem of
|
|
* the entropy pool having similar initial state across largely
|
|
* identical devices.
|
|
*/
|
|
void add_device_randomness(const void *buf, unsigned int size)
|
|
{
|
|
unsigned long time = random_get_entropy() ^ jiffies;
|
|
unsigned long flags;
|
|
|
|
if (!crng_ready() && size)
|
|
crng_slow_load(buf, size);
|
|
|
|
trace_add_device_randomness(size, _RET_IP_);
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(&input_pool, buf, size);
|
|
_mix_pool_bytes(&input_pool, &time, sizeof(time));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_device_randomness);
|
|
|
|
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
|
|
|
|
/*
|
|
* This function adds entropy to the entropy "pool" by using timing
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
|
* of how many bits of entropy this call has added to the pool.
|
|
*
|
|
* The number "num" is also added to the pool - it should somehow describe
|
|
* the type of event which just happened. This is currently 0-255 for
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
|
*
|
|
*/
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
|
|
{
|
|
struct entropy_store *r;
|
|
struct {
|
|
long jiffies;
|
|
unsigned cycles;
|
|
unsigned num;
|
|
} sample;
|
|
long delta, delta2, delta3;
|
|
|
|
sample.jiffies = jiffies;
|
|
sample.cycles = random_get_entropy();
|
|
sample.num = num;
|
|
r = &input_pool;
|
|
mix_pool_bytes(r, &sample, sizeof(sample));
|
|
|
|
/*
|
|
* Calculate number of bits of randomness we probably added.
|
|
* We take into account the first, second and third-order deltas
|
|
* in order to make our estimate.
|
|
*/
|
|
delta = sample.jiffies - READ_ONCE(state->last_time);
|
|
WRITE_ONCE(state->last_time, sample.jiffies);
|
|
|
|
delta2 = delta - READ_ONCE(state->last_delta);
|
|
WRITE_ONCE(state->last_delta, delta);
|
|
|
|
delta3 = delta2 - READ_ONCE(state->last_delta2);
|
|
WRITE_ONCE(state->last_delta2, delta2);
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta2 < 0)
|
|
delta2 = -delta2;
|
|
if (delta3 < 0)
|
|
delta3 = -delta3;
|
|
if (delta > delta2)
|
|
delta = delta2;
|
|
if (delta > delta3)
|
|
delta = delta3;
|
|
|
|
/*
|
|
* delta is now minimum absolute delta.
|
|
* Round down by 1 bit on general principles,
|
|
* and limit entropy estimate to 12 bits.
|
|
*/
|
|
credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
|
|
}
|
|
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
|
unsigned int value)
|
|
{
|
|
static unsigned char last_value;
|
|
|
|
/* ignore autorepeat and the like */
|
|
if (value == last_value)
|
|
return;
|
|
|
|
last_value = value;
|
|
add_timer_randomness(&input_timer_state,
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
|
trace_add_input_randomness(ENTROPY_BITS(&input_pool));
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
|
|
|
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
|
|
|
|
#ifdef ADD_INTERRUPT_BENCH
|
|
static unsigned long avg_cycles, avg_deviation;
|
|
|
|
#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
|
|
#define FIXED_1_2 (1 << (AVG_SHIFT-1))
|
|
|
|
static void add_interrupt_bench(cycles_t start)
|
|
{
|
|
long delta = random_get_entropy() - start;
|
|
|
|
/* Use a weighted moving average */
|
|
delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
|
|
avg_cycles += delta;
|
|
/* And average deviation */
|
|
delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
|
|
avg_deviation += delta;
|
|
}
|
|
#else
|
|
#define add_interrupt_bench(x)
|
|
#endif
|
|
|
|
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
|
|
{
|
|
__u32 *ptr = (__u32 *) regs;
|
|
unsigned int idx;
|
|
|
|
if (regs == NULL)
|
|
return 0;
|
|
idx = READ_ONCE(f->reg_idx);
|
|
if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
|
|
idx = 0;
|
|
ptr += idx++;
|
|
WRITE_ONCE(f->reg_idx, idx);
|
|
return *ptr;
|
|
}
|
|
|
|
void add_interrupt_randomness(int irq, int irq_flags)
|
|
{
|
|
struct entropy_store *r;
|
|
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long now = jiffies;
|
|
cycles_t cycles = random_get_entropy();
|
|
__u32 c_high, j_high;
|
|
__u64 ip;
|
|
|
|
if (cycles == 0)
|
|
cycles = get_reg(fast_pool, regs);
|
|
c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
|
|
j_high = (sizeof(now) > 4) ? now >> 32 : 0;
|
|
fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
|
|
fast_pool->pool[1] ^= now ^ c_high;
|
|
ip = regs ? instruction_pointer(regs) : _RET_IP_;
|
|
fast_pool->pool[2] ^= ip;
|
|
fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
|
|
get_reg(fast_pool, regs);
|
|
|
|
fast_mix(fast_pool);
|
|
add_interrupt_bench(cycles);
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
if ((fast_pool->count >= 64) &&
|
|
crng_fast_load((char *) fast_pool->pool,
|
|
sizeof(fast_pool->pool))) {
|
|
fast_pool->count = 0;
|
|
fast_pool->last = now;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((fast_pool->count < 64) &&
|
|
!time_after(now, fast_pool->last + HZ))
|
|
return;
|
|
|
|
r = &input_pool;
|
|
if (!spin_trylock(&r->lock))
|
|
return;
|
|
|
|
fast_pool->last = now;
|
|
__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
|
|
spin_unlock(&r->lock);
|
|
|
|
fast_pool->count = 0;
|
|
|
|
/* award one bit for the contents of the fast pool */
|
|
credit_entropy_bits(r, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void add_disk_randomness(struct gendisk *disk)
|
|
{
|
|
if (!disk || !disk->random)
|
|
return;
|
|
/* first major is 1, so we get >= 0x200 here */
|
|
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
|
|
trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_disk_randomness);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy extraction routines
|
|
*
|
|
*********************************************************************/
|
|
|
|
/*
|
|
* This function decides how many bytes to actually take from the
|
|
* given pool, and also debits the entropy count accordingly.
|
|
*/
|
|
static size_t account(struct entropy_store *r, size_t nbytes, int min,
|
|
int reserved)
|
|
{
|
|
int entropy_count, orig, have_bytes;
|
|
size_t ibytes, nfrac;
|
|
|
|
BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
|
|
|
|
/* Can we pull enough? */
|
|
retry:
|
|
entropy_count = orig = READ_ONCE(r->entropy_count);
|
|
ibytes = nbytes;
|
|
/* never pull more than available */
|
|
have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
|
|
|
|
if ((have_bytes -= reserved) < 0)
|
|
have_bytes = 0;
|
|
ibytes = min_t(size_t, ibytes, have_bytes);
|
|
if (ibytes < min)
|
|
ibytes = 0;
|
|
|
|
if (WARN_ON(entropy_count < 0)) {
|
|
pr_warn("negative entropy count: pool %s count %d\n",
|
|
r->name, entropy_count);
|
|
entropy_count = 0;
|
|
}
|
|
nfrac = ibytes << (ENTROPY_SHIFT + 3);
|
|
if ((size_t) entropy_count > nfrac)
|
|
entropy_count -= nfrac;
|
|
else
|
|
entropy_count = 0;
|
|
|
|
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
|
|
goto retry;
|
|
|
|
trace_debit_entropy(r->name, 8 * ibytes);
|
|
if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
|
|
return ibytes;
|
|
}
|
|
|
|
/*
|
|
* This function does the actual extraction for extract_entropy and
|
|
* extract_entropy_user.
|
|
*
|
|
* Note: we assume that .poolwords is a multiple of 16 words.
|
|
*/
|
|
static void extract_buf(struct entropy_store *r, __u8 *out)
|
|
{
|
|
int i;
|
|
union {
|
|
__u32 w[5];
|
|
unsigned long l[LONGS(20)];
|
|
} hash;
|
|
__u32 workspace[SHA1_WORKSPACE_WORDS];
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* If we have an architectural hardware random number
|
|
* generator, use it for SHA's initial vector
|
|
*/
|
|
sha1_init(hash.w);
|
|
for (i = 0; i < LONGS(20); i++) {
|
|
unsigned long v;
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
hash.l[i] = v;
|
|
}
|
|
|
|
/* Generate a hash across the pool, 16 words (512 bits) at a time */
|
|
spin_lock_irqsave(&r->lock, flags);
|
|
for (i = 0; i < r->poolinfo->poolwords; i += 16)
|
|
sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
|
|
|
|
/*
|
|
* We mix the hash back into the pool to prevent backtracking
|
|
* attacks (where the attacker knows the state of the pool
|
|
* plus the current outputs, and attempts to find previous
|
|
* ouputs), unless the hash function can be inverted. By
|
|
* mixing at least a SHA1 worth of hash data back, we make
|
|
* brute-forcing the feedback as hard as brute-forcing the
|
|
* hash.
|
|
*/
|
|
__mix_pool_bytes(r, hash.w, sizeof(hash.w));
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
|
|
|
memzero_explicit(workspace, sizeof(workspace));
|
|
|
|
/*
|
|
* In case the hash function has some recognizable output
|
|
* pattern, we fold it in half. Thus, we always feed back
|
|
* twice as much data as we output.
|
|
*/
|
|
hash.w[0] ^= hash.w[3];
|
|
hash.w[1] ^= hash.w[4];
|
|
hash.w[2] ^= rol32(hash.w[2], 16);
|
|
|
|
memcpy(out, &hash, EXTRACT_SIZE);
|
|
memzero_explicit(&hash, sizeof(hash));
|
|
}
|
|
|
|
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
|
|
size_t nbytes, int fips)
|
|
{
|
|
ssize_t ret = 0, i;
|
|
__u8 tmp[EXTRACT_SIZE];
|
|
unsigned long flags;
|
|
|
|
while (nbytes) {
|
|
extract_buf(r, tmp);
|
|
|
|
if (fips) {
|
|
spin_lock_irqsave(&r->lock, flags);
|
|
if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
|
|
panic("Hardware RNG duplicated output!\n");
|
|
memcpy(r->last_data, tmp, EXTRACT_SIZE);
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
|
}
|
|
i = min_t(int, nbytes, EXTRACT_SIZE);
|
|
memcpy(buf, tmp, i);
|
|
nbytes -= i;
|
|
buf += i;
|
|
ret += i;
|
|
}
|
|
|
|
/* Wipe data just returned from memory */
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function extracts randomness from the "entropy pool", and
|
|
* returns it in a buffer.
|
|
*
|
|
* The min parameter specifies the minimum amount we can pull before
|
|
* failing to avoid races that defeat catastrophic reseeding while the
|
|
* reserved parameter indicates how much entropy we must leave in the
|
|
* pool after each pull to avoid starving other readers.
|
|
*/
|
|
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
|
|
size_t nbytes, int min, int reserved)
|
|
{
|
|
__u8 tmp[EXTRACT_SIZE];
|
|
unsigned long flags;
|
|
|
|
/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
|
|
if (fips_enabled) {
|
|
spin_lock_irqsave(&r->lock, flags);
|
|
if (!r->last_data_init) {
|
|
r->last_data_init = 1;
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
|
trace_extract_entropy(r->name, EXTRACT_SIZE,
|
|
ENTROPY_BITS(r), _RET_IP_);
|
|
extract_buf(r, tmp);
|
|
spin_lock_irqsave(&r->lock, flags);
|
|
memcpy(r->last_data, tmp, EXTRACT_SIZE);
|
|
}
|
|
spin_unlock_irqrestore(&r->lock, flags);
|
|
}
|
|
|
|
trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
|
|
nbytes = account(r, nbytes, min, reserved);
|
|
|
|
return _extract_entropy(r, buf, nbytes, fips_enabled);
|
|
}
|
|
|
|
#define warn_unseeded_randomness(previous) \
|
|
_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
|
|
|
|
static void _warn_unseeded_randomness(const char *func_name, void *caller,
|
|
void **previous)
|
|
{
|
|
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
const bool print_once = false;
|
|
#else
|
|
static bool print_once __read_mostly;
|
|
#endif
|
|
|
|
if (print_once ||
|
|
crng_ready() ||
|
|
(previous && (caller == READ_ONCE(*previous))))
|
|
return;
|
|
WRITE_ONCE(*previous, caller);
|
|
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
print_once = true;
|
|
#endif
|
|
if (__ratelimit(&unseeded_warning))
|
|
printk_deferred(KERN_NOTICE "random: %s called from %pS "
|
|
"with crng_init=%d\n", func_name, caller,
|
|
crng_init);
|
|
}
|
|
|
|
/*
|
|
* This function is the exported kernel interface. It returns some
|
|
* number of good random numbers, suitable for key generation, seeding
|
|
* TCP sequence numbers, etc. It does not rely on the hardware random
|
|
* number generator. For random bytes direct from the hardware RNG
|
|
* (when available), use get_random_bytes_arch(). In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once
|
|
* at any point prior.
|
|
*/
|
|
static void _get_random_bytes(void *buf, int nbytes)
|
|
{
|
|
__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
|
|
|
|
trace_get_random_bytes(nbytes, _RET_IP_);
|
|
|
|
while (nbytes >= CHACHA_BLOCK_SIZE) {
|
|
extract_crng(buf);
|
|
buf += CHACHA_BLOCK_SIZE;
|
|
nbytes -= CHACHA_BLOCK_SIZE;
|
|
}
|
|
|
|
if (nbytes > 0) {
|
|
extract_crng(tmp);
|
|
memcpy(buf, tmp, nbytes);
|
|
crng_backtrack_protect(tmp, nbytes);
|
|
} else
|
|
crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
}
|
|
|
|
void get_random_bytes(void *buf, int nbytes)
|
|
{
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
_get_random_bytes(buf, nbytes);
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes);
|
|
|
|
|
|
/*
|
|
* Each time the timer fires, we expect that we got an unpredictable
|
|
* jump in the cycle counter. Even if the timer is running on another
|
|
* CPU, the timer activity will be touching the stack of the CPU that is
|
|
* generating entropy..
|
|
*
|
|
* Note that we don't re-arm the timer in the timer itself - we are
|
|
* happy to be scheduled away, since that just makes the load more
|
|
* complex, but we do not want the timer to keep ticking unless the
|
|
* entropy loop is running.
|
|
*
|
|
* So the re-arming always happens in the entropy loop itself.
|
|
*/
|
|
static void entropy_timer(struct timer_list *t)
|
|
{
|
|
credit_entropy_bits(&input_pool, 1);
|
|
}
|
|
|
|
/*
|
|
* If we have an actual cycle counter, see if we can
|
|
* generate enough entropy with timing noise
|
|
*/
|
|
static void try_to_generate_entropy(void)
|
|
{
|
|
struct {
|
|
unsigned long now;
|
|
struct timer_list timer;
|
|
} stack;
|
|
|
|
stack.now = random_get_entropy();
|
|
|
|
/* Slow counter - or none. Don't even bother */
|
|
if (stack.now == random_get_entropy())
|
|
return;
|
|
|
|
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
|
|
while (!crng_ready()) {
|
|
if (!timer_pending(&stack.timer))
|
|
mod_timer(&stack.timer, jiffies+1);
|
|
mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
|
|
schedule();
|
|
stack.now = random_get_entropy();
|
|
}
|
|
|
|
del_timer_sync(&stack.timer);
|
|
destroy_timer_on_stack(&stack.timer);
|
|
mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
|
|
}
|
|
|
|
/*
|
|
* Wait for the urandom pool to be seeded and thus guaranteed to supply
|
|
* cryptographically secure random numbers. This applies to: the /dev/urandom
|
|
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
|
|
* family of functions. Using any of these functions without first calling
|
|
* this function forfeits the guarantee of security.
|
|
*
|
|
* Returns: 0 if the urandom pool has been seeded.
|
|
* -ERESTARTSYS if the function was interrupted by a signal.
|
|
*/
|
|
int wait_for_random_bytes(void)
|
|
{
|
|
if (likely(crng_ready()))
|
|
return 0;
|
|
|
|
do {
|
|
int ret;
|
|
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
|
|
if (ret)
|
|
return ret > 0 ? 0 : ret;
|
|
|
|
try_to_generate_entropy();
|
|
} while (!crng_ready());
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_random_bytes);
|
|
|
|
/*
|
|
* Returns whether or not the urandom pool has been seeded and thus guaranteed
|
|
* to supply cryptographically secure random numbers. This applies to: the
|
|
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
|
|
* ,u64,int,long} family of functions.
|
|
*
|
|
* Returns: true if the urandom pool has been seeded.
|
|
* false if the urandom pool has not been seeded.
|
|
*/
|
|
bool rng_is_initialized(void)
|
|
{
|
|
return crng_ready();
|
|
}
|
|
EXPORT_SYMBOL(rng_is_initialized);
|
|
|
|
/*
|
|
* Add a callback function that will be invoked when the nonblocking
|
|
* pool is initialised.
|
|
*
|
|
* returns: 0 if callback is successfully added
|
|
* -EALREADY if pool is already initialised (callback not called)
|
|
* -ENOENT if module for callback is not alive
|
|
*/
|
|
int add_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
struct module *owner;
|
|
unsigned long flags;
|
|
int err = -EALREADY;
|
|
|
|
if (crng_ready())
|
|
return err;
|
|
|
|
owner = rdy->owner;
|
|
if (!try_module_get(owner))
|
|
return -ENOENT;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (crng_ready())
|
|
goto out;
|
|
|
|
owner = NULL;
|
|
|
|
list_add(&rdy->list, &random_ready_list);
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(add_random_ready_callback);
|
|
|
|
/*
|
|
* Delete a previously registered readiness callback function.
|
|
*/
|
|
void del_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
unsigned long flags;
|
|
struct module *owner = NULL;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (!list_empty(&rdy->list)) {
|
|
list_del_init(&rdy->list);
|
|
owner = rdy->owner;
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
}
|
|
EXPORT_SYMBOL(del_random_ready_callback);
|
|
|
|
/*
|
|
* This function will use the architecture-specific hardware random
|
|
* number generator if it is available. The arch-specific hw RNG will
|
|
* almost certainly be faster than what we can do in software, but it
|
|
* is impossible to verify that it is implemented securely (as
|
|
* opposed, to, say, the AES encryption of a sequence number using a
|
|
* key known by the NSA). So it's useful if we need the speed, but
|
|
* only if we're willing to trust the hardware manufacturer not to
|
|
* have put in a back door.
|
|
*
|
|
* Return number of bytes filled in.
|
|
*/
|
|
int __must_check get_random_bytes_arch(void *buf, int nbytes)
|
|
{
|
|
int left = nbytes;
|
|
char *p = buf;
|
|
|
|
trace_get_random_bytes_arch(left, _RET_IP_);
|
|
while (left) {
|
|
unsigned long v;
|
|
int chunk = min_t(int, left, sizeof(unsigned long));
|
|
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
|
|
memcpy(p, &v, chunk);
|
|
p += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
return nbytes - left;
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes_arch);
|
|
|
|
/*
|
|
* init_std_data - initialize pool with system data
|
|
*
|
|
* @r: pool to initialize
|
|
*
|
|
* This function clears the pool's entropy count and mixes some system
|
|
* data into the pool to prepare it for use. The pool is not cleared
|
|
* as that can only decrease the entropy in the pool.
|
|
*/
|
|
static void __init init_std_data(struct entropy_store *r)
|
|
{
|
|
int i;
|
|
ktime_t now = ktime_get_real();
|
|
unsigned long rv;
|
|
|
|
mix_pool_bytes(r, &now, sizeof(now));
|
|
for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
|
|
if (!arch_get_random_seed_long(&rv) &&
|
|
!arch_get_random_long(&rv))
|
|
rv = random_get_entropy();
|
|
mix_pool_bytes(r, &rv, sizeof(rv));
|
|
}
|
|
mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
|
|
}
|
|
|
|
/*
|
|
* Note that setup_arch() may call add_device_randomness()
|
|
* long before we get here. This allows seeding of the pools
|
|
* with some platform dependent data very early in the boot
|
|
* process. But it limits our options here. We must use
|
|
* statically allocated structures that already have all
|
|
* initializations complete at compile time. We should also
|
|
* take care not to overwrite the precious per platform data
|
|
* we were given.
|
|
*/
|
|
int __init rand_initialize(void)
|
|
{
|
|
init_std_data(&input_pool);
|
|
crng_initialize_primary(&primary_crng);
|
|
crng_global_init_time = jiffies;
|
|
if (ratelimit_disable) {
|
|
urandom_warning.interval = 0;
|
|
unseeded_warning.interval = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void rand_initialize_disk(struct gendisk *disk)
|
|
{
|
|
struct timer_rand_state *state;
|
|
|
|
/*
|
|
* If kzalloc returns null, we just won't use that entropy
|
|
* source.
|
|
*/
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
|
if (state) {
|
|
state->last_time = INITIAL_JIFFIES;
|
|
disk->random = state;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static ssize_t
|
|
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
|
|
ret = extract_crng_user(buf, nbytes);
|
|
trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t
|
|
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
|
|
{
|
|
unsigned long flags;
|
|
static int maxwarn = 10;
|
|
|
|
if (!crng_ready() && maxwarn > 0) {
|
|
maxwarn--;
|
|
if (__ratelimit(&urandom_warning))
|
|
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
|
|
current->comm, nbytes);
|
|
spin_lock_irqsave(&primary_crng.lock, flags);
|
|
crng_init_cnt = 0;
|
|
spin_unlock_irqrestore(&primary_crng.lock, flags);
|
|
}
|
|
|
|
return urandom_read_nowarn(file, buf, nbytes, ppos);
|
|
}
|
|
|
|
static ssize_t
|
|
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_random_bytes();
|
|
if (ret != 0)
|
|
return ret;
|
|
return urandom_read_nowarn(file, buf, nbytes, ppos);
|
|
}
|
|
|
|
static __poll_t
|
|
random_poll(struct file *file, poll_table * wait)
|
|
{
|
|
__poll_t mask;
|
|
|
|
poll_wait(file, &crng_init_wait, wait);
|
|
poll_wait(file, &random_write_wait, wait);
|
|
mask = 0;
|
|
if (crng_ready())
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
return mask;
|
|
}
|
|
|
|
static int
|
|
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
|
|
{
|
|
size_t bytes;
|
|
__u32 t, buf[16];
|
|
const char __user *p = buffer;
|
|
|
|
while (count > 0) {
|
|
int b, i = 0;
|
|
|
|
bytes = min(count, sizeof(buf));
|
|
if (copy_from_user(&buf, p, bytes))
|
|
return -EFAULT;
|
|
|
|
for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
|
|
if (!arch_get_random_int(&t))
|
|
break;
|
|
buf[i] ^= t;
|
|
}
|
|
|
|
count -= bytes;
|
|
p += bytes;
|
|
|
|
mix_pool_bytes(r, buf, bytes);
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t random_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
size_t ret;
|
|
|
|
ret = write_pool(&input_pool, buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (ssize_t)count;
|
|
}
|
|
|
|
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int size, ent_count;
|
|
int __user *p = (int __user *)arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
/* inherently racy, no point locking */
|
|
ent_count = ENTROPY_BITS(&input_pool);
|
|
if (put_user(ent_count, p))
|
|
return -EFAULT;
|
|
return 0;
|
|
case RNDADDTOENTCNT:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p))
|
|
return -EFAULT;
|
|
return credit_entropy_bits_safe(&input_pool, ent_count);
|
|
case RNDADDENTROPY:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p++))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
if (get_user(size, p++))
|
|
return -EFAULT;
|
|
retval = write_pool(&input_pool, (const char __user *)p,
|
|
size);
|
|
if (retval < 0)
|
|
return retval;
|
|
return credit_entropy_bits_safe(&input_pool, ent_count);
|
|
case RNDZAPENTCNT:
|
|
case RNDCLEARPOOL:
|
|
/*
|
|
* Clear the entropy pool counters. We no longer clear
|
|
* the entropy pool, as that's silly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
input_pool.entropy_count = 0;
|
|
return 0;
|
|
case RNDRESEEDCRNG:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (crng_init < 2)
|
|
return -ENODATA;
|
|
crng_reseed(&primary_crng, &input_pool);
|
|
crng_global_init_time = jiffies - 1;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int random_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper(fd, filp, on, &fasync);
|
|
}
|
|
|
|
const struct file_operations random_fops = {
|
|
.read = random_read,
|
|
.write = random_write,
|
|
.poll = random_poll,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
const struct file_operations urandom_fops = {
|
|
.read = urandom_read,
|
|
.write = random_write,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
|
|
unsigned int, flags)
|
|
{
|
|
int ret;
|
|
|
|
if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Requesting insecure and blocking randomness at the same time makes
|
|
* no sense.
|
|
*/
|
|
if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
|
|
return -EINVAL;
|
|
|
|
if (count > INT_MAX)
|
|
count = INT_MAX;
|
|
|
|
if (!(flags & GRND_INSECURE) && !crng_ready()) {
|
|
if (flags & GRND_NONBLOCK)
|
|
return -EAGAIN;
|
|
ret = wait_for_random_bytes();
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
return urandom_read_nowarn(NULL, buf, count, NULL);
|
|
}
|
|
|
|
/********************************************************************
|
|
*
|
|
* Sysctl interface
|
|
*
|
|
********************************************************************/
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
static int min_write_thresh;
|
|
static int max_write_thresh = INPUT_POOL_WORDS * 32;
|
|
static int random_min_urandom_seed = 60;
|
|
static char sysctl_bootid[16];
|
|
|
|
/*
|
|
* This function is used to return both the bootid UUID, and random
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
|
* then a new UUID is generated and returned to the user.
|
|
*
|
|
* If the user accesses this via the proc interface, the UUID will be
|
|
* returned as an ASCII string in the standard UUID format; if via the
|
|
* sysctl system call, as 16 bytes of binary data.
|
|
*/
|
|
static int proc_do_uuid(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
|
|
|
uuid = table->data;
|
|
if (!uuid) {
|
|
uuid = tmp_uuid;
|
|
generate_random_uuid(uuid);
|
|
} else {
|
|
static DEFINE_SPINLOCK(bootid_spinlock);
|
|
|
|
spin_lock(&bootid_spinlock);
|
|
if (!uuid[8])
|
|
generate_random_uuid(uuid);
|
|
spin_unlock(&bootid_spinlock);
|
|
}
|
|
|
|
sprintf(buf, "%pU", uuid);
|
|
|
|
fake_table.data = buf;
|
|
fake_table.maxlen = sizeof(buf);
|
|
|
|
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
/*
|
|
* Return entropy available scaled to integral bits
|
|
*/
|
|
static int proc_do_entropy(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
int entropy_count;
|
|
|
|
entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
|
|
|
|
fake_table.data = &entropy_count;
|
|
fake_table.maxlen = sizeof(entropy_count);
|
|
|
|
return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
|
|
extern struct ctl_table random_table[];
|
|
struct ctl_table random_table[] = {
|
|
{
|
|
.procname = "poolsize",
|
|
.data = &sysctl_poolsize,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "entropy_avail",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_entropy,
|
|
.data = &input_pool.entropy_count,
|
|
},
|
|
{
|
|
.procname = "write_wakeup_threshold",
|
|
.data = &random_write_wakeup_bits,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = &min_write_thresh,
|
|
.extra2 = &max_write_thresh,
|
|
},
|
|
{
|
|
.procname = "urandom_min_reseed_secs",
|
|
.data = &random_min_urandom_seed,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "boot_id",
|
|
.data = &sysctl_bootid,
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{
|
|
.procname = "uuid",
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
#ifdef ADD_INTERRUPT_BENCH
|
|
{
|
|
.procname = "add_interrupt_avg_cycles",
|
|
.data = &avg_cycles,
|
|
.maxlen = sizeof(avg_cycles),
|
|
.mode = 0444,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
{
|
|
.procname = "add_interrupt_avg_deviation",
|
|
.data = &avg_deviation,
|
|
.maxlen = sizeof(avg_deviation),
|
|
.mode = 0444,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
#endif
|
|
{ }
|
|
};
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
struct batched_entropy {
|
|
union {
|
|
u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
|
|
u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
|
|
};
|
|
unsigned int position;
|
|
spinlock_t batch_lock;
|
|
};
|
|
|
|
/*
|
|
* Get a random word for internal kernel use only. The quality of the random
|
|
* number is good as /dev/urandom, but there is no backtrack protection, with
|
|
* the goal of being quite fast and not depleting entropy. In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once at any
|
|
* point prior.
|
|
*/
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
|
|
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
|
|
};
|
|
|
|
u64 get_random_u64(void)
|
|
{
|
|
u64 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
batch = raw_cpu_ptr(&batched_entropy_u64);
|
|
spin_lock_irqsave(&batch->batch_lock, flags);
|
|
if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
|
|
extract_crng((u8 *)batch->entropy_u64);
|
|
batch->position = 0;
|
|
}
|
|
ret = batch->entropy_u64[batch->position++];
|
|
spin_unlock_irqrestore(&batch->batch_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u64);
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
|
|
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
|
|
};
|
|
u32 get_random_u32(void)
|
|
{
|
|
u32 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
batch = raw_cpu_ptr(&batched_entropy_u32);
|
|
spin_lock_irqsave(&batch->batch_lock, flags);
|
|
if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
|
|
extract_crng((u8 *)batch->entropy_u32);
|
|
batch->position = 0;
|
|
}
|
|
ret = batch->entropy_u32[batch->position++];
|
|
spin_unlock_irqrestore(&batch->batch_lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u32);
|
|
|
|
/* It's important to invalidate all potential batched entropy that might
|
|
* be stored before the crng is initialized, which we can do lazily by
|
|
* simply resetting the counter to zero so that it's re-extracted on the
|
|
* next usage. */
|
|
static void invalidate_batched_entropy(void)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
for_each_possible_cpu (cpu) {
|
|
struct batched_entropy *batched_entropy;
|
|
|
|
batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
|
|
spin_lock_irqsave(&batched_entropy->batch_lock, flags);
|
|
batched_entropy->position = 0;
|
|
spin_unlock(&batched_entropy->batch_lock);
|
|
|
|
batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
|
|
spin_lock(&batched_entropy->batch_lock);
|
|
batched_entropy->position = 0;
|
|
spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* randomize_page - Generate a random, page aligned address
|
|
* @start: The smallest acceptable address the caller will take.
|
|
* @range: The size of the area, starting at @start, within which the
|
|
* random address must fall.
|
|
*
|
|
* If @start + @range would overflow, @range is capped.
|
|
*
|
|
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
|
* @start was already page aligned. We now align it regardless.
|
|
*
|
|
* Return: A page aligned address within [start, start + range). On error,
|
|
* @start is returned.
|
|
*/
|
|
unsigned long
|
|
randomize_page(unsigned long start, unsigned long range)
|
|
{
|
|
if (!PAGE_ALIGNED(start)) {
|
|
range -= PAGE_ALIGN(start) - start;
|
|
start = PAGE_ALIGN(start);
|
|
}
|
|
|
|
if (start > ULONG_MAX - range)
|
|
range = ULONG_MAX - start;
|
|
|
|
range >>= PAGE_SHIFT;
|
|
|
|
if (range == 0)
|
|
return start;
|
|
|
|
return start + (get_random_long() % range << PAGE_SHIFT);
|
|
}
|
|
|
|
/* Interface for in-kernel drivers of true hardware RNGs.
|
|
* Those devices may produce endless random bits and will be throttled
|
|
* when our pool is full.
|
|
*/
|
|
void add_hwgenerator_randomness(const char *buffer, size_t count,
|
|
size_t entropy)
|
|
{
|
|
struct entropy_store *poolp = &input_pool;
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
crng_fast_load(buffer, count);
|
|
return;
|
|
}
|
|
|
|
/* Suspend writing if we're above the trickle threshold.
|
|
* We'll be woken up again once below random_write_wakeup_thresh,
|
|
* or when the calling thread is about to terminate.
|
|
*/
|
|
wait_event_interruptible(random_write_wait, kthread_should_stop() ||
|
|
ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
|
|
mix_pool_bytes(poolp, buffer, count);
|
|
credit_entropy_bits(poolp, entropy);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|
|
|
|
/* Handle random seed passed by bootloader.
|
|
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
|
|
* it would be regarded as device data.
|
|
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
|
|
*/
|
|
void add_bootloader_randomness(const void *buf, unsigned int size)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
|
|
add_hwgenerator_randomness(buf, size, size * 8);
|
|
else
|
|
add_device_randomness(buf, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|