2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 16:14:26 +08:00
linux-next/arch/x86/kernel/tsc_64.c
Glauber de Oliveira Costa dbae595249 x86: export check_tsc_unstable
Exporrt check_tsc_unstable function as GPL symbol. lguest is
a user of it.

Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:33:24 +01:00

343 lines
7.7 KiB
C

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/time.h>
#include <linux/acpi.h>
#include <linux/cpufreq.h>
#include <linux/acpi_pmtmr.h>
#include <asm/hpet.h>
#include <asm/timex.h>
#include <asm/timer.h>
static int notsc __initdata = 0;
unsigned int cpu_khz; /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int tsc_khz;
EXPORT_SYMBOL(tsc_khz);
/* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
DEFINE_PER_CPU(unsigned long, cyc2ns);
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
unsigned long flags, prev_scale, *scale;
unsigned long long tsc_now, ns_now;
local_irq_save(flags);
sched_clock_idle_sleep_event();
scale = &per_cpu(cyc2ns, cpu);
rdtscll(tsc_now);
ns_now = __cycles_2_ns(tsc_now);
prev_scale = *scale;
if (cpu_khz)
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
sched_clock_idle_wakeup_event(0);
local_irq_restore(flags);
}
unsigned long long native_sched_clock(void)
{
unsigned long a = 0;
/* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
* which means it is not completely exact and may not be monotonous
* between CPUs. But the errors should be too small to matter for
* scheduling purposes.
*/
rdtscll(a);
return cycles_2_ns(a);
}
/* We need to define a real function for sched_clock, to override the
weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif
static int tsc_unstable;
int check_tsc_unstable(void)
{
return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
* changes.
*
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
* not that important because current Opteron setups do not support
* scaling on SMP anyroads.
*
* Should fix up last_tsc too. Currently gettimeofday in the
* first tick after the change will be slightly wrong.
*/
static unsigned int ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long *lpj, dummy;
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
return 0;
lpj = &dummy;
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#else
lpj = &boot_cpu_data.loops_per_jiffy;
#endif
if (!ref_freq) {
ref_freq = freq->old;
loops_per_jiffy_ref = *lpj;
tsc_khz_ref = tsc_khz;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
(val == CPUFREQ_RESUMECHANGE)) {
*lpj =
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
}
preempt_disable();
set_cyc2ns_scale(tsc_khz_ref, smp_processor_id());
preempt_enable();
return 0;
}
static struct notifier_block time_cpufreq_notifier_block = {
.notifier_call = time_cpufreq_notifier
};
static int __init cpufreq_tsc(void)
{
cpufreq_register_notifier(&time_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
core_initcall(cpufreq_tsc);
#endif
#define MAX_RETRIES 5
#define SMI_TRESHOLD 50000
/*
* Read TSC and the reference counters. Take care of SMI disturbance
*/
static unsigned long __init tsc_read_refs(unsigned long *pm,
unsigned long *hpet)
{
unsigned long t1, t2;
int i;
for (i = 0; i < MAX_RETRIES; i++) {
t1 = get_cycles();
if (hpet)
*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
else
*pm = acpi_pm_read_early();
t2 = get_cycles();
if ((t2 - t1) < SMI_TRESHOLD)
return t2;
}
return ULONG_MAX;
}
/**
* tsc_calibrate - calibrate the tsc on boot
*/
void __init tsc_calibrate(void)
{
unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
int hpet = is_hpet_enabled(), cpu;
local_irq_save(flags);
tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb(0xb0, 0x43);
outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
tr1 = get_cycles();
while ((inb(0x61) & 0x20) == 0);
tr2 = get_cycles();
tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
local_irq_restore(flags);
/*
* Preset the result with the raw and inaccurate PIT
* calibration value
*/
tsc_khz = (tr2 - tr1) / 50;
/* hpet or pmtimer available ? */
if (!hpet && !pm1 && !pm2) {
printk(KERN_INFO "TSC calibrated against PIT\n");
return;
}
/* Check, whether the sampling was disturbed by an SMI */
if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
printk(KERN_WARNING "TSC calibration disturbed by SMI, "
"using PIT calibration result\n");
return;
}
tsc2 = (tsc2 - tsc1) * 1000000L;
if (hpet) {
printk(KERN_INFO "TSC calibrated against HPET\n");
if (hpet2 < hpet1)
hpet2 += 0x100000000;
hpet2 -= hpet1;
tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
} else {
printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
if (pm2 < pm1)
pm2 += ACPI_PM_OVRRUN;
pm2 -= pm1;
tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
}
tsc_khz = tsc2 / tsc1;
for_each_possible_cpu(cpu)
set_cyc2ns_scale(tsc_khz, cpu);
}
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
__cpuinit int unsynchronized_tsc(void)
{
if (tsc_unstable)
return 1;
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
#endif
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
/* Assume multi socket systems are not synchronized */
return num_present_cpus() > 1;
}
int __init notsc_setup(char *s)
{
notsc = 1;
return 1;
}
__setup("notsc", notsc_setup);
/* clock source code: */
static cycle_t read_tsc(void)
{
cycle_t ret = (cycle_t)get_cycles();
return ret;
}
static cycle_t __vsyscall_fn vread_tsc(void)
{
cycle_t ret = (cycle_t)vget_cycles();
return ret;
}
static struct clocksource clocksource_tsc = {
.name = "tsc",
.rating = 300,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.shift = 22,
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,
.vread = vread_tsc,
};
void mark_tsc_unstable(char *reason)
{
if (!tsc_unstable) {
tsc_unstable = 1;
printk("Marking TSC unstable due to %s\n", reason);
/* Change only the rating, when not registered */
if (clocksource_tsc.mult)
clocksource_change_rating(&clocksource_tsc, 0);
else
clocksource_tsc.rating = 0;
}
}
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
void __init init_tsc_clocksource(void)
{
if (!notsc) {
clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
clocksource_tsc.shift);
if (check_tsc_unstable())
clocksource_tsc.rating = 0;
clocksource_register(&clocksource_tsc);
}
}