mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 07:06:40 +08:00
d393820446
David Miller reported soft lockup false-positives that trigger on NOHZ due to CPUs idling for more than 10 seconds. The solution is touch the softlockup watchdog when we return from idle. (by definition we are not 'locked up' when we were idle) http://bugzilla.kernel.org/show_bug.cgi?id=9409 Reported-by: David Miller <davem@davemloft.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
668 lines
17 KiB
C
668 lines
17 KiB
C
/*
|
|
* linux/kernel/time/tick-sched.c
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* No idle tick implementation for low and high resolution timers
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Per cpu nohz control structure
|
|
*/
|
|
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
|
|
|
|
/*
|
|
* The time, when the last jiffy update happened. Protected by xtime_lock.
|
|
*/
|
|
static ktime_t last_jiffies_update;
|
|
|
|
struct tick_sched *tick_get_tick_sched(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_sched, cpu);
|
|
}
|
|
|
|
/*
|
|
* Must be called with interrupts disabled !
|
|
*/
|
|
static void tick_do_update_jiffies64(ktime_t now)
|
|
{
|
|
unsigned long ticks = 0;
|
|
ktime_t delta;
|
|
|
|
/* Reevalute with xtime_lock held */
|
|
write_seqlock(&xtime_lock);
|
|
|
|
delta = ktime_sub(now, last_jiffies_update);
|
|
if (delta.tv64 >= tick_period.tv64) {
|
|
|
|
delta = ktime_sub(delta, tick_period);
|
|
last_jiffies_update = ktime_add(last_jiffies_update,
|
|
tick_period);
|
|
|
|
/* Slow path for long timeouts */
|
|
if (unlikely(delta.tv64 >= tick_period.tv64)) {
|
|
s64 incr = ktime_to_ns(tick_period);
|
|
|
|
ticks = ktime_divns(delta, incr);
|
|
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
incr * ticks);
|
|
}
|
|
do_timer(++ticks);
|
|
}
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize and return retrieve the jiffies update.
|
|
*/
|
|
static ktime_t tick_init_jiffy_update(void)
|
|
{
|
|
ktime_t period;
|
|
|
|
write_seqlock(&xtime_lock);
|
|
/* Did we start the jiffies update yet ? */
|
|
if (last_jiffies_update.tv64 == 0)
|
|
last_jiffies_update = tick_next_period;
|
|
period = last_jiffies_update;
|
|
write_sequnlock(&xtime_lock);
|
|
return period;
|
|
}
|
|
|
|
/*
|
|
* NOHZ - aka dynamic tick functionality
|
|
*/
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* NO HZ enabled ?
|
|
*/
|
|
static int tick_nohz_enabled __read_mostly = 1;
|
|
|
|
/*
|
|
* Enable / Disable tickless mode
|
|
*/
|
|
static int __init setup_tick_nohz(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
tick_nohz_enabled = 0;
|
|
else if (!strcmp(str, "on"))
|
|
tick_nohz_enabled = 1;
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nohz=", setup_tick_nohz);
|
|
|
|
/**
|
|
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
|
|
*
|
|
* Called from interrupt entry when the CPU was idle
|
|
*
|
|
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
|
|
* must be updated. Otherwise an interrupt handler could use a stale jiffy
|
|
* value. We do this unconditionally on any cpu, as we don't know whether the
|
|
* cpu, which has the update task assigned is in a long sleep.
|
|
*/
|
|
void tick_nohz_update_jiffies(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
unsigned long flags;
|
|
ktime_t now;
|
|
|
|
if (!ts->tick_stopped)
|
|
return;
|
|
|
|
touch_softlockup_watchdog();
|
|
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
now = ktime_get();
|
|
|
|
local_irq_save(flags);
|
|
tick_do_update_jiffies64(now);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_stop_sched_tick - stop the idle tick from the idle task
|
|
*
|
|
* When the next event is more than a tick into the future, stop the idle tick
|
|
* Called either from the idle loop or from irq_exit() when an idle period was
|
|
* just interrupted by an interrupt which did not cause a reschedule.
|
|
*/
|
|
void tick_nohz_stop_sched_tick(void)
|
|
{
|
|
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
|
|
struct tick_sched *ts;
|
|
ktime_t last_update, expires, now, delta;
|
|
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
/*
|
|
* If this cpu is offline and it is the one which updates
|
|
* jiffies, then give up the assignment and let it be taken by
|
|
* the cpu which runs the tick timer next. If we don't drop
|
|
* this here the jiffies might be stale and do_timer() never
|
|
* invoked.
|
|
*/
|
|
if (unlikely(!cpu_online(cpu))) {
|
|
if (cpu == tick_do_timer_cpu)
|
|
tick_do_timer_cpu = -1;
|
|
}
|
|
|
|
if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
|
|
goto end;
|
|
|
|
if (need_resched())
|
|
goto end;
|
|
|
|
cpu = smp_processor_id();
|
|
if (unlikely(local_softirq_pending())) {
|
|
static int ratelimit;
|
|
|
|
if (ratelimit < 10) {
|
|
printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
|
|
local_softirq_pending());
|
|
ratelimit++;
|
|
}
|
|
}
|
|
|
|
now = ktime_get();
|
|
/*
|
|
* When called from irq_exit we need to account the idle sleep time
|
|
* correctly.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
}
|
|
|
|
ts->idle_entrytime = now;
|
|
ts->idle_calls++;
|
|
|
|
/* Read jiffies and the time when jiffies were updated last */
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
last_update = last_jiffies_update;
|
|
last_jiffies = jiffies;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
/* Get the next timer wheel timer */
|
|
next_jiffies = get_next_timer_interrupt(last_jiffies);
|
|
delta_jiffies = next_jiffies - last_jiffies;
|
|
|
|
if (rcu_needs_cpu(cpu))
|
|
delta_jiffies = 1;
|
|
/*
|
|
* Do not stop the tick, if we are only one off
|
|
* or if the cpu is required for rcu
|
|
*/
|
|
if (!ts->tick_stopped && delta_jiffies == 1)
|
|
goto out;
|
|
|
|
/* Schedule the tick, if we are at least one jiffie off */
|
|
if ((long)delta_jiffies >= 1) {
|
|
|
|
if (delta_jiffies > 1)
|
|
cpu_set(cpu, nohz_cpu_mask);
|
|
/*
|
|
* nohz_stop_sched_tick can be called several times before
|
|
* the nohz_restart_sched_tick is called. This happens when
|
|
* interrupts arrive which do not cause a reschedule. In the
|
|
* first call we save the current tick time, so we can restart
|
|
* the scheduler tick in nohz_restart_sched_tick.
|
|
*/
|
|
if (!ts->tick_stopped) {
|
|
if (select_nohz_load_balancer(1)) {
|
|
/*
|
|
* sched tick not stopped!
|
|
*/
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
goto out;
|
|
}
|
|
|
|
ts->idle_tick = ts->sched_timer.expires;
|
|
ts->tick_stopped = 1;
|
|
ts->idle_jiffies = last_jiffies;
|
|
}
|
|
|
|
/*
|
|
* If this cpu is the one which updates jiffies, then
|
|
* give up the assignment and let it be taken by the
|
|
* cpu which runs the tick timer next, which might be
|
|
* this cpu as well. If we don't drop this here the
|
|
* jiffies might be stale and do_timer() never
|
|
* invoked.
|
|
*/
|
|
if (cpu == tick_do_timer_cpu)
|
|
tick_do_timer_cpu = -1;
|
|
|
|
ts->idle_sleeps++;
|
|
|
|
/*
|
|
* delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
|
|
* there is no timer pending or at least extremly far
|
|
* into the future (12 days for HZ=1000). In this case
|
|
* we simply stop the tick timer:
|
|
*/
|
|
if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
|
|
ts->idle_expires.tv64 = KTIME_MAX;
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* calculate the expiry time for the next timer wheel
|
|
* timer
|
|
*/
|
|
expires = ktime_add_ns(last_update, tick_period.tv64 *
|
|
delta_jiffies);
|
|
ts->idle_expires = expires;
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start(&ts->sched_timer, expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
goto out;
|
|
} else if(!tick_program_event(expires, 0))
|
|
goto out;
|
|
/*
|
|
* We are past the event already. So we crossed a
|
|
* jiffie boundary. Update jiffies and raise the
|
|
* softirq.
|
|
*/
|
|
tick_do_update_jiffies64(ktime_get());
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
}
|
|
raise_softirq_irqoff(TIMER_SOFTIRQ);
|
|
out:
|
|
ts->next_jiffies = next_jiffies;
|
|
ts->last_jiffies = last_jiffies;
|
|
ts->sleep_length = ktime_sub(dev->next_event, now);
|
|
end:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_sleep_length - return the length of the current sleep
|
|
*
|
|
* Called from power state control code with interrupts disabled
|
|
*/
|
|
ktime_t tick_nohz_get_sleep_length(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
return ts->sleep_length;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_restart_sched_tick - restart the idle tick from the idle task
|
|
*
|
|
* Restart the idle tick when the CPU is woken up from idle
|
|
*/
|
|
void tick_nohz_restart_sched_tick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
unsigned long ticks;
|
|
ktime_t now, delta;
|
|
|
|
if (!ts->tick_stopped)
|
|
return;
|
|
|
|
/* Update jiffies first */
|
|
now = ktime_get();
|
|
|
|
local_irq_disable();
|
|
select_nohz_load_balancer(0);
|
|
tick_do_update_jiffies64(now);
|
|
cpu_clear(cpu, nohz_cpu_mask);
|
|
|
|
/* Account the idle time */
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
|
|
/*
|
|
* We stopped the tick in idle. Update process times would miss the
|
|
* time we slept as update_process_times does only a 1 tick
|
|
* accounting. Enforce that this is accounted to idle !
|
|
*/
|
|
ticks = jiffies - ts->idle_jiffies;
|
|
/*
|
|
* We might be one off. Do not randomly account a huge number of ticks!
|
|
*/
|
|
if (ticks && ticks < LONG_MAX) {
|
|
add_preempt_count(HARDIRQ_OFFSET);
|
|
account_system_time(current, HARDIRQ_OFFSET,
|
|
jiffies_to_cputime(ticks));
|
|
sub_preempt_count(HARDIRQ_OFFSET);
|
|
}
|
|
|
|
/*
|
|
* Cancel the scheduled timer and restore the tick
|
|
*/
|
|
ts->tick_stopped = 0;
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
ts->sched_timer.expires = ts->idle_tick;
|
|
|
|
while (1) {
|
|
/* Forward the time to expire in the future */
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start(&ts->sched_timer,
|
|
ts->sched_timer.expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
} else {
|
|
if (!tick_program_event(ts->sched_timer.expires, 0))
|
|
break;
|
|
}
|
|
/* Update jiffies and reread time */
|
|
tick_do_update_jiffies64(now);
|
|
now = ktime_get();
|
|
}
|
|
local_irq_enable();
|
|
}
|
|
|
|
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
return tick_program_event(ts->sched_timer.expires, 0);
|
|
}
|
|
|
|
/*
|
|
* The nohz low res interrupt handler
|
|
*/
|
|
static void tick_nohz_handler(struct clock_event_device *dev)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
int cpu = smp_processor_id();
|
|
ktime_t now = ktime_get();
|
|
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == -1))
|
|
tick_do_timer_cpu = cpu;
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start
|
|
* of idle" jiffy stamp so the idle accounting adjustment we
|
|
* do when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
/* Do not restart, when we are in the idle loop */
|
|
if (ts->tick_stopped)
|
|
return;
|
|
|
|
while (tick_nohz_reprogram(ts, now)) {
|
|
now = ktime_get();
|
|
tick_do_update_jiffies64(now);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_switch_to_nohz - switch to nohz mode
|
|
*/
|
|
static void tick_nohz_switch_to_nohz(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t next;
|
|
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
|
|
local_irq_disable();
|
|
if (tick_switch_to_oneshot(tick_nohz_handler)) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
ts->nohz_mode = NOHZ_MODE_LOWRES;
|
|
|
|
/*
|
|
* Recycle the hrtimer in ts, so we can share the
|
|
* hrtimer_forward with the highres code.
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
/* Get the next period */
|
|
next = tick_init_jiffy_update();
|
|
|
|
for (;;) {
|
|
ts->sched_timer.expires = next;
|
|
if (!tick_program_event(next, 0))
|
|
break;
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
local_irq_enable();
|
|
|
|
printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
|
|
smp_processor_id());
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void tick_nohz_switch_to_nohz(void) { }
|
|
|
|
#endif /* NO_HZ */
|
|
|
|
/*
|
|
* High resolution timer specific code
|
|
*/
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
/*
|
|
* We rearm the timer until we get disabled by the idle code
|
|
* Called with interrupts disabled and timer->base->cpu_base->lock held.
|
|
*/
|
|
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
|
|
{
|
|
struct tick_sched *ts =
|
|
container_of(timer, struct tick_sched, sched_timer);
|
|
struct hrtimer_cpu_base *base = timer->base->cpu_base;
|
|
struct pt_regs *regs = get_irq_regs();
|
|
ktime_t now = ktime_get();
|
|
int cpu = smp_processor_id();
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == -1))
|
|
tick_do_timer_cpu = cpu;
|
|
#endif
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* Do not call, when we are not in irq context and have
|
|
* no valid regs pointer
|
|
*/
|
|
if (regs) {
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start of
|
|
* idle" jiffy stamp so the idle accounting adjustment we do
|
|
* when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
/*
|
|
* update_process_times() might take tasklist_lock, hence
|
|
* drop the base lock. sched-tick hrtimers are per-CPU and
|
|
* never accessible by userspace APIs, so this is safe to do.
|
|
*/
|
|
spin_unlock(&base->lock);
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
spin_lock(&base->lock);
|
|
}
|
|
|
|
/* Do not restart, when we are in the idle loop */
|
|
if (ts->tick_stopped)
|
|
return HRTIMER_NORESTART;
|
|
|
|
hrtimer_forward(timer, now, tick_period);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/**
|
|
* tick_setup_sched_timer - setup the tick emulation timer
|
|
*/
|
|
void tick_setup_sched_timer(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t now = ktime_get();
|
|
u64 offset;
|
|
|
|
/*
|
|
* Emulate tick processing via per-CPU hrtimers:
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
ts->sched_timer.function = tick_sched_timer;
|
|
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
|
|
|
|
/* Get the next period (per cpu) */
|
|
ts->sched_timer.expires = tick_init_jiffy_update();
|
|
offset = ktime_to_ns(tick_period) >> 1;
|
|
do_div(offset, num_possible_cpus());
|
|
offset *= smp_processor_id();
|
|
ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
|
|
|
|
for (;;) {
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
|
|
HRTIMER_MODE_ABS);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
now = ktime_get();
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
if (tick_nohz_enabled)
|
|
ts->nohz_mode = NOHZ_MODE_HIGHRES;
|
|
#endif
|
|
}
|
|
|
|
void tick_cancel_sched_timer(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
if (ts->sched_timer.base)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
ts->tick_stopped = 0;
|
|
ts->nohz_mode = NOHZ_MODE_INACTIVE;
|
|
}
|
|
#endif /* HIGH_RES_TIMERS */
|
|
|
|
/**
|
|
* Async notification about clocksource changes
|
|
*/
|
|
void tick_clock_notify(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Async notification about clock event changes
|
|
*/
|
|
void tick_oneshot_notify(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
set_bit(0, &ts->check_clocks);
|
|
}
|
|
|
|
/**
|
|
* Check, if a change happened, which makes oneshot possible.
|
|
*
|
|
* Called cyclic from the hrtimer softirq (driven by the timer
|
|
* softirq) allow_nohz signals, that we can switch into low-res nohz
|
|
* mode, because high resolution timers are disabled (either compile
|
|
* or runtime).
|
|
*/
|
|
int tick_check_oneshot_change(int allow_nohz)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
if (!test_and_clear_bit(0, &ts->check_clocks))
|
|
return 0;
|
|
|
|
if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
|
|
return 0;
|
|
|
|
if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
|
|
return 0;
|
|
|
|
if (!allow_nohz)
|
|
return 1;
|
|
|
|
tick_nohz_switch_to_nohz();
|
|
return 0;
|
|
}
|