2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 13:13:57 +08:00
linux-next/arch/x86/xen/smp.c
Jeremy Fitzhardinge 577eebeae3 xen: make -fstack-protector work under Xen
-fstack-protector uses a special per-cpu "stack canary" value.
gcc generates special code in each function to test the canary to make
sure that the function's stack hasn't been overrun.

On x86-64, this is simply an offset of %gs, which is the usual per-cpu
base segment register, so setting it up simply requires loading %gs's
base as normal.

On i386, the stack protector segment is %gs (rather than the usual kernel
percpu %fs segment register).  This requires setting up the full kernel
GDT and then loading %gs accordingly.  We also need to make sure %gs is
initialized when bringing up secondary cpus too.

To keep things consistent, we do the full GDT/segment register setup on
both architectures.

Because we need to avoid -fstack-protected code before setting up the GDT
and because there's no way to disable it on a per-function basis, several
files need to have stack-protector inhibited.

[ Impact: allow Xen booting with stack-protector enabled ]

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-09-09 16:37:39 -07:00

481 lines
11 KiB
C

/*
* Xen SMP support
*
* This file implements the Xen versions of smp_ops. SMP under Xen is
* very straightforward. Bringing a CPU up is simply a matter of
* loading its initial context and setting it running.
*
* IPIs are handled through the Xen event mechanism.
*
* Because virtual CPUs can be scheduled onto any real CPU, there's no
* useful topology information for the kernel to make use of. As a
* result, all CPUs are treated as if they're single-core and
* single-threaded.
*/
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <asm/paravirt.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
#include <asm/cpu.h>
#include <xen/interface/xen.h>
#include <xen/interface/vcpu.h>
#include <asm/xen/interface.h>
#include <asm/xen/hypercall.h>
#include <xen/page.h>
#include <xen/events.h>
#include "xen-ops.h"
#include "mmu.h"
cpumask_var_t xen_cpu_initialized_map;
static DEFINE_PER_CPU(int, resched_irq);
static DEFINE_PER_CPU(int, callfunc_irq);
static DEFINE_PER_CPU(int, callfuncsingle_irq);
static DEFINE_PER_CPU(int, debug_irq) = -1;
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
/*
* Reschedule call back. Nothing to do,
* all the work is done automatically when
* we return from the interrupt.
*/
static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
{
inc_irq_stat(irq_resched_count);
return IRQ_HANDLED;
}
static __cpuinit void cpu_bringup(void)
{
int cpu = smp_processor_id();
cpu_init();
touch_softlockup_watchdog();
preempt_disable();
xen_enable_sysenter();
xen_enable_syscall();
cpu = smp_processor_id();
smp_store_cpu_info(cpu);
cpu_data(cpu).x86_max_cores = 1;
set_cpu_sibling_map(cpu);
xen_setup_cpu_clockevents();
cpu_set(cpu, cpu_online_map);
percpu_write(cpu_state, CPU_ONLINE);
wmb();
/* We can take interrupts now: we're officially "up". */
local_irq_enable();
wmb(); /* make sure everything is out */
}
static __cpuinit void cpu_bringup_and_idle(void)
{
cpu_bringup();
cpu_idle();
}
static int xen_smp_intr_init(unsigned int cpu)
{
int rc;
const char *resched_name, *callfunc_name, *debug_name;
resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
cpu,
xen_reschedule_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
resched_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(resched_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
cpu,
xen_call_function_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(callfunc_irq, cpu) = rc;
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
debug_name, NULL);
if (rc < 0)
goto fail;
per_cpu(debug_irq, cpu) = rc;
callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
cpu,
xen_call_function_single_interrupt,
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
callfunc_name,
NULL);
if (rc < 0)
goto fail;
per_cpu(callfuncsingle_irq, cpu) = rc;
return 0;
fail:
if (per_cpu(resched_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
if (per_cpu(callfunc_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
if (per_cpu(debug_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
if (per_cpu(callfuncsingle_irq, cpu) >= 0)
unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL);
return rc;
}
static void __init xen_fill_possible_map(void)
{
int i, rc;
for (i = 0; i < nr_cpu_ids; i++) {
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
if (rc >= 0) {
num_processors++;
set_cpu_possible(i, true);
}
}
}
static void __init xen_smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != 0);
native_smp_prepare_boot_cpu();
/* We've switched to the "real" per-cpu gdt, so make sure the
old memory can be recycled */
make_lowmem_page_readwrite(xen_initial_gdt);
xen_setup_vcpu_info_placement();
}
static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned cpu;
xen_init_lock_cpu(0);
smp_store_cpu_info(0);
cpu_data(0).x86_max_cores = 1;
set_cpu_sibling_map(0);
if (xen_smp_intr_init(0))
BUG();
if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
panic("could not allocate xen_cpu_initialized_map\n");
cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
/* Restrict the possible_map according to max_cpus. */
while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
continue;
set_cpu_possible(cpu, false);
}
for_each_possible_cpu (cpu) {
struct task_struct *idle;
if (cpu == 0)
continue;
idle = fork_idle(cpu);
if (IS_ERR(idle))
panic("failed fork for CPU %d", cpu);
set_cpu_present(cpu, true);
}
}
static __cpuinit int
cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
{
struct vcpu_guest_context *ctxt;
struct desc_struct *gdt;
unsigned long gdt_mfn;
if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
return 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (ctxt == NULL)
return -ENOMEM;
gdt = get_cpu_gdt_table(cpu);
ctxt->flags = VGCF_IN_KERNEL;
ctxt->user_regs.ds = __USER_DS;
ctxt->user_regs.es = __USER_DS;
ctxt->user_regs.ss = __KERNEL_DS;
#ifdef CONFIG_X86_32
ctxt->user_regs.fs = __KERNEL_PERCPU;
ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
#else
ctxt->gs_base_kernel = per_cpu_offset(cpu);
#endif
ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
xen_copy_trap_info(ctxt->trap_ctxt);
ctxt->ldt_ents = 0;
BUG_ON((unsigned long)gdt & ~PAGE_MASK);
gdt_mfn = arbitrary_virt_to_mfn(gdt);
make_lowmem_page_readonly(gdt);
make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
ctxt->gdt_frames[0] = gdt_mfn;
ctxt->gdt_ents = GDT_ENTRIES;
ctxt->user_regs.cs = __KERNEL_CS;
ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
ctxt->kernel_ss = __KERNEL_DS;
ctxt->kernel_sp = idle->thread.sp0;
#ifdef CONFIG_X86_32
ctxt->event_callback_cs = __KERNEL_CS;
ctxt->failsafe_callback_cs = __KERNEL_CS;
#endif
ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
BUG();
kfree(ctxt);
return 0;
}
static int __cpuinit xen_cpu_up(unsigned int cpu)
{
struct task_struct *idle = idle_task(cpu);
int rc;
per_cpu(current_task, cpu) = idle;
#ifdef CONFIG_X86_32
irq_ctx_init(cpu);
#else
clear_tsk_thread_flag(idle, TIF_FORK);
per_cpu(kernel_stack, cpu) =
(unsigned long)task_stack_page(idle) -
KERNEL_STACK_OFFSET + THREAD_SIZE;
#endif
xen_setup_timer(cpu);
xen_init_lock_cpu(cpu);
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
/* make sure interrupts start blocked */
per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
rc = cpu_initialize_context(cpu, idle);
if (rc)
return rc;
if (num_online_cpus() == 1)
alternatives_smp_switch(1);
rc = xen_smp_intr_init(cpu);
if (rc)
return rc;
rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
BUG_ON(rc);
while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
barrier();
}
return 0;
}
static void xen_smp_cpus_done(unsigned int max_cpus)
{
}
#ifdef CONFIG_HOTPLUG_CPU
static int xen_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == 0)
return -EBUSY;
cpu_disable_common();
load_cr3(swapper_pg_dir);
return 0;
}
static void xen_cpu_die(unsigned int cpu)
{
while (HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(HZ/10);
}
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL);
xen_uninit_lock_cpu(cpu);
xen_teardown_timer(cpu);
if (num_online_cpus() == 1)
alternatives_smp_switch(0);
}
static void __cpuinit xen_play_dead(void) /* used only with CPU_HOTPLUG */
{
play_dead_common();
HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
cpu_bringup();
}
#else /* !CONFIG_HOTPLUG_CPU */
static int xen_cpu_disable(void)
{
return -ENOSYS;
}
static void xen_cpu_die(unsigned int cpu)
{
BUG();
}
static void xen_play_dead(void)
{
BUG();
}
#endif
static void stop_self(void *v)
{
int cpu = smp_processor_id();
/* make sure we're not pinning something down */
load_cr3(swapper_pg_dir);
/* should set up a minimal gdt */
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
BUG();
}
static void xen_smp_send_stop(void)
{
smp_call_function(stop_self, NULL, 0);
}
static void xen_smp_send_reschedule(int cpu)
{
xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
}
static void xen_send_IPI_mask(const struct cpumask *mask,
enum ipi_vector vector)
{
unsigned cpu;
for_each_cpu_and(cpu, mask, cpu_online_mask)
xen_send_IPI_one(cpu, vector);
}
static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
{
int cpu;
xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
/* Make sure other vcpus get a chance to run if they need to. */
for_each_cpu(cpu, mask) {
if (xen_vcpu_stolen(cpu)) {
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
break;
}
}
}
static void xen_smp_send_call_function_single_ipi(int cpu)
{
xen_send_IPI_mask(cpumask_of(cpu),
XEN_CALL_FUNCTION_SINGLE_VECTOR);
}
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_interrupt();
inc_irq_stat(irq_call_count);
irq_exit();
return IRQ_HANDLED;
}
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
{
irq_enter();
generic_smp_call_function_single_interrupt();
inc_irq_stat(irq_call_count);
irq_exit();
return IRQ_HANDLED;
}
static const struct smp_ops xen_smp_ops __initdata = {
.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
.smp_prepare_cpus = xen_smp_prepare_cpus,
.smp_cpus_done = xen_smp_cpus_done,
.cpu_up = xen_cpu_up,
.cpu_die = xen_cpu_die,
.cpu_disable = xen_cpu_disable,
.play_dead = xen_play_dead,
.smp_send_stop = xen_smp_send_stop,
.smp_send_reschedule = xen_smp_send_reschedule,
.send_call_func_ipi = xen_smp_send_call_function_ipi,
.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
};
void __init xen_smp_init(void)
{
smp_ops = xen_smp_ops;
xen_fill_possible_map();
xen_init_spinlocks();
}