2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/drivers/mfd/da9150-core.c
Adam Thomson 1d7f833fd1 mfd: da9150: Use DEFINE_RES_IRQ_NAMED() help macro for IRQ resource
Suggested-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
2015-10-13 11:28:36 +01:00

531 lines
12 KiB
C

/*
* DA9150 Core MFD Driver
*
* Copyright (c) 2014 Dialog Semiconductor
*
* Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/mfd/core.h>
#include <linux/mfd/da9150/core.h>
#include <linux/mfd/da9150/registers.h>
/* Raw device access, used for QIF */
static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count,
u8 *buf)
{
struct i2c_msg xfer;
int ret;
/*
* Read is split into two transfers as device expects STOP/START rather
* than repeated start to carry out this kind of access.
*/
/* Write address */
xfer.addr = client->addr;
xfer.flags = 0;
xfer.len = 1;
xfer.buf = &addr;
ret = i2c_transfer(client->adapter, &xfer, 1);
if (ret != 1) {
if (ret < 0)
return ret;
else
return -EIO;
}
/* Read data */
xfer.addr = client->addr;
xfer.flags = I2C_M_RD;
xfer.len = count;
xfer.buf = buf;
ret = i2c_transfer(client->adapter, &xfer, 1);
if (ret == 1)
return 0;
else if (ret < 0)
return ret;
else
return -EIO;
}
static int da9150_i2c_write_device(struct i2c_client *client, u8 addr,
int count, const u8 *buf)
{
struct i2c_msg xfer;
u8 *reg_data;
int ret;
reg_data = kzalloc(1 + count, GFP_KERNEL);
if (!reg_data)
return -ENOMEM;
reg_data[0] = addr;
memcpy(&reg_data[1], buf, count);
/* Write address & data */
xfer.addr = client->addr;
xfer.flags = 0;
xfer.len = 1 + count;
xfer.buf = reg_data;
ret = i2c_transfer(client->adapter, &xfer, 1);
kfree(reg_data);
if (ret == 1)
return 0;
else if (ret < 0)
return ret;
else
return -EIO;
}
static bool da9150_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case DA9150_PAGE_CON:
case DA9150_STATUS_A:
case DA9150_STATUS_B:
case DA9150_STATUS_C:
case DA9150_STATUS_D:
case DA9150_STATUS_E:
case DA9150_STATUS_F:
case DA9150_STATUS_G:
case DA9150_STATUS_H:
case DA9150_STATUS_I:
case DA9150_STATUS_J:
case DA9150_STATUS_K:
case DA9150_STATUS_L:
case DA9150_STATUS_N:
case DA9150_FAULT_LOG_A:
case DA9150_FAULT_LOG_B:
case DA9150_EVENT_E:
case DA9150_EVENT_F:
case DA9150_EVENT_G:
case DA9150_EVENT_H:
case DA9150_CONTROL_B:
case DA9150_CONTROL_C:
case DA9150_GPADC_MAN:
case DA9150_GPADC_RES_A:
case DA9150_GPADC_RES_B:
case DA9150_ADETVB_CFG_C:
case DA9150_ADETD_STAT:
case DA9150_ADET_CMPSTAT:
case DA9150_ADET_CTRL_A:
case DA9150_PPR_TCTR_B:
case DA9150_COREBTLD_STAT_A:
case DA9150_CORE_DATA_A:
case DA9150_CORE_DATA_B:
case DA9150_CORE_DATA_C:
case DA9150_CORE_DATA_D:
case DA9150_CORE2WIRE_STAT_A:
case DA9150_FW_CTRL_C:
case DA9150_FG_CTRL_B:
case DA9150_FW_CTRL_B:
case DA9150_GPADC_CMAN:
case DA9150_GPADC_CRES_A:
case DA9150_GPADC_CRES_B:
case DA9150_CC_ICHG_RES_A:
case DA9150_CC_ICHG_RES_B:
case DA9150_CC_IAVG_RES_A:
case DA9150_CC_IAVG_RES_B:
case DA9150_TAUX_CTRL_A:
case DA9150_TAUX_VALUE_H:
case DA9150_TAUX_VALUE_L:
case DA9150_TBAT_RES_A:
case DA9150_TBAT_RES_B:
return true;
default:
return false;
}
}
static const struct regmap_range_cfg da9150_range_cfg[] = {
{
.range_min = DA9150_PAGE_CON,
.range_max = DA9150_TBAT_RES_B,
.selector_reg = DA9150_PAGE_CON,
.selector_mask = DA9150_I2C_PAGE_MASK,
.selector_shift = DA9150_I2C_PAGE_SHIFT,
.window_start = 0,
.window_len = 256,
},
};
static const struct regmap_config da9150_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.ranges = da9150_range_cfg,
.num_ranges = ARRAY_SIZE(da9150_range_cfg),
.max_register = DA9150_TBAT_RES_B,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = da9150_volatile_reg,
};
void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf)
{
int ret;
ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf);
if (ret < 0)
dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n",
addr, ret);
}
EXPORT_SYMBOL_GPL(da9150_read_qif);
void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf)
{
int ret;
ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf);
if (ret < 0)
dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n",
addr, ret);
}
EXPORT_SYMBOL_GPL(da9150_write_qif);
u8 da9150_reg_read(struct da9150 *da9150, u16 reg)
{
int val, ret;
ret = regmap_read(da9150->regmap, reg, &val);
if (ret)
dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n",
reg, ret);
return (u8) val;
}
EXPORT_SYMBOL_GPL(da9150_reg_read);
void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val)
{
int ret;
ret = regmap_write(da9150->regmap, reg, val);
if (ret)
dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n",
reg, ret);
}
EXPORT_SYMBOL_GPL(da9150_reg_write);
void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val)
{
int ret;
ret = regmap_update_bits(da9150->regmap, reg, mask, val);
if (ret)
dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n",
reg, ret);
}
EXPORT_SYMBOL_GPL(da9150_set_bits);
void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf)
{
int ret;
ret = regmap_bulk_read(da9150->regmap, reg, buf, count);
if (ret)
dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n",
reg, ret);
}
EXPORT_SYMBOL_GPL(da9150_bulk_read);
void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf)
{
int ret;
ret = regmap_raw_write(da9150->regmap, reg, buf, count);
if (ret)
dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n",
reg, ret);
}
EXPORT_SYMBOL_GPL(da9150_bulk_write);
static const struct regmap_irq da9150_irqs[] = {
[DA9150_IRQ_VBUS] = {
.reg_offset = 0,
.mask = DA9150_E_VBUS_MASK,
},
[DA9150_IRQ_CHG] = {
.reg_offset = 0,
.mask = DA9150_E_CHG_MASK,
},
[DA9150_IRQ_TCLASS] = {
.reg_offset = 0,
.mask = DA9150_E_TCLASS_MASK,
},
[DA9150_IRQ_TJUNC] = {
.reg_offset = 0,
.mask = DA9150_E_TJUNC_MASK,
},
[DA9150_IRQ_VFAULT] = {
.reg_offset = 0,
.mask = DA9150_E_VFAULT_MASK,
},
[DA9150_IRQ_CONF] = {
.reg_offset = 1,
.mask = DA9150_E_CONF_MASK,
},
[DA9150_IRQ_DAT] = {
.reg_offset = 1,
.mask = DA9150_E_DAT_MASK,
},
[DA9150_IRQ_DTYPE] = {
.reg_offset = 1,
.mask = DA9150_E_DTYPE_MASK,
},
[DA9150_IRQ_ID] = {
.reg_offset = 1,
.mask = DA9150_E_ID_MASK,
},
[DA9150_IRQ_ADP] = {
.reg_offset = 1,
.mask = DA9150_E_ADP_MASK,
},
[DA9150_IRQ_SESS_END] = {
.reg_offset = 1,
.mask = DA9150_E_SESS_END_MASK,
},
[DA9150_IRQ_SESS_VLD] = {
.reg_offset = 1,
.mask = DA9150_E_SESS_VLD_MASK,
},
[DA9150_IRQ_FG] = {
.reg_offset = 2,
.mask = DA9150_E_FG_MASK,
},
[DA9150_IRQ_GP] = {
.reg_offset = 2,
.mask = DA9150_E_GP_MASK,
},
[DA9150_IRQ_TBAT] = {
.reg_offset = 2,
.mask = DA9150_E_TBAT_MASK,
},
[DA9150_IRQ_GPIOA] = {
.reg_offset = 2,
.mask = DA9150_E_GPIOA_MASK,
},
[DA9150_IRQ_GPIOB] = {
.reg_offset = 2,
.mask = DA9150_E_GPIOB_MASK,
},
[DA9150_IRQ_GPIOC] = {
.reg_offset = 2,
.mask = DA9150_E_GPIOC_MASK,
},
[DA9150_IRQ_GPIOD] = {
.reg_offset = 2,
.mask = DA9150_E_GPIOD_MASK,
},
[DA9150_IRQ_GPADC] = {
.reg_offset = 2,
.mask = DA9150_E_GPADC_MASK,
},
[DA9150_IRQ_WKUP] = {
.reg_offset = 3,
.mask = DA9150_E_WKUP_MASK,
},
};
static const struct regmap_irq_chip da9150_regmap_irq_chip = {
.name = "da9150_irq",
.status_base = DA9150_EVENT_E,
.mask_base = DA9150_IRQ_MASK_E,
.ack_base = DA9150_EVENT_E,
.num_regs = DA9150_NUM_IRQ_REGS,
.irqs = da9150_irqs,
.num_irqs = ARRAY_SIZE(da9150_irqs),
};
static struct resource da9150_gpadc_resources[] = {
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"),
};
static struct resource da9150_charger_resources[] = {
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"),
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"),
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"),
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"),
};
static struct resource da9150_fg_resources[] = {
DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"),
};
enum da9150_dev_idx {
DA9150_GPADC_IDX = 0,
DA9150_CHARGER_IDX,
DA9150_FG_IDX,
};
static struct mfd_cell da9150_devs[] = {
[DA9150_GPADC_IDX] = {
.name = "da9150-gpadc",
.of_compatible = "dlg,da9150-gpadc",
.resources = da9150_gpadc_resources,
.num_resources = ARRAY_SIZE(da9150_gpadc_resources),
},
[DA9150_CHARGER_IDX] = {
.name = "da9150-charger",
.of_compatible = "dlg,da9150-charger",
.resources = da9150_charger_resources,
.num_resources = ARRAY_SIZE(da9150_charger_resources),
},
[DA9150_FG_IDX] = {
.name = "da9150-fuel-gauge",
.of_compatible = "dlg,da9150-fuel-gauge",
.resources = da9150_fg_resources,
.num_resources = ARRAY_SIZE(da9150_fg_resources),
},
};
static int da9150_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct da9150 *da9150;
struct da9150_pdata *pdata = dev_get_platdata(&client->dev);
int qif_addr;
int ret;
da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL);
if (!da9150)
return -ENOMEM;
da9150->dev = &client->dev;
da9150->irq = client->irq;
i2c_set_clientdata(client, da9150);
da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config);
if (IS_ERR(da9150->regmap)) {
ret = PTR_ERR(da9150->regmap);
dev_err(da9150->dev, "Failed to allocate register map: %d\n",
ret);
return ret;
}
/* Setup secondary I2C interface for QIF access */
qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A);
qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1;
qif_addr |= DA9150_QIF_I2C_ADDR_LSB;
da9150->core_qif = i2c_new_dummy(client->adapter, qif_addr);
if (!da9150->core_qif) {
dev_err(da9150->dev, "Failed to attach QIF client\n");
return -ENODEV;
}
i2c_set_clientdata(da9150->core_qif, da9150);
if (pdata) {
da9150->irq_base = pdata->irq_base;
da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata;
da9150_devs[DA9150_FG_IDX].pdata_size =
sizeof(struct da9150_fg_pdata);
} else {
da9150->irq_base = -1;
}
ret = regmap_add_irq_chip(da9150->regmap, da9150->irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
da9150->irq_base, &da9150_regmap_irq_chip,
&da9150->regmap_irq_data);
if (ret) {
dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n",
ret);
goto regmap_irq_fail;
}
da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data);
enable_irq_wake(da9150->irq);
ret = mfd_add_devices(da9150->dev, -1, da9150_devs,
ARRAY_SIZE(da9150_devs), NULL,
da9150->irq_base, NULL);
if (ret) {
dev_err(da9150->dev, "Failed to add child devices: %d\n", ret);
goto mfd_fail;
}
return 0;
mfd_fail:
regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
regmap_irq_fail:
i2c_unregister_device(da9150->core_qif);
return ret;
}
static int da9150_remove(struct i2c_client *client)
{
struct da9150 *da9150 = i2c_get_clientdata(client);
regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
mfd_remove_devices(da9150->dev);
i2c_unregister_device(da9150->core_qif);
return 0;
}
static void da9150_shutdown(struct i2c_client *client)
{
struct da9150 *da9150 = i2c_get_clientdata(client);
/* Make sure we have a wakup source for the device */
da9150_set_bits(da9150, DA9150_CONFIG_D,
DA9150_WKUP_PM_EN_MASK,
DA9150_WKUP_PM_EN_MASK);
/* Set device to DISABLED mode */
da9150_set_bits(da9150, DA9150_CONTROL_C,
DA9150_DISABLE_MASK, DA9150_DISABLE_MASK);
}
static const struct i2c_device_id da9150_i2c_id[] = {
{ "da9150", },
{ }
};
MODULE_DEVICE_TABLE(i2c, da9150_i2c_id);
static const struct of_device_id da9150_of_match[] = {
{ .compatible = "dlg,da9150", },
{ }
};
MODULE_DEVICE_TABLE(of, da9150_of_match);
static struct i2c_driver da9150_driver = {
.driver = {
.name = "da9150",
.of_match_table = of_match_ptr(da9150_of_match),
},
.probe = da9150_probe,
.remove = da9150_remove,
.shutdown = da9150_shutdown,
.id_table = da9150_i2c_id,
};
module_i2c_driver(da9150_driver);
MODULE_DESCRIPTION("MFD Core Driver for DA9150");
MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
MODULE_LICENSE("GPL");