mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 01:24:08 +08:00
e14cd2bbcb
Right now it's called right after enable, but after reworking the dpm init order, it will get called later to accomodate loading the smc early, but enabling thermal interrupts and block powergating later after the ring tests are complete. Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
1309 lines
40 KiB
C
1309 lines
40 KiB
C
/*
|
|
* Copyright 2011 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Alex Deucher
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "radeon.h"
|
|
#include "r600d.h"
|
|
#include "r600_dpm.h"
|
|
#include "atom.h"
|
|
|
|
const u32 r600_utc[R600_PM_NUMBER_OF_TC] =
|
|
{
|
|
R600_UTC_DFLT_00,
|
|
R600_UTC_DFLT_01,
|
|
R600_UTC_DFLT_02,
|
|
R600_UTC_DFLT_03,
|
|
R600_UTC_DFLT_04,
|
|
R600_UTC_DFLT_05,
|
|
R600_UTC_DFLT_06,
|
|
R600_UTC_DFLT_07,
|
|
R600_UTC_DFLT_08,
|
|
R600_UTC_DFLT_09,
|
|
R600_UTC_DFLT_10,
|
|
R600_UTC_DFLT_11,
|
|
R600_UTC_DFLT_12,
|
|
R600_UTC_DFLT_13,
|
|
R600_UTC_DFLT_14,
|
|
};
|
|
|
|
const u32 r600_dtc[R600_PM_NUMBER_OF_TC] =
|
|
{
|
|
R600_DTC_DFLT_00,
|
|
R600_DTC_DFLT_01,
|
|
R600_DTC_DFLT_02,
|
|
R600_DTC_DFLT_03,
|
|
R600_DTC_DFLT_04,
|
|
R600_DTC_DFLT_05,
|
|
R600_DTC_DFLT_06,
|
|
R600_DTC_DFLT_07,
|
|
R600_DTC_DFLT_08,
|
|
R600_DTC_DFLT_09,
|
|
R600_DTC_DFLT_10,
|
|
R600_DTC_DFLT_11,
|
|
R600_DTC_DFLT_12,
|
|
R600_DTC_DFLT_13,
|
|
R600_DTC_DFLT_14,
|
|
};
|
|
|
|
void r600_dpm_print_class_info(u32 class, u32 class2)
|
|
{
|
|
printk("\tui class: ");
|
|
switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
|
|
case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
|
|
default:
|
|
printk("none\n");
|
|
break;
|
|
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
|
|
printk("battery\n");
|
|
break;
|
|
case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
|
|
printk("balanced\n");
|
|
break;
|
|
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
|
|
printk("performance\n");
|
|
break;
|
|
}
|
|
printk("\tinternal class: ");
|
|
if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
|
|
(class2 == 0))
|
|
printk("none");
|
|
else {
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
|
|
printk("boot ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
|
|
printk("thermal ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
|
|
printk("limited_pwr ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_REST)
|
|
printk("rest ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
|
|
printk("forced ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
|
|
printk("3d_perf ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
|
|
printk("ovrdrv ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
|
|
printk("uvd ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
|
|
printk("3d_low ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
|
|
printk("acpi ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
|
|
printk("uvd_hd2 ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
|
|
printk("uvd_hd ");
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
|
|
printk("uvd_sd ");
|
|
if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
|
|
printk("limited_pwr2 ");
|
|
if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
|
|
printk("ulv ");
|
|
if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
|
|
printk("uvd_mvc ");
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
void r600_dpm_print_cap_info(u32 caps)
|
|
{
|
|
printk("\tcaps: ");
|
|
if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
|
|
printk("single_disp ");
|
|
if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
|
|
printk("video ");
|
|
if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
|
|
printk("no_dc ");
|
|
printk("\n");
|
|
}
|
|
|
|
void r600_dpm_print_ps_status(struct radeon_device *rdev,
|
|
struct radeon_ps *rps)
|
|
{
|
|
printk("\tstatus: ");
|
|
if (rps == rdev->pm.dpm.current_ps)
|
|
printk("c ");
|
|
if (rps == rdev->pm.dpm.requested_ps)
|
|
printk("r ");
|
|
if (rps == rdev->pm.dpm.boot_ps)
|
|
printk("b ");
|
|
printk("\n");
|
|
}
|
|
|
|
u32 r600_dpm_get_vblank_time(struct radeon_device *rdev)
|
|
{
|
|
struct drm_device *dev = rdev->ddev;
|
|
struct drm_crtc *crtc;
|
|
struct radeon_crtc *radeon_crtc;
|
|
u32 line_time_us, vblank_lines;
|
|
u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
radeon_crtc = to_radeon_crtc(crtc);
|
|
if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) {
|
|
line_time_us = (radeon_crtc->hw_mode.crtc_htotal * 1000) /
|
|
radeon_crtc->hw_mode.clock;
|
|
vblank_lines = radeon_crtc->hw_mode.crtc_vblank_end -
|
|
radeon_crtc->hw_mode.crtc_vdisplay +
|
|
(radeon_crtc->v_border * 2);
|
|
vblank_time_us = vblank_lines * line_time_us;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return vblank_time_us;
|
|
}
|
|
|
|
u32 r600_dpm_get_vrefresh(struct radeon_device *rdev)
|
|
{
|
|
struct drm_device *dev = rdev->ddev;
|
|
struct drm_crtc *crtc;
|
|
struct radeon_crtc *radeon_crtc;
|
|
u32 vrefresh = 0;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
radeon_crtc = to_radeon_crtc(crtc);
|
|
if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) {
|
|
vrefresh = radeon_crtc->hw_mode.vrefresh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return vrefresh;
|
|
}
|
|
|
|
void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b,
|
|
u32 *p, u32 *u)
|
|
{
|
|
u32 b_c = 0;
|
|
u32 i_c;
|
|
u32 tmp;
|
|
|
|
i_c = (i * r_c) / 100;
|
|
tmp = i_c >> p_b;
|
|
|
|
while (tmp) {
|
|
b_c++;
|
|
tmp >>= 1;
|
|
}
|
|
|
|
*u = (b_c + 1) / 2;
|
|
*p = i_c / (1 << (2 * (*u)));
|
|
}
|
|
|
|
int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th)
|
|
{
|
|
u32 k, a, ah, al;
|
|
u32 t1;
|
|
|
|
if ((fl == 0) || (fh == 0) || (fl > fh))
|
|
return -EINVAL;
|
|
|
|
k = (100 * fh) / fl;
|
|
t1 = (t * (k - 100));
|
|
a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100));
|
|
a = (a + 5) / 10;
|
|
ah = ((a * t) + 5000) / 10000;
|
|
al = a - ah;
|
|
|
|
*th = t - ah;
|
|
*tl = t + al;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void r600_gfx_clockgating_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
int i;
|
|
|
|
if (enable) {
|
|
WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN);
|
|
} else {
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN);
|
|
|
|
WREG32(CG_RLC_REQ_AND_RSP, 0x2);
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (((RREG32(CG_RLC_REQ_AND_RSP) & CG_RLC_RSP_TYPE_MASK) >> CG_RLC_RSP_TYPE_SHIFT) == 1)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
WREG32(CG_RLC_REQ_AND_RSP, 0x0);
|
|
|
|
WREG32(GRBM_PWR_CNTL, 0x1);
|
|
RREG32(GRBM_PWR_CNTL);
|
|
}
|
|
}
|
|
|
|
void r600_dynamicpm_enable(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN);
|
|
else
|
|
WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN);
|
|
}
|
|
|
|
void r600_enable_thermal_protection(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
|
|
else
|
|
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
|
|
}
|
|
|
|
void r600_enable_acpi_pm(struct radeon_device *rdev)
|
|
{
|
|
WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN);
|
|
}
|
|
|
|
void r600_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE);
|
|
else
|
|
WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE);
|
|
}
|
|
|
|
bool r600_dynamicpm_enabled(struct radeon_device *rdev)
|
|
{
|
|
if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
void r600_enable_sclk_control(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF);
|
|
else
|
|
WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF);
|
|
}
|
|
|
|
void r600_enable_mclk_control(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF);
|
|
else
|
|
WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF);
|
|
}
|
|
|
|
void r600_enable_spll_bypass(struct radeon_device *rdev, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(CG_SPLL_FUNC_CNTL, SPLL_BYPASS_EN, ~SPLL_BYPASS_EN);
|
|
else
|
|
WREG32_P(CG_SPLL_FUNC_CNTL, 0, ~SPLL_BYPASS_EN);
|
|
}
|
|
|
|
void r600_wait_for_spll_change(struct radeon_device *rdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (RREG32(CG_SPLL_FUNC_CNTL) & SPLL_CHG_STATUS)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
void r600_set_bsp(struct radeon_device *rdev, u32 u, u32 p)
|
|
{
|
|
WREG32(CG_BSP, BSP(p) | BSU(u));
|
|
}
|
|
|
|
void r600_set_at(struct radeon_device *rdev,
|
|
u32 l_to_m, u32 m_to_h,
|
|
u32 h_to_m, u32 m_to_l)
|
|
{
|
|
WREG32(CG_RT, FLS(l_to_m) | FMS(m_to_h));
|
|
WREG32(CG_LT, FHS(h_to_m) | FMS(m_to_l));
|
|
}
|
|
|
|
void r600_set_tc(struct radeon_device *rdev,
|
|
u32 index, u32 u_t, u32 d_t)
|
|
{
|
|
WREG32(CG_FFCT_0 + (index * 4), UTC_0(u_t) | DTC_0(d_t));
|
|
}
|
|
|
|
void r600_select_td(struct radeon_device *rdev,
|
|
enum r600_td td)
|
|
{
|
|
if (td == R600_TD_AUTO)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL);
|
|
else
|
|
WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL);
|
|
if (td == R600_TD_UP)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE);
|
|
if (td == R600_TD_DOWN)
|
|
WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE);
|
|
}
|
|
|
|
void r600_set_vrc(struct radeon_device *rdev, u32 vrv)
|
|
{
|
|
WREG32(CG_FTV, vrv);
|
|
}
|
|
|
|
void r600_set_tpu(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(CG_TPC, TPU(u), ~TPU_MASK);
|
|
}
|
|
|
|
void r600_set_tpc(struct radeon_device *rdev, u32 c)
|
|
{
|
|
WREG32_P(CG_TPC, TPCC(c), ~TPCC_MASK);
|
|
}
|
|
|
|
void r600_set_sstu(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(CG_SSP, CG_SSTU(u), ~CG_SSTU_MASK);
|
|
}
|
|
|
|
void r600_set_sst(struct radeon_device *rdev, u32 t)
|
|
{
|
|
WREG32_P(CG_SSP, CG_SST(t), ~CG_SST_MASK);
|
|
}
|
|
|
|
void r600_set_git(struct radeon_device *rdev, u32 t)
|
|
{
|
|
WREG32_P(CG_GIT, CG_GICST(t), ~CG_GICST_MASK);
|
|
}
|
|
|
|
void r600_set_fctu(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(CG_FC_T, FC_TU(u), ~FC_TU_MASK);
|
|
}
|
|
|
|
void r600_set_fct(struct radeon_device *rdev, u32 t)
|
|
{
|
|
WREG32_P(CG_FC_T, FC_T(t), ~FC_T_MASK);
|
|
}
|
|
|
|
void r600_set_ctxcgtt3d_rphc(struct radeon_device *rdev, u32 p)
|
|
{
|
|
WREG32_P(CG_CTX_CGTT3D_R, PHC(p), ~PHC_MASK);
|
|
}
|
|
|
|
void r600_set_ctxcgtt3d_rsdc(struct radeon_device *rdev, u32 s)
|
|
{
|
|
WREG32_P(CG_CTX_CGTT3D_R, SDC(s), ~SDC_MASK);
|
|
}
|
|
|
|
void r600_set_vddc3d_oorsu(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(CG_VDDC3D_OOR, SU(u), ~SU_MASK);
|
|
}
|
|
|
|
void r600_set_vddc3d_oorphc(struct radeon_device *rdev, u32 p)
|
|
{
|
|
WREG32_P(CG_VDDC3D_OOR, PHC(p), ~PHC_MASK);
|
|
}
|
|
|
|
void r600_set_vddc3d_oorsdc(struct radeon_device *rdev, u32 s)
|
|
{
|
|
WREG32_P(CG_VDDC3D_OOR, SDC(s), ~SDC_MASK);
|
|
}
|
|
|
|
void r600_set_mpll_lock_time(struct radeon_device *rdev, u32 lock_time)
|
|
{
|
|
WREG32_P(MPLL_TIME, MPLL_LOCK_TIME(lock_time), ~MPLL_LOCK_TIME_MASK);
|
|
}
|
|
|
|
void r600_set_mpll_reset_time(struct radeon_device *rdev, u32 reset_time)
|
|
{
|
|
WREG32_P(MPLL_TIME, MPLL_RESET_TIME(reset_time), ~MPLL_RESET_TIME_MASK);
|
|
}
|
|
|
|
void r600_engine_clock_entry_enable(struct radeon_device *rdev,
|
|
u32 index, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
STEP_0_SPLL_ENTRY_VALID, ~STEP_0_SPLL_ENTRY_VALID);
|
|
else
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
0, ~STEP_0_SPLL_ENTRY_VALID);
|
|
}
|
|
|
|
void r600_engine_clock_entry_enable_pulse_skipping(struct radeon_device *rdev,
|
|
u32 index, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
STEP_0_SPLL_STEP_ENABLE, ~STEP_0_SPLL_STEP_ENABLE);
|
|
else
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
0, ~STEP_0_SPLL_STEP_ENABLE);
|
|
}
|
|
|
|
void r600_engine_clock_entry_enable_post_divider(struct radeon_device *rdev,
|
|
u32 index, bool enable)
|
|
{
|
|
if (enable)
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
STEP_0_POST_DIV_EN, ~STEP_0_POST_DIV_EN);
|
|
else
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2),
|
|
0, ~STEP_0_POST_DIV_EN);
|
|
}
|
|
|
|
void r600_engine_clock_entry_set_post_divider(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
|
|
STEP_0_SPLL_POST_DIV(divider), ~STEP_0_SPLL_POST_DIV_MASK);
|
|
}
|
|
|
|
void r600_engine_clock_entry_set_reference_divider(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
|
|
STEP_0_SPLL_REF_DIV(divider), ~STEP_0_SPLL_REF_DIV_MASK);
|
|
}
|
|
|
|
void r600_engine_clock_entry_set_feedback_divider(struct radeon_device *rdev,
|
|
u32 index, u32 divider)
|
|
{
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
|
|
STEP_0_SPLL_FB_DIV(divider), ~STEP_0_SPLL_FB_DIV_MASK);
|
|
}
|
|
|
|
void r600_engine_clock_entry_set_step_time(struct radeon_device *rdev,
|
|
u32 index, u32 step_time)
|
|
{
|
|
WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2),
|
|
STEP_0_SPLL_STEP_TIME(step_time), ~STEP_0_SPLL_STEP_TIME_MASK);
|
|
}
|
|
|
|
void r600_vid_rt_set_ssu(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(VID_RT, SSTU(u), ~SSTU_MASK);
|
|
}
|
|
|
|
void r600_vid_rt_set_vru(struct radeon_device *rdev, u32 u)
|
|
{
|
|
WREG32_P(VID_RT, VID_CRTU(u), ~VID_CRTU_MASK);
|
|
}
|
|
|
|
void r600_vid_rt_set_vrt(struct radeon_device *rdev, u32 rt)
|
|
{
|
|
WREG32_P(VID_RT, VID_CRT(rt), ~VID_CRT_MASK);
|
|
}
|
|
|
|
void r600_voltage_control_enable_pins(struct radeon_device *rdev,
|
|
u64 mask)
|
|
{
|
|
WREG32(LOWER_GPIO_ENABLE, mask & 0xffffffff);
|
|
WREG32(UPPER_GPIO_ENABLE, upper_32_bits(mask));
|
|
}
|
|
|
|
|
|
void r600_voltage_control_program_voltages(struct radeon_device *rdev,
|
|
enum r600_power_level index, u64 pins)
|
|
{
|
|
u32 tmp, mask;
|
|
u32 ix = 3 - (3 & index);
|
|
|
|
WREG32(CTXSW_VID_LOWER_GPIO_CNTL + (ix * 4), pins & 0xffffffff);
|
|
|
|
mask = 7 << (3 * ix);
|
|
tmp = RREG32(VID_UPPER_GPIO_CNTL);
|
|
tmp = (tmp & ~mask) | ((pins >> (32 - (3 * ix))) & mask);
|
|
WREG32(VID_UPPER_GPIO_CNTL, tmp);
|
|
}
|
|
|
|
void r600_voltage_control_deactivate_static_control(struct radeon_device *rdev,
|
|
u64 mask)
|
|
{
|
|
u32 gpio;
|
|
|
|
gpio = RREG32(GPIOPAD_MASK);
|
|
gpio &= ~mask;
|
|
WREG32(GPIOPAD_MASK, gpio);
|
|
|
|
gpio = RREG32(GPIOPAD_EN);
|
|
gpio &= ~mask;
|
|
WREG32(GPIOPAD_EN, gpio);
|
|
|
|
gpio = RREG32(GPIOPAD_A);
|
|
gpio &= ~mask;
|
|
WREG32(GPIOPAD_A, gpio);
|
|
}
|
|
|
|
void r600_power_level_enable(struct radeon_device *rdev,
|
|
enum r600_power_level index, bool enable)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
|
|
if (enable)
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_STATE_ENABLE,
|
|
~CTXSW_FREQ_STATE_ENABLE);
|
|
else
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), 0,
|
|
~CTXSW_FREQ_STATE_ENABLE);
|
|
}
|
|
|
|
void r600_power_level_set_voltage_index(struct radeon_device *rdev,
|
|
enum r600_power_level index, u32 voltage_index)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
|
|
CTXSW_FREQ_VIDS_CFG_INDEX(voltage_index), ~CTXSW_FREQ_VIDS_CFG_INDEX_MASK);
|
|
}
|
|
|
|
void r600_power_level_set_mem_clock_index(struct radeon_device *rdev,
|
|
enum r600_power_level index, u32 mem_clock_index)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
|
|
CTXSW_FREQ_MCLK_CFG_INDEX(mem_clock_index), ~CTXSW_FREQ_MCLK_CFG_INDEX_MASK);
|
|
}
|
|
|
|
void r600_power_level_set_eng_clock_index(struct radeon_device *rdev,
|
|
enum r600_power_level index, u32 eng_clock_index)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4),
|
|
CTXSW_FREQ_SCLK_CFG_INDEX(eng_clock_index), ~CTXSW_FREQ_SCLK_CFG_INDEX_MASK);
|
|
}
|
|
|
|
void r600_power_level_set_watermark_id(struct radeon_device *rdev,
|
|
enum r600_power_level index,
|
|
enum r600_display_watermark watermark_id)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
u32 tmp = 0;
|
|
|
|
if (watermark_id == R600_DISPLAY_WATERMARK_HIGH)
|
|
tmp = CTXSW_FREQ_DISPLAY_WATERMARK;
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_DISPLAY_WATERMARK);
|
|
}
|
|
|
|
void r600_power_level_set_pcie_gen2(struct radeon_device *rdev,
|
|
enum r600_power_level index, bool compatible)
|
|
{
|
|
u32 ix = 3 - (3 & index);
|
|
u32 tmp = 0;
|
|
|
|
if (compatible)
|
|
tmp = CTXSW_FREQ_GEN2PCIE_VOLT;
|
|
WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_GEN2PCIE_VOLT);
|
|
}
|
|
|
|
enum r600_power_level r600_power_level_get_current_index(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK;
|
|
tmp >>= CURRENT_PROFILE_INDEX_SHIFT;
|
|
return tmp;
|
|
}
|
|
|
|
enum r600_power_level r600_power_level_get_target_index(struct radeon_device *rdev)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_PROFILE_INDEX_MASK;
|
|
tmp >>= TARGET_PROFILE_INDEX_SHIFT;
|
|
return tmp;
|
|
}
|
|
|
|
void r600_power_level_set_enter_index(struct radeon_device *rdev,
|
|
enum r600_power_level index)
|
|
{
|
|
WREG32_P(TARGET_AND_CURRENT_PROFILE_INDEX, DYN_PWR_ENTER_INDEX(index),
|
|
~DYN_PWR_ENTER_INDEX_MASK);
|
|
}
|
|
|
|
void r600_wait_for_power_level_unequal(struct radeon_device *rdev,
|
|
enum r600_power_level index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (r600_power_level_get_target_index(rdev) != index)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (r600_power_level_get_current_index(rdev) != index)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
void r600_wait_for_power_level(struct radeon_device *rdev,
|
|
enum r600_power_level index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (r600_power_level_get_target_index(rdev) == index)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
if (r600_power_level_get_current_index(rdev) == index)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
void r600_start_dpm(struct radeon_device *rdev)
|
|
{
|
|
r600_enable_sclk_control(rdev, false);
|
|
r600_enable_mclk_control(rdev, false);
|
|
|
|
r600_dynamicpm_enable(rdev, true);
|
|
|
|
radeon_wait_for_vblank(rdev, 0);
|
|
radeon_wait_for_vblank(rdev, 1);
|
|
|
|
r600_enable_spll_bypass(rdev, true);
|
|
r600_wait_for_spll_change(rdev);
|
|
r600_enable_spll_bypass(rdev, false);
|
|
r600_wait_for_spll_change(rdev);
|
|
|
|
r600_enable_spll_bypass(rdev, true);
|
|
r600_wait_for_spll_change(rdev);
|
|
r600_enable_spll_bypass(rdev, false);
|
|
r600_wait_for_spll_change(rdev);
|
|
|
|
r600_enable_sclk_control(rdev, true);
|
|
r600_enable_mclk_control(rdev, true);
|
|
}
|
|
|
|
void r600_stop_dpm(struct radeon_device *rdev)
|
|
{
|
|
r600_dynamicpm_enable(rdev, false);
|
|
}
|
|
|
|
int r600_dpm_pre_set_power_state(struct radeon_device *rdev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void r600_dpm_post_set_power_state(struct radeon_device *rdev)
|
|
{
|
|
|
|
}
|
|
|
|
bool r600_is_uvd_state(u32 class, u32 class2)
|
|
{
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
|
|
return true;
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
|
|
return true;
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
|
|
return true;
|
|
if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
|
|
return true;
|
|
if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int r600_set_thermal_temperature_range(struct radeon_device *rdev,
|
|
int min_temp, int max_temp)
|
|
{
|
|
int low_temp = 0 * 1000;
|
|
int high_temp = 255 * 1000;
|
|
|
|
if (low_temp < min_temp)
|
|
low_temp = min_temp;
|
|
if (high_temp > max_temp)
|
|
high_temp = max_temp;
|
|
if (high_temp < low_temp) {
|
|
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK);
|
|
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK);
|
|
WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK);
|
|
|
|
rdev->pm.dpm.thermal.min_temp = low_temp;
|
|
rdev->pm.dpm.thermal.max_temp = high_temp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor)
|
|
{
|
|
switch (sensor) {
|
|
case THERMAL_TYPE_RV6XX:
|
|
case THERMAL_TYPE_RV770:
|
|
case THERMAL_TYPE_EVERGREEN:
|
|
case THERMAL_TYPE_SUMO:
|
|
case THERMAL_TYPE_NI:
|
|
case THERMAL_TYPE_SI:
|
|
case THERMAL_TYPE_CI:
|
|
case THERMAL_TYPE_KV:
|
|
return true;
|
|
case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
|
|
case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
|
|
return false; /* need special handling */
|
|
case THERMAL_TYPE_NONE:
|
|
case THERMAL_TYPE_EXTERNAL:
|
|
case THERMAL_TYPE_EXTERNAL_GPIO:
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int r600_dpm_late_enable(struct radeon_device *rdev)
|
|
{
|
|
int ret;
|
|
|
|
if (rdev->irq.installed &&
|
|
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
|
|
ret = r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
|
|
if (ret)
|
|
return ret;
|
|
rdev->irq.dpm_thermal = true;
|
|
radeon_irq_set(rdev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
union power_info {
|
|
struct _ATOM_POWERPLAY_INFO info;
|
|
struct _ATOM_POWERPLAY_INFO_V2 info_2;
|
|
struct _ATOM_POWERPLAY_INFO_V3 info_3;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
|
|
struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
|
|
};
|
|
|
|
union fan_info {
|
|
struct _ATOM_PPLIB_FANTABLE fan;
|
|
struct _ATOM_PPLIB_FANTABLE2 fan2;
|
|
};
|
|
|
|
static int r600_parse_clk_voltage_dep_table(struct radeon_clock_voltage_dependency_table *radeon_table,
|
|
ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
|
|
{
|
|
u32 size = atom_table->ucNumEntries *
|
|
sizeof(struct radeon_clock_voltage_dependency_entry);
|
|
int i;
|
|
ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;
|
|
|
|
radeon_table->entries = kzalloc(size, GFP_KERNEL);
|
|
if (!radeon_table->entries)
|
|
return -ENOMEM;
|
|
|
|
entry = &atom_table->entries[0];
|
|
for (i = 0; i < atom_table->ucNumEntries; i++) {
|
|
radeon_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
|
|
(entry->ucClockHigh << 16);
|
|
radeon_table->entries[i].v = le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
|
|
}
|
|
radeon_table->count = atom_table->ucNumEntries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
|
|
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
|
|
|
|
int r600_parse_extended_power_table(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_mode_info *mode_info = &rdev->mode_info;
|
|
union power_info *power_info;
|
|
union fan_info *fan_info;
|
|
ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
|
|
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
|
|
u16 data_offset;
|
|
u8 frev, crev;
|
|
int ret, i;
|
|
|
|
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
|
|
&frev, &crev, &data_offset))
|
|
return -EINVAL;
|
|
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
|
|
|
|
/* fan table */
|
|
if (le16_to_cpu(power_info->pplib.usTableSize) >=
|
|
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
if (power_info->pplib3.usFanTableOffset) {
|
|
fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib3.usFanTableOffset));
|
|
rdev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
|
|
rdev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
|
|
rdev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
|
|
rdev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
|
|
rdev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
|
|
rdev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
|
|
rdev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
|
|
if (fan_info->fan.ucFanTableFormat >= 2)
|
|
rdev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
|
|
else
|
|
rdev->pm.dpm.fan.t_max = 10900;
|
|
rdev->pm.dpm.fan.cycle_delay = 100000;
|
|
rdev->pm.dpm.fan.ucode_fan_control = true;
|
|
}
|
|
}
|
|
|
|
/* clock dependancy tables, shedding tables */
|
|
if (le16_to_cpu(power_info->pplib.usTableSize) >=
|
|
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
|
|
if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
|
|
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
|
|
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
|
|
dep_table);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
|
|
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
|
|
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
|
|
dep_table);
|
|
if (ret) {
|
|
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
|
|
return ret;
|
|
}
|
|
}
|
|
if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
|
|
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
|
|
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
|
|
dep_table);
|
|
if (ret) {
|
|
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
|
|
kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
|
|
return ret;
|
|
}
|
|
}
|
|
if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
|
|
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
|
|
ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
|
|
dep_table);
|
|
if (ret) {
|
|
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries);
|
|
kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries);
|
|
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries);
|
|
return ret;
|
|
}
|
|
}
|
|
if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
|
|
ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
|
|
(ATOM_PPLIB_Clock_Voltage_Limit_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
|
|
if (clk_v->ucNumEntries) {
|
|
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
|
|
le16_to_cpu(clk_v->entries[0].usSclkLow) |
|
|
(clk_v->entries[0].ucSclkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
|
|
le16_to_cpu(clk_v->entries[0].usMclkLow) |
|
|
(clk_v->entries[0].ucMclkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
|
|
le16_to_cpu(clk_v->entries[0].usVddc);
|
|
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
|
|
le16_to_cpu(clk_v->entries[0].usVddci);
|
|
}
|
|
}
|
|
if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
|
|
ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
|
|
(ATOM_PPLIB_PhaseSheddingLimits_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
|
|
ATOM_PPLIB_PhaseSheddingLimits_Record *entry;
|
|
|
|
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
|
|
kzalloc(psl->ucNumEntries *
|
|
sizeof(struct radeon_phase_shedding_limits_entry),
|
|
GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
entry = &psl->entries[0];
|
|
for (i = 0; i < psl->ucNumEntries; i++) {
|
|
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
|
|
le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
|
|
le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
|
|
le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
|
|
}
|
|
rdev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
|
|
psl->ucNumEntries;
|
|
}
|
|
}
|
|
|
|
/* cac data */
|
|
if (le16_to_cpu(power_info->pplib.usTableSize) >=
|
|
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
|
|
rdev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
|
|
rdev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
|
|
rdev->pm.dpm.near_tdp_limit_adjusted = rdev->pm.dpm.near_tdp_limit;
|
|
rdev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
|
|
if (rdev->pm.dpm.tdp_od_limit)
|
|
rdev->pm.dpm.power_control = true;
|
|
else
|
|
rdev->pm.dpm.power_control = false;
|
|
rdev->pm.dpm.tdp_adjustment = 0;
|
|
rdev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
|
|
rdev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
|
|
rdev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
|
|
if (power_info->pplib5.usCACLeakageTableOffset) {
|
|
ATOM_PPLIB_CAC_Leakage_Table *cac_table =
|
|
(ATOM_PPLIB_CAC_Leakage_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
|
|
ATOM_PPLIB_CAC_Leakage_Record *entry;
|
|
u32 size = cac_table->ucNumEntries * sizeof(struct radeon_cac_leakage_table);
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.cac_leakage_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
entry = &cac_table->entries[0];
|
|
for (i = 0; i < cac_table->ucNumEntries; i++) {
|
|
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
|
|
le16_to_cpu(entry->usVddc1);
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
|
|
le16_to_cpu(entry->usVddc2);
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
|
|
le16_to_cpu(entry->usVddc3);
|
|
} else {
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
|
|
le16_to_cpu(entry->usVddc);
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
|
|
le32_to_cpu(entry->ulLeakageValue);
|
|
}
|
|
entry = (ATOM_PPLIB_CAC_Leakage_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
|
|
}
|
|
rdev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
|
|
}
|
|
}
|
|
|
|
/* ext tables */
|
|
if (le16_to_cpu(power_info->pplib.usTableSize) >=
|
|
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
|
|
ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
|
|
ext_hdr->usVCETableOffset) {
|
|
VCEClockInfoArray *array = (VCEClockInfoArray *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
|
|
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
|
|
(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
|
|
1 + array->ucNumEntries * sizeof(VCEClockInfo));
|
|
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
|
|
u32 size = limits->numEntries *
|
|
sizeof(struct radeon_vce_clock_voltage_dependency_entry);
|
|
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
|
|
kzalloc(size, GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
|
|
limits->numEntries;
|
|
entry = &limits->entries[0];
|
|
for (i = 0; i < limits->numEntries; i++) {
|
|
VCEClockInfo *vce_clk = (VCEClockInfo *)
|
|
((u8 *)&array->entries[0] +
|
|
(entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
|
|
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
|
|
le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
|
|
le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
|
|
le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
|
|
}
|
|
}
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
|
|
ext_hdr->usUVDTableOffset) {
|
|
UVDClockInfoArray *array = (UVDClockInfoArray *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
|
|
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
|
|
(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
|
|
1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
|
|
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
|
|
u32 size = limits->numEntries *
|
|
sizeof(struct radeon_uvd_clock_voltage_dependency_entry);
|
|
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
|
|
kzalloc(size, GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
|
|
limits->numEntries;
|
|
entry = &limits->entries[0];
|
|
for (i = 0; i < limits->numEntries; i++) {
|
|
UVDClockInfo *uvd_clk = (UVDClockInfo *)
|
|
((u8 *)&array->entries[0] +
|
|
(entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
|
|
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
|
|
le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
|
|
le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
|
|
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
|
|
le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
|
|
}
|
|
}
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
|
|
ext_hdr->usSAMUTableOffset) {
|
|
ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
|
|
(ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
|
|
ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
|
|
u32 size = limits->numEntries *
|
|
sizeof(struct radeon_clock_voltage_dependency_entry);
|
|
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
|
|
kzalloc(size, GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
|
|
limits->numEntries;
|
|
entry = &limits->entries[0];
|
|
for (i = 0; i < limits->numEntries; i++) {
|
|
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
|
|
le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
|
|
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
|
|
le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
|
|
}
|
|
}
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
|
|
ext_hdr->usPPMTableOffset) {
|
|
ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usPPMTableOffset));
|
|
rdev->pm.dpm.dyn_state.ppm_table =
|
|
kzalloc(sizeof(struct radeon_ppm_table), GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.ppm_table) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
|
|
rdev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
|
|
le16_to_cpu(ppm->usCpuCoreNumber);
|
|
rdev->pm.dpm.dyn_state.ppm_table->platform_tdp =
|
|
le32_to_cpu(ppm->ulPlatformTDP);
|
|
rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
|
|
le32_to_cpu(ppm->ulSmallACPlatformTDP);
|
|
rdev->pm.dpm.dyn_state.ppm_table->platform_tdc =
|
|
le32_to_cpu(ppm->ulPlatformTDC);
|
|
rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
|
|
le32_to_cpu(ppm->ulSmallACPlatformTDC);
|
|
rdev->pm.dpm.dyn_state.ppm_table->apu_tdp =
|
|
le32_to_cpu(ppm->ulApuTDP);
|
|
rdev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
|
|
le32_to_cpu(ppm->ulDGpuTDP);
|
|
rdev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
|
|
le32_to_cpu(ppm->ulDGpuUlvPower);
|
|
rdev->pm.dpm.dyn_state.ppm_table->tj_max =
|
|
le32_to_cpu(ppm->ulTjmax);
|
|
}
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
|
|
ext_hdr->usACPTableOffset) {
|
|
ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
|
|
(ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
|
|
ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
|
|
u32 size = limits->numEntries *
|
|
sizeof(struct radeon_clock_voltage_dependency_entry);
|
|
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
|
|
kzalloc(size, GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
|
|
limits->numEntries;
|
|
entry = &limits->entries[0];
|
|
for (i = 0; i < limits->numEntries; i++) {
|
|
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
|
|
le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
|
|
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
|
|
le16_to_cpu(entry->usVoltage);
|
|
entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
|
|
((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
|
|
}
|
|
}
|
|
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
|
|
ext_hdr->usPowerTuneTableOffset) {
|
|
u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
|
|
ATOM_PowerTune_Table *pt;
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table =
|
|
kzalloc(sizeof(struct radeon_cac_tdp_table), GFP_KERNEL);
|
|
if (!rdev->pm.dpm.dyn_state.cac_tdp_table) {
|
|
r600_free_extended_power_table(rdev);
|
|
return -ENOMEM;
|
|
}
|
|
if (rev > 0) {
|
|
ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
|
|
ppt->usMaximumPowerDeliveryLimit;
|
|
pt = &ppt->power_tune_table;
|
|
} else {
|
|
ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
|
|
(mode_info->atom_context->bios + data_offset +
|
|
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
|
|
pt = &ppt->power_tune_table;
|
|
}
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
|
|
le16_to_cpu(pt->usConfigurableTDP);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
|
|
le16_to_cpu(pt->usBatteryPowerLimit);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
|
|
le16_to_cpu(pt->usSmallPowerLimit);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
|
|
le16_to_cpu(pt->usLowCACLeakage);
|
|
rdev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
|
|
le16_to_cpu(pt->usHighCACLeakage);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void r600_free_extended_power_table(struct radeon_device *rdev)
|
|
{
|
|
struct radeon_dpm_dynamic_state *dyn_state = &rdev->pm.dpm.dyn_state;
|
|
|
|
kfree(dyn_state->vddc_dependency_on_sclk.entries);
|
|
kfree(dyn_state->vddci_dependency_on_mclk.entries);
|
|
kfree(dyn_state->vddc_dependency_on_mclk.entries);
|
|
kfree(dyn_state->mvdd_dependency_on_mclk.entries);
|
|
kfree(dyn_state->cac_leakage_table.entries);
|
|
kfree(dyn_state->phase_shedding_limits_table.entries);
|
|
kfree(dyn_state->ppm_table);
|
|
kfree(dyn_state->cac_tdp_table);
|
|
kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
|
|
kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
|
|
kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
|
|
kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
|
|
}
|
|
|
|
enum radeon_pcie_gen r600_get_pcie_gen_support(struct radeon_device *rdev,
|
|
u32 sys_mask,
|
|
enum radeon_pcie_gen asic_gen,
|
|
enum radeon_pcie_gen default_gen)
|
|
{
|
|
switch (asic_gen) {
|
|
case RADEON_PCIE_GEN1:
|
|
return RADEON_PCIE_GEN1;
|
|
case RADEON_PCIE_GEN2:
|
|
return RADEON_PCIE_GEN2;
|
|
case RADEON_PCIE_GEN3:
|
|
return RADEON_PCIE_GEN3;
|
|
default:
|
|
if ((sys_mask & DRM_PCIE_SPEED_80) && (default_gen == RADEON_PCIE_GEN3))
|
|
return RADEON_PCIE_GEN3;
|
|
else if ((sys_mask & DRM_PCIE_SPEED_50) && (default_gen == RADEON_PCIE_GEN2))
|
|
return RADEON_PCIE_GEN2;
|
|
else
|
|
return RADEON_PCIE_GEN1;
|
|
}
|
|
return RADEON_PCIE_GEN1;
|
|
}
|
|
|
|
u16 r600_get_pcie_lane_support(struct radeon_device *rdev,
|
|
u16 asic_lanes,
|
|
u16 default_lanes)
|
|
{
|
|
switch (asic_lanes) {
|
|
case 0:
|
|
default:
|
|
return default_lanes;
|
|
case 1:
|
|
return 1;
|
|
case 2:
|
|
return 2;
|
|
case 4:
|
|
return 4;
|
|
case 8:
|
|
return 8;
|
|
case 12:
|
|
return 12;
|
|
case 16:
|
|
return 16;
|
|
}
|
|
}
|
|
|
|
u8 r600_encode_pci_lane_width(u32 lanes)
|
|
{
|
|
u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 };
|
|
|
|
if (lanes > 16)
|
|
return 0;
|
|
|
|
return encoded_lanes[lanes];
|
|
}
|