2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
linux-next/drivers/misc/genwqe/card_utils.c
Guilherme G. Piccoli 658a494a5b genwqe: Remove unused parameter in some functions
This is a clean-up patch, no functional changes intended.

It removes the unused parameter of type "struct ddcb_requ*" from
the functions genwqe_user_vmap() and genwqe_user_vunmap().

Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-19 10:54:44 +01:00

1057 lines
27 KiB
C

/**
* IBM Accelerator Family 'GenWQE'
*
* (C) Copyright IBM Corp. 2013
*
* Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
* Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
* Author: Michael Jung <mijung@gmx.net>
* Author: Michael Ruettger <michael@ibmra.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Miscelanous functionality used in the other GenWQE driver parts.
*/
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/page-flags.h>
#include <linux/scatterlist.h>
#include <linux/hugetlb.h>
#include <linux/iommu.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <asm/pgtable.h>
#include "genwqe_driver.h"
#include "card_base.h"
#include "card_ddcb.h"
/**
* __genwqe_writeq() - Write 64-bit register
* @cd: genwqe device descriptor
* @byte_offs: byte offset within BAR
* @val: 64-bit value
*
* Return: 0 if success; < 0 if error
*/
int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
{
struct pci_dev *pci_dev = cd->pci_dev;
if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
return -EIO;
if (cd->mmio == NULL)
return -EIO;
if (pci_channel_offline(pci_dev))
return -EIO;
__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
return 0;
}
/**
* __genwqe_readq() - Read 64-bit register
* @cd: genwqe device descriptor
* @byte_offs: offset within BAR
*
* Return: value from register
*/
u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
{
if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
return 0xffffffffffffffffull;
if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
(byte_offs == IO_SLC_CFGREG_GFIR))
return 0x000000000000ffffull;
if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
(byte_offs == IO_SLC_CFGREG_GFIR))
return 0x00000000ffff0000ull;
if (cd->mmio == NULL)
return 0xffffffffffffffffull;
return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
}
/**
* __genwqe_writel() - Write 32-bit register
* @cd: genwqe device descriptor
* @byte_offs: byte offset within BAR
* @val: 32-bit value
*
* Return: 0 if success; < 0 if error
*/
int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
{
struct pci_dev *pci_dev = cd->pci_dev;
if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
return -EIO;
if (cd->mmio == NULL)
return -EIO;
if (pci_channel_offline(pci_dev))
return -EIO;
__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
return 0;
}
/**
* __genwqe_readl() - Read 32-bit register
* @cd: genwqe device descriptor
* @byte_offs: offset within BAR
*
* Return: Value from register
*/
u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
{
if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
return 0xffffffff;
if (cd->mmio == NULL)
return 0xffffffff;
return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
}
/**
* genwqe_read_app_id() - Extract app_id
*
* app_unitcfg need to be filled with valid data first
*/
int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
{
int i, j;
u32 app_id = (u32)cd->app_unitcfg;
memset(app_name, 0, len);
for (i = 0, j = 0; j < min(len, 4); j++) {
char ch = (char)((app_id >> (24 - j*8)) & 0xff);
if (ch == ' ')
continue;
app_name[i++] = isprint(ch) ? ch : 'X';
}
return i;
}
/**
* genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
*
* Existing kernel functions seem to use a different polynom,
* therefore we could not use them here.
*
* Genwqe's Polynomial = 0x20044009
*/
#define CRC32_POLYNOMIAL 0x20044009
static u32 crc32_tab[256]; /* crc32 lookup table */
void genwqe_init_crc32(void)
{
int i, j;
u32 crc;
for (i = 0; i < 256; i++) {
crc = i << 24;
for (j = 0; j < 8; j++) {
if (crc & 0x80000000)
crc = (crc << 1) ^ CRC32_POLYNOMIAL;
else
crc = (crc << 1);
}
crc32_tab[i] = crc;
}
}
/**
* genwqe_crc32() - Generate 32-bit crc as required for DDCBs
* @buff: pointer to data buffer
* @len: length of data for calculation
* @init: initial crc (0xffffffff at start)
*
* polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
* Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
* result in a crc32 of 0xf33cb7d3.
*
* The existing kernel crc functions did not cover this polynom yet.
*
* Return: crc32 checksum.
*/
u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
{
int i;
u32 crc;
crc = init;
while (len--) {
i = ((crc >> 24) ^ *buff++) & 0xFF;
crc = (crc << 8) ^ crc32_tab[i];
}
return crc;
}
void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
dma_addr_t *dma_handle)
{
if (get_order(size) > MAX_ORDER)
return NULL;
return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle,
GFP_KERNEL);
}
void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
if (vaddr == NULL)
return;
dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
}
static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
int num_pages)
{
int i;
struct pci_dev *pci_dev = cd->pci_dev;
for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
pci_unmap_page(pci_dev, dma_list[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
dma_list[i] = 0x0;
}
}
static int genwqe_map_pages(struct genwqe_dev *cd,
struct page **page_list, int num_pages,
dma_addr_t *dma_list)
{
int i;
struct pci_dev *pci_dev = cd->pci_dev;
/* establish DMA mapping for requested pages */
for (i = 0; i < num_pages; i++) {
dma_addr_t daddr;
dma_list[i] = 0x0;
daddr = pci_map_page(pci_dev, page_list[i],
0, /* map_offs */
PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
if (pci_dma_mapping_error(pci_dev, daddr)) {
dev_err(&pci_dev->dev,
"[%s] err: no dma addr daddr=%016llx!\n",
__func__, (long long)daddr);
goto err;
}
dma_list[i] = daddr;
}
return 0;
err:
genwqe_unmap_pages(cd, dma_list, num_pages);
return -EIO;
}
static int genwqe_sgl_size(int num_pages)
{
int len, num_tlb = num_pages / 7;
len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
return roundup(len, PAGE_SIZE);
}
/**
* genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
*
* Allocates memory for sgl and overlapping pages. Pages which might
* overlap other user-space memory blocks are being cached for DMAs,
* such that we do not run into syncronization issues. Data is copied
* from user-space into the cached pages.
*/
int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
void __user *user_addr, size_t user_size, int write)
{
int rc;
struct pci_dev *pci_dev = cd->pci_dev;
sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
__func__, user_addr, user_size, sgl->nr_pages,
sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
sgl->user_addr = user_addr;
sgl->user_size = user_size;
sgl->write = write;
sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
if (get_order(sgl->sgl_size) > MAX_ORDER) {
dev_err(&pci_dev->dev,
"[%s] err: too much memory requested!\n", __func__);
return -ENOMEM;
}
sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
&sgl->sgl_dma_addr);
if (sgl->sgl == NULL) {
dev_err(&pci_dev->dev,
"[%s] err: no memory available!\n", __func__);
return -ENOMEM;
}
/* Only use buffering on incomplete pages */
if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
&sgl->fpage_dma_addr);
if (sgl->fpage == NULL)
goto err_out;
/* Sync with user memory */
if (copy_from_user(sgl->fpage + sgl->fpage_offs,
user_addr, sgl->fpage_size)) {
rc = -EFAULT;
goto err_out;
}
}
if (sgl->lpage_size != 0) {
sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
&sgl->lpage_dma_addr);
if (sgl->lpage == NULL)
goto err_out1;
/* Sync with user memory */
if (copy_from_user(sgl->lpage, user_addr + user_size -
sgl->lpage_size, sgl->lpage_size)) {
rc = -EFAULT;
goto err_out2;
}
}
return 0;
err_out2:
__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
sgl->lpage_dma_addr);
sgl->lpage = NULL;
sgl->lpage_dma_addr = 0;
err_out1:
__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
sgl->fpage_dma_addr);
sgl->fpage = NULL;
sgl->fpage_dma_addr = 0;
err_out:
__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
sgl->sgl_dma_addr);
sgl->sgl = NULL;
sgl->sgl_dma_addr = 0;
sgl->sgl_size = 0;
return -ENOMEM;
}
int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
dma_addr_t *dma_list)
{
int i = 0, j = 0, p;
unsigned long dma_offs, map_offs;
dma_addr_t prev_daddr = 0;
struct sg_entry *s, *last_s = NULL;
size_t size = sgl->user_size;
dma_offs = 128; /* next block if needed/dma_offset */
map_offs = sgl->fpage_offs; /* offset in first page */
s = &sgl->sgl[0]; /* first set of 8 entries */
p = 0; /* page */
while (p < sgl->nr_pages) {
dma_addr_t daddr;
unsigned int size_to_map;
/* always write the chaining entry, cleanup is done later */
j = 0;
s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
s[j].len = cpu_to_be32(128);
s[j].flags = cpu_to_be32(SG_CHAINED);
j++;
while (j < 8) {
/* DMA mapping for requested page, offs, size */
size_to_map = min(size, PAGE_SIZE - map_offs);
if ((p == 0) && (sgl->fpage != NULL)) {
daddr = sgl->fpage_dma_addr + map_offs;
} else if ((p == sgl->nr_pages - 1) &&
(sgl->lpage != NULL)) {
daddr = sgl->lpage_dma_addr;
} else {
daddr = dma_list[p] + map_offs;
}
size -= size_to_map;
map_offs = 0;
if (prev_daddr == daddr) {
u32 prev_len = be32_to_cpu(last_s->len);
/* pr_info("daddr combining: "
"%016llx/%08x -> %016llx\n",
prev_daddr, prev_len, daddr); */
last_s->len = cpu_to_be32(prev_len +
size_to_map);
p++; /* process next page */
if (p == sgl->nr_pages)
goto fixup; /* nothing to do */
prev_daddr = daddr + size_to_map;
continue;
}
/* start new entry */
s[j].target_addr = cpu_to_be64(daddr);
s[j].len = cpu_to_be32(size_to_map);
s[j].flags = cpu_to_be32(SG_DATA);
prev_daddr = daddr + size_to_map;
last_s = &s[j];
j++;
p++; /* process next page */
if (p == sgl->nr_pages)
goto fixup; /* nothing to do */
}
dma_offs += 128;
s += 8; /* continue 8 elements further */
}
fixup:
if (j == 1) { /* combining happend on last entry! */
s -= 8; /* full shift needed on previous sgl block */
j = 7; /* shift all elements */
}
for (i = 0; i < j; i++) /* move elements 1 up */
s[i] = s[i + 1];
s[i].target_addr = cpu_to_be64(0);
s[i].len = cpu_to_be32(0);
s[i].flags = cpu_to_be32(SG_END_LIST);
return 0;
}
/**
* genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
*
* After the DMA transfer has been completed we free the memory for
* the sgl and the cached pages. Data is being transfered from cached
* pages into user-space buffers.
*/
int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
{
int rc = 0;
size_t offset;
unsigned long res;
struct pci_dev *pci_dev = cd->pci_dev;
if (sgl->fpage) {
if (sgl->write) {
res = copy_to_user(sgl->user_addr,
sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
if (res) {
dev_err(&pci_dev->dev,
"[%s] err: copying fpage! (res=%lu)\n",
__func__, res);
rc = -EFAULT;
}
}
__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
sgl->fpage_dma_addr);
sgl->fpage = NULL;
sgl->fpage_dma_addr = 0;
}
if (sgl->lpage) {
if (sgl->write) {
offset = sgl->user_size - sgl->lpage_size;
res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
sgl->lpage_size);
if (res) {
dev_err(&pci_dev->dev,
"[%s] err: copying lpage! (res=%lu)\n",
__func__, res);
rc = -EFAULT;
}
}
__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
sgl->lpage_dma_addr);
sgl->lpage = NULL;
sgl->lpage_dma_addr = 0;
}
__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
sgl->sgl_dma_addr);
sgl->sgl = NULL;
sgl->sgl_dma_addr = 0x0;
sgl->sgl_size = 0;
return rc;
}
/**
* genwqe_free_user_pages() - Give pinned pages back
*
* Documentation of get_user_pages is in mm/gup.c:
*
* If the page is written to, set_page_dirty (or set_page_dirty_lock,
* as appropriate) must be called after the page is finished with, and
* before put_page is called.
*/
static int genwqe_free_user_pages(struct page **page_list,
unsigned int nr_pages, int dirty)
{
unsigned int i;
for (i = 0; i < nr_pages; i++) {
if (page_list[i] != NULL) {
if (dirty)
set_page_dirty_lock(page_list[i]);
put_page(page_list[i]);
}
}
return 0;
}
/**
* genwqe_user_vmap() - Map user-space memory to virtual kernel memory
* @cd: pointer to genwqe device
* @m: mapping params
* @uaddr: user virtual address
* @size: size of memory to be mapped
*
* We need to think about how we could speed this up. Of course it is
* not a good idea to do this over and over again, like we are
* currently doing it. Nevertheless, I am curious where on the path
* the performance is spend. Most probably within the memory
* allocation functions, but maybe also in the DMA mapping code.
*
* Restrictions: The maximum size of the possible mapping currently depends
* on the amount of memory we can get using kzalloc() for the
* page_list and pci_alloc_consistent for the sg_list.
* The sg_list is currently itself not scattered, which could
* be fixed with some effort. The page_list must be split into
* PAGE_SIZE chunks too. All that will make the complicated
* code more complicated.
*
* Return: 0 if success
*/
int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
unsigned long size)
{
int rc = -EINVAL;
unsigned long data, offs;
struct pci_dev *pci_dev = cd->pci_dev;
if ((uaddr == NULL) || (size == 0)) {
m->size = 0; /* mark unused and not added */
return -EINVAL;
}
m->u_vaddr = uaddr;
m->size = size;
/* determine space needed for page_list. */
data = (unsigned long)uaddr;
offs = offset_in_page(data);
m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
m->page_list = kcalloc(m->nr_pages,
sizeof(struct page *) + sizeof(dma_addr_t),
GFP_KERNEL);
if (!m->page_list) {
dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
m->nr_pages = 0;
m->u_vaddr = NULL;
m->size = 0; /* mark unused and not added */
return -ENOMEM;
}
m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
/* pin user pages in memory */
rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
m->nr_pages,
m->write, /* readable/writable */
m->page_list); /* ptrs to pages */
if (rc < 0)
goto fail_get_user_pages;
/* assumption: get_user_pages can be killed by signals. */
if (rc < m->nr_pages) {
genwqe_free_user_pages(m->page_list, rc, m->write);
rc = -EFAULT;
goto fail_get_user_pages;
}
rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
if (rc != 0)
goto fail_free_user_pages;
return 0;
fail_free_user_pages:
genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
fail_get_user_pages:
kfree(m->page_list);
m->page_list = NULL;
m->dma_list = NULL;
m->nr_pages = 0;
m->u_vaddr = NULL;
m->size = 0; /* mark unused and not added */
return rc;
}
/**
* genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
* memory
* @cd: pointer to genwqe device
* @m: mapping params
*/
int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
{
struct pci_dev *pci_dev = cd->pci_dev;
if (!dma_mapping_used(m)) {
dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
__func__, m);
return -EINVAL;
}
if (m->dma_list)
genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
if (m->page_list) {
genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
kfree(m->page_list);
m->page_list = NULL;
m->dma_list = NULL;
m->nr_pages = 0;
}
m->u_vaddr = NULL;
m->size = 0; /* mark as unused and not added */
return 0;
}
/**
* genwqe_card_type() - Get chip type SLU Configuration Register
* @cd: pointer to the genwqe device descriptor
* Return: 0: Altera Stratix-IV 230
* 1: Altera Stratix-IV 530
* 2: Altera Stratix-V A4
* 3: Altera Stratix-V A7
*/
u8 genwqe_card_type(struct genwqe_dev *cd)
{
u64 card_type = cd->slu_unitcfg;
return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
}
/**
* genwqe_card_reset() - Reset the card
* @cd: pointer to the genwqe device descriptor
*/
int genwqe_card_reset(struct genwqe_dev *cd)
{
u64 softrst;
struct pci_dev *pci_dev = cd->pci_dev;
if (!genwqe_is_privileged(cd))
return -ENODEV;
/* new SL */
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
msleep(1000);
__genwqe_readq(cd, IO_HSU_FIR_CLR);
__genwqe_readq(cd, IO_APP_FIR_CLR);
__genwqe_readq(cd, IO_SLU_FIR_CLR);
/*
* Read-modify-write to preserve the stealth bits
*
* For SL >= 039, Stealth WE bit allows removing
* the read-modify-wrote.
* r-m-w may require a mask 0x3C to avoid hitting hard
* reset again for error reset (should be 0, chicken).
*/
softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
/* give ERRORRESET some time to finish */
msleep(50);
if (genwqe_need_err_masking(cd)) {
dev_info(&pci_dev->dev,
"[%s] masking errors for old bitstreams\n", __func__);
__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
}
return 0;
}
int genwqe_read_softreset(struct genwqe_dev *cd)
{
u64 bitstream;
if (!genwqe_is_privileged(cd))
return -ENODEV;
bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
return 0;
}
/**
* genwqe_set_interrupt_capability() - Configure MSI capability structure
* @cd: pointer to the device
* Return: 0 if no error
*/
int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
{
int rc;
rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
if (rc < 0)
return rc;
return 0;
}
/**
* genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
* @cd: pointer to the device
*/
void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
{
pci_free_irq_vectors(cd->pci_dev);
}
/**
* set_reg_idx() - Fill array with data. Ignore illegal offsets.
* @cd: card device
* @r: debug register array
* @i: index to desired entry
* @m: maximum possible entries
* @addr: addr which is read
* @index: index in debug array
* @val: read value
*/
static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
unsigned int *i, unsigned int m, u32 addr, u32 idx,
u64 val)
{
if (WARN_ON_ONCE(*i >= m))
return -EFAULT;
r[*i].addr = addr;
r[*i].idx = idx;
r[*i].val = val;
++*i;
return 0;
}
static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
unsigned int *i, unsigned int m, u32 addr, u64 val)
{
return set_reg_idx(cd, r, i, m, addr, 0, val);
}
int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
unsigned int max_regs, int all)
{
unsigned int i, j, idx = 0;
u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
/* Global FIR */
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
/* UnitCfg for SLU */
sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
/* UnitCfg for APP */
appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
/* Check all chip Units */
for (i = 0; i < GENWQE_MAX_UNITS; i++) {
/* Unit FIR */
ufir_addr = (i << 24) | 0x008;
ufir = __genwqe_readq(cd, ufir_addr);
set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
/* Unit FEC */
ufec_addr = (i << 24) | 0x018;
ufec = __genwqe_readq(cd, ufec_addr);
set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
for (j = 0; j < 64; j++) {
/* wherever there is a primary 1, read the 2ndary */
if (!all && (!(ufir & (1ull << j))))
continue;
sfir_addr = (i << 24) | (0x100 + 8 * j);
sfir = __genwqe_readq(cd, sfir_addr);
set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
sfec_addr = (i << 24) | (0x300 + 8 * j);
sfec = __genwqe_readq(cd, sfec_addr);
set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
}
}
/* fill with invalid data until end */
for (i = idx; i < max_regs; i++) {
regs[i].addr = 0xffffffff;
regs[i].val = 0xffffffffffffffffull;
}
return idx;
}
/**
* genwqe_ffdc_buff_size() - Calculates the number of dump registers
*/
int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
{
int entries = 0, ring, traps, traces, trace_entries;
u32 eevptr_addr, l_addr, d_len, d_type;
u64 eevptr, val, addr;
eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
eevptr = __genwqe_readq(cd, eevptr_addr);
if ((eevptr != 0x0) && (eevptr != -1ull)) {
l_addr = GENWQE_UID_OFFS(uid) | eevptr;
while (1) {
val = __genwqe_readq(cd, l_addr);
if ((val == 0x0) || (val == -1ull))
break;
/* 38:24 */
d_len = (val & 0x0000007fff000000ull) >> 24;
/* 39 */
d_type = (val & 0x0000008000000000ull) >> 36;
if (d_type) { /* repeat */
entries += d_len;
} else { /* size in bytes! */
entries += d_len >> 3;
}
l_addr += 8;
}
}
for (ring = 0; ring < 8; ring++) {
addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
val = __genwqe_readq(cd, addr);
if ((val == 0x0ull) || (val == -1ull))
continue;
traps = (val >> 24) & 0xff;
traces = (val >> 16) & 0xff;
trace_entries = val & 0xffff;
entries += traps + (traces * trace_entries);
}
return entries;
}
/**
* genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
*/
int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
struct genwqe_reg *regs, unsigned int max_regs)
{
int i, traps, traces, trace, trace_entries, trace_entry, ring;
unsigned int idx = 0;
u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
u64 eevptr, e, val, addr;
eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
eevptr = __genwqe_readq(cd, eevptr_addr);
if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
l_addr = GENWQE_UID_OFFS(uid) | eevptr;
while (1) {
e = __genwqe_readq(cd, l_addr);
if ((e == 0x0) || (e == 0xffffffffffffffffull))
break;
d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
d_addr |= GENWQE_UID_OFFS(uid);
if (d_type) {
for (i = 0; i < (int)d_len; i++) {
val = __genwqe_readq(cd, d_addr);
set_reg_idx(cd, regs, &idx, max_regs,
d_addr, i, val);
}
} else {
d_len >>= 3; /* Size in bytes! */
for (i = 0; i < (int)d_len; i++, d_addr += 8) {
val = __genwqe_readq(cd, d_addr);
set_reg_idx(cd, regs, &idx, max_regs,
d_addr, 0, val);
}
}
l_addr += 8;
}
}
/*
* To save time, there are only 6 traces poplulated on Uid=2,
* Ring=1. each with iters=512.
*/
for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
2...7 are ASI rings */
addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
val = __genwqe_readq(cd, addr);
if ((val == 0x0ull) || (val == -1ull))
continue;
traps = (val >> 24) & 0xff; /* Number of Traps */
traces = (val >> 16) & 0xff; /* Number of Traces */
trace_entries = val & 0xffff; /* Entries per trace */
/* Note: This is a combined loop that dumps both the traps */
/* (for the trace == 0 case) as well as the traces 1 to */
/* 'traces'. */
for (trace = 0; trace <= traces; trace++) {
u32 diag_sel =
GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
addr = (GENWQE_UID_OFFS(uid) |
IO_EXTENDED_DIAG_SELECTOR);
__genwqe_writeq(cd, addr, diag_sel);
for (trace_entry = 0;
trace_entry < (trace ? trace_entries : traps);
trace_entry++) {
addr = (GENWQE_UID_OFFS(uid) |
IO_EXTENDED_DIAG_READ_MBX);
val = __genwqe_readq(cd, addr);
set_reg_idx(cd, regs, &idx, max_regs, addr,
(diag_sel<<16) | trace_entry, val);
}
}
}
return 0;
}
/**
* genwqe_write_vreg() - Write register in virtual window
*
* Note, these registers are only accessible to the PF through the
* VF-window. It is not intended for the VF to access.
*/
int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
{
__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
__genwqe_writeq(cd, reg, val);
return 0;
}
/**
* genwqe_read_vreg() - Read register in virtual window
*
* Note, these registers are only accessible to the PF through the
* VF-window. It is not intended for the VF to access.
*/
u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
{
__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
return __genwqe_readq(cd, reg);
}
/**
* genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
*
* Note: From a design perspective it turned out to be a bad idea to
* use codes here to specifiy the frequency/speed values. An old
* driver cannot understand new codes and is therefore always a
* problem. Better is to measure out the value or put the
* speed/frequency directly into a register which is always a valid
* value for old as well as for new software.
*
* Return: Card clock in MHz
*/
int genwqe_base_clock_frequency(struct genwqe_dev *cd)
{
u16 speed; /* MHz MHz MHz MHz */
static const int speed_grade[] = { 250, 200, 166, 175 };
speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
if (speed >= ARRAY_SIZE(speed_grade))
return 0; /* illegal value */
return speed_grade[speed];
}
/**
* genwqe_stop_traps() - Stop traps
*
* Before reading out the analysis data, we need to stop the traps.
*/
void genwqe_stop_traps(struct genwqe_dev *cd)
{
__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
}
/**
* genwqe_start_traps() - Start traps
*
* After having read the data, we can/must enable the traps again.
*/
void genwqe_start_traps(struct genwqe_dev *cd)
{
__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
if (genwqe_need_err_masking(cd))
__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
}