2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/ssb/main.c
Rafał Miłecki 7c1bc0da32 ssb: gpio: add own IRQ domain
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Michael Buesch <m@bues.ch>
Signed-off-by: John Crispin <blogic@openwrt.org>
Patchwork: http://patchwork.linux-mips.org/patch/6342/
2014-01-24 22:39:54 +01:00

1506 lines
34 KiB
C

/*
* Sonics Silicon Backplane
* Subsystem core
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <m@bues.ch>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "ssb_private.h"
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/ssb/ssb_driver_gige.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/mmc/sdio_func.h>
#include <linux/slab.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
MODULE_LICENSE("GPL");
/* Temporary list of yet-to-be-attached buses */
static LIST_HEAD(attach_queue);
/* List if running buses */
static LIST_HEAD(buses);
/* Software ID counter */
static unsigned int next_busnumber;
/* buses_mutes locks the two buslists and the next_busnumber.
* Don't lock this directly, but use ssb_buses_[un]lock() below. */
static DEFINE_MUTEX(buses_mutex);
/* There are differences in the codeflow, if the bus is
* initialized from early boot, as various needed services
* are not available early. This is a mechanism to delay
* these initializations to after early boot has finished.
* It's also used to avoid mutex locking, as that's not
* available and needed early. */
static bool ssb_is_early_boot = 1;
static void ssb_buses_lock(void);
static void ssb_buses_unlock(void);
#ifdef CONFIG_SSB_PCIHOST
struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_PCI &&
bus->host_pci == pdev)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
bus->host_pcmcia == pdev)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_PCMCIAHOST */
#ifdef CONFIG_SSB_SDIOHOST
struct ssb_bus *ssb_sdio_func_to_bus(struct sdio_func *func)
{
struct ssb_bus *bus;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
if (bus->bustype == SSB_BUSTYPE_SDIO &&
bus->host_sdio == func)
goto found;
}
bus = NULL;
found:
ssb_buses_unlock();
return bus;
}
#endif /* CONFIG_SSB_SDIOHOST */
int ssb_for_each_bus_call(unsigned long data,
int (*func)(struct ssb_bus *bus, unsigned long data))
{
struct ssb_bus *bus;
int res;
ssb_buses_lock();
list_for_each_entry(bus, &buses, list) {
res = func(bus, data);
if (res >= 0) {
ssb_buses_unlock();
return res;
}
}
ssb_buses_unlock();
return -ENODEV;
}
static struct ssb_device *ssb_device_get(struct ssb_device *dev)
{
if (dev)
get_device(dev->dev);
return dev;
}
static void ssb_device_put(struct ssb_device *dev)
{
if (dev)
put_device(dev->dev);
}
static int ssb_device_resume(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
int err = 0;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->resume)
err = ssb_drv->resume(ssb_dev);
if (err)
goto out;
}
out:
return err;
}
static int ssb_device_suspend(struct device *dev, pm_message_t state)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
int err = 0;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->suspend)
err = ssb_drv->suspend(ssb_dev, state);
if (err)
goto out;
}
out:
return err;
}
int ssb_bus_resume(struct ssb_bus *bus)
{
int err;
/* Reset HW state information in memory, so that HW is
* completely reinitialized. */
bus->mapped_device = NULL;
#ifdef CONFIG_SSB_DRIVER_PCICORE
bus->pcicore.setup_done = 0;
#endif
err = ssb_bus_powerup(bus, 0);
if (err)
return err;
err = ssb_pcmcia_hardware_setup(bus);
if (err) {
ssb_bus_may_powerdown(bus);
return err;
}
ssb_chipco_resume(&bus->chipco);
ssb_bus_may_powerdown(bus);
return 0;
}
EXPORT_SYMBOL(ssb_bus_resume);
int ssb_bus_suspend(struct ssb_bus *bus)
{
ssb_chipco_suspend(&bus->chipco);
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
return 0;
}
EXPORT_SYMBOL(ssb_bus_suspend);
#ifdef CONFIG_SSB_SPROM
/** ssb_devices_freeze - Freeze all devices on the bus.
*
* After freezing no device driver will be handling a device
* on this bus anymore. ssb_devices_thaw() must be called after
* a successful freeze to reactivate the devices.
*
* @bus: The bus.
* @ctx: Context structure. Pass this to ssb_devices_thaw().
*/
int ssb_devices_freeze(struct ssb_bus *bus, struct ssb_freeze_context *ctx)
{
struct ssb_device *sdev;
struct ssb_driver *sdrv;
unsigned int i;
memset(ctx, 0, sizeof(*ctx));
ctx->bus = bus;
SSB_WARN_ON(bus->nr_devices > ARRAY_SIZE(ctx->device_frozen));
for (i = 0; i < bus->nr_devices; i++) {
sdev = ssb_device_get(&bus->devices[i]);
if (!sdev->dev || !sdev->dev->driver ||
!device_is_registered(sdev->dev)) {
ssb_device_put(sdev);
continue;
}
sdrv = drv_to_ssb_drv(sdev->dev->driver);
if (SSB_WARN_ON(!sdrv->remove))
continue;
sdrv->remove(sdev);
ctx->device_frozen[i] = 1;
}
return 0;
}
/** ssb_devices_thaw - Unfreeze all devices on the bus.
*
* This will re-attach the device drivers and re-init the devices.
*
* @ctx: The context structure from ssb_devices_freeze()
*/
int ssb_devices_thaw(struct ssb_freeze_context *ctx)
{
struct ssb_bus *bus = ctx->bus;
struct ssb_device *sdev;
struct ssb_driver *sdrv;
unsigned int i;
int err, result = 0;
for (i = 0; i < bus->nr_devices; i++) {
if (!ctx->device_frozen[i])
continue;
sdev = &bus->devices[i];
if (SSB_WARN_ON(!sdev->dev || !sdev->dev->driver))
continue;
sdrv = drv_to_ssb_drv(sdev->dev->driver);
if (SSB_WARN_ON(!sdrv || !sdrv->probe))
continue;
err = sdrv->probe(sdev, &sdev->id);
if (err) {
ssb_err("Failed to thaw device %s\n",
dev_name(sdev->dev));
result = err;
}
ssb_device_put(sdev);
}
return result;
}
#endif /* CONFIG_SSB_SPROM */
static void ssb_device_shutdown(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
if (!dev->driver)
return;
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->shutdown)
ssb_drv->shutdown(ssb_dev);
}
static int ssb_device_remove(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->remove)
ssb_drv->remove(ssb_dev);
ssb_device_put(ssb_dev);
return 0;
}
static int ssb_device_probe(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
int err = 0;
ssb_device_get(ssb_dev);
if (ssb_drv && ssb_drv->probe)
err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
if (err)
ssb_device_put(ssb_dev);
return err;
}
static int ssb_match_devid(const struct ssb_device_id *tabid,
const struct ssb_device_id *devid)
{
if ((tabid->vendor != devid->vendor) &&
tabid->vendor != SSB_ANY_VENDOR)
return 0;
if ((tabid->coreid != devid->coreid) &&
tabid->coreid != SSB_ANY_ID)
return 0;
if ((tabid->revision != devid->revision) &&
tabid->revision != SSB_ANY_REV)
return 0;
return 1;
}
static int ssb_bus_match(struct device *dev, struct device_driver *drv)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
const struct ssb_device_id *id;
for (id = ssb_drv->id_table;
id->vendor || id->coreid || id->revision;
id++) {
if (ssb_match_devid(id, &ssb_dev->id))
return 1; /* found */
}
return 0;
}
static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
if (!dev)
return -ENODEV;
return add_uevent_var(env,
"MODALIAS=ssb:v%04Xid%04Xrev%02X",
ssb_dev->id.vendor, ssb_dev->id.coreid,
ssb_dev->id.revision);
}
#define ssb_config_attr(attrib, field, format_string) \
static ssize_t \
attrib##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return sprintf(buf, format_string, dev_to_ssb_dev(dev)->field); \
} \
static DEVICE_ATTR_RO(attrib);
ssb_config_attr(core_num, core_index, "%u\n")
ssb_config_attr(coreid, id.coreid, "0x%04x\n")
ssb_config_attr(vendor, id.vendor, "0x%04x\n")
ssb_config_attr(revision, id.revision, "%u\n")
ssb_config_attr(irq, irq, "%u\n")
static ssize_t
name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n",
ssb_core_name(dev_to_ssb_dev(dev)->id.coreid));
}
static DEVICE_ATTR_RO(name);
static struct attribute *ssb_device_attrs[] = {
&dev_attr_name.attr,
&dev_attr_core_num.attr,
&dev_attr_coreid.attr,
&dev_attr_vendor.attr,
&dev_attr_revision.attr,
&dev_attr_irq.attr,
NULL,
};
ATTRIBUTE_GROUPS(ssb_device);
static struct bus_type ssb_bustype = {
.name = "ssb",
.match = ssb_bus_match,
.probe = ssb_device_probe,
.remove = ssb_device_remove,
.shutdown = ssb_device_shutdown,
.suspend = ssb_device_suspend,
.resume = ssb_device_resume,
.uevent = ssb_device_uevent,
.dev_groups = ssb_device_groups,
};
static void ssb_buses_lock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_lock(&buses_mutex);
}
static void ssb_buses_unlock(void)
{
/* See the comment at the ssb_is_early_boot definition */
if (!ssb_is_early_boot)
mutex_unlock(&buses_mutex);
}
static void ssb_devices_unregister(struct ssb_bus *bus)
{
struct ssb_device *sdev;
int i;
for (i = bus->nr_devices - 1; i >= 0; i--) {
sdev = &(bus->devices[i]);
if (sdev->dev)
device_unregister(sdev->dev);
}
#ifdef CONFIG_SSB_EMBEDDED
if (bus->bustype == SSB_BUSTYPE_SSB)
platform_device_unregister(bus->watchdog);
#endif
}
void ssb_bus_unregister(struct ssb_bus *bus)
{
int err;
err = ssb_gpio_unregister(bus);
if (err == -EBUSY)
ssb_dbg("Some GPIOs are still in use\n");
else if (err)
ssb_dbg("Can not unregister GPIO driver: %i\n", err);
ssb_buses_lock();
ssb_devices_unregister(bus);
list_del(&bus->list);
ssb_buses_unlock();
ssb_pcmcia_exit(bus);
ssb_pci_exit(bus);
ssb_iounmap(bus);
}
EXPORT_SYMBOL(ssb_bus_unregister);
static void ssb_release_dev(struct device *dev)
{
struct __ssb_dev_wrapper *devwrap;
devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
kfree(devwrap);
}
static int ssb_devices_register(struct ssb_bus *bus)
{
struct ssb_device *sdev;
struct device *dev;
struct __ssb_dev_wrapper *devwrap;
int i, err = 0;
int dev_idx = 0;
for (i = 0; i < bus->nr_devices; i++) {
sdev = &(bus->devices[i]);
/* We don't register SSB-system devices to the kernel,
* as the drivers for them are built into SSB. */
switch (sdev->id.coreid) {
case SSB_DEV_CHIPCOMMON:
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
case SSB_DEV_PCMCIA:
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
case SSB_DEV_EXTIF:
continue;
}
devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
if (!devwrap) {
ssb_err("Could not allocate device\n");
err = -ENOMEM;
goto error;
}
dev = &devwrap->dev;
devwrap->sdev = sdev;
dev->release = ssb_release_dev;
dev->bus = &ssb_bustype;
dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
switch (bus->bustype) {
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
sdev->irq = bus->host_pci->irq;
dev->parent = &bus->host_pci->dev;
sdev->dma_dev = dev->parent;
#endif
break;
case SSB_BUSTYPE_PCMCIA:
#ifdef CONFIG_SSB_PCMCIAHOST
sdev->irq = bus->host_pcmcia->irq;
dev->parent = &bus->host_pcmcia->dev;
#endif
break;
case SSB_BUSTYPE_SDIO:
#ifdef CONFIG_SSB_SDIOHOST
dev->parent = &bus->host_sdio->dev;
#endif
break;
case SSB_BUSTYPE_SSB:
dev->dma_mask = &dev->coherent_dma_mask;
sdev->dma_dev = dev;
break;
}
sdev->dev = dev;
err = device_register(dev);
if (err) {
ssb_err("Could not register %s\n", dev_name(dev));
/* Set dev to NULL to not unregister
* dev on error unwinding. */
sdev->dev = NULL;
kfree(devwrap);
goto error;
}
dev_idx++;
}
#ifdef CONFIG_SSB_DRIVER_MIPS
if (bus->mipscore.pflash.present) {
err = platform_device_register(&ssb_pflash_dev);
if (err)
pr_err("Error registering parallel flash\n");
}
#endif
#ifdef CONFIG_SSB_SFLASH
if (bus->mipscore.sflash.present) {
err = platform_device_register(&ssb_sflash_dev);
if (err)
pr_err("Error registering serial flash\n");
}
#endif
return 0;
error:
/* Unwind the already registered devices. */
ssb_devices_unregister(bus);
return err;
}
/* Needs ssb_buses_lock() */
static int ssb_attach_queued_buses(void)
{
struct ssb_bus *bus, *n;
int err = 0;
int drop_them_all = 0;
list_for_each_entry_safe(bus, n, &attach_queue, list) {
if (drop_them_all) {
list_del(&bus->list);
continue;
}
/* Can't init the PCIcore in ssb_bus_register(), as that
* is too early in boot for embedded systems
* (no udelay() available). So do it here in attach stage.
*/
err = ssb_bus_powerup(bus, 0);
if (err)
goto error;
ssb_pcicore_init(&bus->pcicore);
if (bus->bustype == SSB_BUSTYPE_SSB)
ssb_watchdog_register(bus);
err = ssb_gpio_init(bus);
if (err == -ENOTSUPP)
ssb_dbg("GPIO driver not activated\n");
else if (err)
ssb_dbg("Error registering GPIO driver: %i\n", err);
ssb_bus_may_powerdown(bus);
err = ssb_devices_register(bus);
error:
if (err) {
drop_them_all = 1;
list_del(&bus->list);
continue;
}
list_move_tail(&bus->list, &buses);
}
return err;
}
static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readb(bus->mmio + offset);
}
static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readw(bus->mmio + offset);
}
static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readl(bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr;
offset += dev->core_index * SSB_CORE_SIZE;
addr = bus->mmio + offset;
switch (reg_width) {
case sizeof(u8): {
u8 *buf = buffer;
while (count) {
*buf = __raw_readb(addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
__le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
*buf = (__force __le16)__raw_readw(addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
__le32 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
*buf = (__force __le32)__raw_readl(addr);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writeb(value, bus->mmio + offset);
}
static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writew(value, bus->mmio + offset);
}
static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writel(value, bus->mmio + offset);
}
#ifdef CONFIG_SSB_BLOCKIO
static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
size_t count, u16 offset, u8 reg_width)
{
struct ssb_bus *bus = dev->bus;
void __iomem *addr;
offset += dev->core_index * SSB_CORE_SIZE;
addr = bus->mmio + offset;
switch (reg_width) {
case sizeof(u8): {
const u8 *buf = buffer;
while (count) {
__raw_writeb(*buf, addr);
buf++;
count--;
}
break;
}
case sizeof(u16): {
const __le16 *buf = buffer;
SSB_WARN_ON(count & 1);
while (count) {
__raw_writew((__force u16)(*buf), addr);
buf++;
count -= 2;
}
break;
}
case sizeof(u32): {
const __le32 *buf = buffer;
SSB_WARN_ON(count & 3);
while (count) {
__raw_writel((__force u32)(*buf), addr);
buf++;
count -= 4;
}
break;
}
default:
SSB_WARN_ON(1);
}
}
#endif /* CONFIG_SSB_BLOCKIO */
/* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
static const struct ssb_bus_ops ssb_ssb_ops = {
.read8 = ssb_ssb_read8,
.read16 = ssb_ssb_read16,
.read32 = ssb_ssb_read32,
.write8 = ssb_ssb_write8,
.write16 = ssb_ssb_write16,
.write32 = ssb_ssb_write32,
#ifdef CONFIG_SSB_BLOCKIO
.block_read = ssb_ssb_block_read,
.block_write = ssb_ssb_block_write,
#endif
};
static int ssb_fetch_invariants(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants)
{
struct ssb_init_invariants iv;
int err;
memset(&iv, 0, sizeof(iv));
err = get_invariants(bus, &iv);
if (err)
goto out;
memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
bus->has_cardbus_slot = iv.has_cardbus_slot;
out:
return err;
}
static int ssb_bus_register(struct ssb_bus *bus,
ssb_invariants_func_t get_invariants,
unsigned long baseaddr)
{
int err;
spin_lock_init(&bus->bar_lock);
INIT_LIST_HEAD(&bus->list);
#ifdef CONFIG_SSB_EMBEDDED
spin_lock_init(&bus->gpio_lock);
#endif
/* Powerup the bus */
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto out;
/* Init SDIO-host device (if any), before the scan */
err = ssb_sdio_init(bus);
if (err)
goto err_disable_xtal;
ssb_buses_lock();
bus->busnumber = next_busnumber;
/* Scan for devices (cores) */
err = ssb_bus_scan(bus, baseaddr);
if (err)
goto err_sdio_exit;
/* Init PCI-host device (if any) */
err = ssb_pci_init(bus);
if (err)
goto err_unmap;
/* Init PCMCIA-host device (if any) */
err = ssb_pcmcia_init(bus);
if (err)
goto err_pci_exit;
/* Initialize basic system devices (if available) */
err = ssb_bus_powerup(bus, 0);
if (err)
goto err_pcmcia_exit;
ssb_chipcommon_init(&bus->chipco);
ssb_extif_init(&bus->extif);
ssb_mipscore_init(&bus->mipscore);
err = ssb_fetch_invariants(bus, get_invariants);
if (err) {
ssb_bus_may_powerdown(bus);
goto err_pcmcia_exit;
}
ssb_bus_may_powerdown(bus);
/* Queue it for attach.
* See the comment at the ssb_is_early_boot definition. */
list_add_tail(&bus->list, &attach_queue);
if (!ssb_is_early_boot) {
/* This is not early boot, so we must attach the bus now */
err = ssb_attach_queued_buses();
if (err)
goto err_dequeue;
}
next_busnumber++;
ssb_buses_unlock();
out:
return err;
err_dequeue:
list_del(&bus->list);
err_pcmcia_exit:
ssb_pcmcia_exit(bus);
err_pci_exit:
ssb_pci_exit(bus);
err_unmap:
ssb_iounmap(bus);
err_sdio_exit:
ssb_sdio_exit(bus);
err_disable_xtal:
ssb_buses_unlock();
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
return err;
}
#ifdef CONFIG_SSB_PCIHOST
int ssb_bus_pcibus_register(struct ssb_bus *bus, struct pci_dev *host_pci)
{
int err;
bus->bustype = SSB_BUSTYPE_PCI;
bus->host_pci = host_pci;
bus->ops = &ssb_pci_ops;
err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
if (!err) {
ssb_info("Sonics Silicon Backplane found on PCI device %s\n",
dev_name(&host_pci->dev));
} else {
ssb_err("Failed to register PCI version of SSB with error %d\n",
err);
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcibus_register);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr)
{
int err;
bus->bustype = SSB_BUSTYPE_PCMCIA;
bus->host_pcmcia = pcmcia_dev;
bus->ops = &ssb_pcmcia_ops;
err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
if (!err) {
ssb_info("Sonics Silicon Backplane found on PCMCIA device %s\n",
pcmcia_dev->devname);
}
return err;
}
EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */
#ifdef CONFIG_SSB_SDIOHOST
int ssb_bus_sdiobus_register(struct ssb_bus *bus, struct sdio_func *func,
unsigned int quirks)
{
int err;
bus->bustype = SSB_BUSTYPE_SDIO;
bus->host_sdio = func;
bus->ops = &ssb_sdio_ops;
bus->quirks = quirks;
err = ssb_bus_register(bus, ssb_sdio_get_invariants, ~0);
if (!err) {
ssb_info("Sonics Silicon Backplane found on SDIO device %s\n",
sdio_func_id(func));
}
return err;
}
EXPORT_SYMBOL(ssb_bus_sdiobus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */
int ssb_bus_ssbbus_register(struct ssb_bus *bus, unsigned long baseaddr,
ssb_invariants_func_t get_invariants)
{
int err;
bus->bustype = SSB_BUSTYPE_SSB;
bus->ops = &ssb_ssb_ops;
err = ssb_bus_register(bus, get_invariants, baseaddr);
if (!err) {
ssb_info("Sonics Silicon Backplane found at address 0x%08lX\n",
baseaddr);
}
return err;
}
int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
{
drv->drv.name = drv->name;
drv->drv.bus = &ssb_bustype;
drv->drv.owner = owner;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(__ssb_driver_register);
void ssb_driver_unregister(struct ssb_driver *drv)
{
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(ssb_driver_unregister);
void ssb_set_devtypedata(struct ssb_device *dev, void *data)
{
struct ssb_bus *bus = dev->bus;
struct ssb_device *ent;
int i;
for (i = 0; i < bus->nr_devices; i++) {
ent = &(bus->devices[i]);
if (ent->id.vendor != dev->id.vendor)
continue;
if (ent->id.coreid != dev->id.coreid)
continue;
ent->devtypedata = data;
}
}
EXPORT_SYMBOL(ssb_set_devtypedata);
static u32 clkfactor_f6_resolve(u32 v)
{
/* map the magic values */
switch (v) {
case SSB_CHIPCO_CLK_F6_2:
return 2;
case SSB_CHIPCO_CLK_F6_3:
return 3;
case SSB_CHIPCO_CLK_F6_4:
return 4;
case SSB_CHIPCO_CLK_F6_5:
return 5;
case SSB_CHIPCO_CLK_F6_6:
return 6;
case SSB_CHIPCO_CLK_F6_7:
return 7;
}
return 0;
}
/* Calculate the speed the backplane would run at a given set of clockcontrol values */
u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
{
u32 n1, n2, clock, m1, m2, m3, mc;
n1 = (n & SSB_CHIPCO_CLK_N1);
n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
if (m & SSB_CHIPCO_CLK_T6_MMASK)
return SSB_CHIPCO_CLK_T6_M1;
return SSB_CHIPCO_CLK_T6_M0;
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
n1 = clkfactor_f6_resolve(n1);
n2 += SSB_CHIPCO_CLK_F5_BIAS;
break;
case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
n1 += SSB_CHIPCO_CLK_T2_BIAS;
n2 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
break;
case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
return 100000000;
default:
SSB_WARN_ON(1);
}
switch (plltype) {
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
break;
default:
clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
}
if (!clock)
return 0;
m1 = (m & SSB_CHIPCO_CLK_M1);
m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
m1 = clkfactor_f6_resolve(m1);
if ((plltype == SSB_PLLTYPE_1) ||
(plltype == SSB_PLLTYPE_3))
m2 += SSB_CHIPCO_CLK_F5_BIAS;
else
m2 = clkfactor_f6_resolve(m2);
m3 = clkfactor_f6_resolve(m3);
switch (mc) {
case SSB_CHIPCO_CLK_MC_BYPASS:
return clock;
case SSB_CHIPCO_CLK_MC_M1:
return (clock / m1);
case SSB_CHIPCO_CLK_MC_M1M2:
return (clock / (m1 * m2));
case SSB_CHIPCO_CLK_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case SSB_CHIPCO_CLK_MC_M1M3:
return (clock / (m1 * m3));
}
return 0;
case SSB_PLLTYPE_2:
m1 += SSB_CHIPCO_CLK_T2_BIAS;
m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
m3 += SSB_CHIPCO_CLK_T2_BIAS;
SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
clock /= m1;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
clock /= m2;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
clock /= m3;
return clock;
default:
SSB_WARN_ON(1);
}
return 0;
}
/* Get the current speed the backplane is running at */
u32 ssb_clockspeed(struct ssb_bus *bus)
{
u32 rate;
u32 plltype;
u32 clkctl_n, clkctl_m;
if (bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU)
return ssb_pmu_get_controlclock(&bus->chipco);
if (ssb_extif_available(&bus->extif))
ssb_extif_get_clockcontrol(&bus->extif, &plltype,
&clkctl_n, &clkctl_m);
else if (bus->chipco.dev)
ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
&clkctl_n, &clkctl_m);
else
return 0;
if (bus->chip_id == 0x5365) {
rate = 100000000;
} else {
rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
rate /= 2;
}
return rate;
}
EXPORT_SYMBOL(ssb_clockspeed);
static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
{
u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
/* The REJECT bit seems to be different for Backplane rev 2.3 */
switch (rev) {
case SSB_IDLOW_SSBREV_22:
case SSB_IDLOW_SSBREV_24:
case SSB_IDLOW_SSBREV_26:
return SSB_TMSLOW_REJECT;
case SSB_IDLOW_SSBREV_23:
return SSB_TMSLOW_REJECT_23;
case SSB_IDLOW_SSBREV_25: /* TODO - find the proper REJECT bit */
case SSB_IDLOW_SSBREV_27: /* same here */
return SSB_TMSLOW_REJECT; /* this is a guess */
default:
WARN(1, KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
}
return (SSB_TMSLOW_REJECT | SSB_TMSLOW_REJECT_23);
}
int ssb_device_is_enabled(struct ssb_device *dev)
{
u32 val;
u32 reject;
reject = ssb_tmslow_reject_bitmask(dev);
val = ssb_read32(dev, SSB_TMSLOW);
val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
return (val == SSB_TMSLOW_CLOCK);
}
EXPORT_SYMBOL(ssb_device_is_enabled);
static void ssb_flush_tmslow(struct ssb_device *dev)
{
/* Make _really_ sure the device has finished the TMSLOW
* register write transaction, as we risk running into
* a machine check exception otherwise.
* Do this by reading the register back to commit the
* PCI write and delay an additional usec for the device
* to react to the change. */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
}
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 val;
ssb_device_disable(dev, core_specific_flags);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_FGC | core_specific_flags);
ssb_flush_tmslow(dev);
/* Clear SERR if set. This is a hw bug workaround. */
if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
ssb_write32(dev, SSB_TMSHIGH, 0);
val = ssb_read32(dev, SSB_IMSTATE);
if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
ssb_write32(dev, SSB_IMSTATE, val);
}
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
core_specific_flags);
ssb_flush_tmslow(dev);
ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_enable);
/* Wait for bitmask in a register to get set or cleared.
* timeout is in units of ten-microseconds */
static int ssb_wait_bits(struct ssb_device *dev, u16 reg, u32 bitmask,
int timeout, int set)
{
int i;
u32 val;
for (i = 0; i < timeout; i++) {
val = ssb_read32(dev, reg);
if (set) {
if ((val & bitmask) == bitmask)
return 0;
} else {
if (!(val & bitmask))
return 0;
}
udelay(10);
}
printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
"register %04X to %s.\n",
bitmask, reg, (set ? "set" : "clear"));
return -ETIMEDOUT;
}
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 reject, val;
if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
return;
reject = ssb_tmslow_reject_bitmask(dev);
if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_CLOCK) {
ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
ssb_wait_bits(dev, SSB_TMSLOW, reject, 1000, 1);
ssb_wait_bits(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
val = ssb_read32(dev, SSB_IMSTATE);
val |= SSB_IMSTATE_REJECT;
ssb_write32(dev, SSB_IMSTATE, val);
ssb_wait_bits(dev, SSB_IMSTATE, SSB_IMSTATE_BUSY, 1000,
0);
}
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
val = ssb_read32(dev, SSB_IMSTATE);
val &= ~SSB_IMSTATE_REJECT;
ssb_write32(dev, SSB_IMSTATE, val);
}
}
ssb_write32(dev, SSB_TMSLOW,
reject | SSB_TMSLOW_RESET |
core_specific_flags);
ssb_flush_tmslow(dev);
}
EXPORT_SYMBOL(ssb_device_disable);
/* Some chipsets need routing known for PCIe and 64-bit DMA */
static bool ssb_dma_translation_special_bit(struct ssb_device *dev)
{
u16 chip_id = dev->bus->chip_id;
if (dev->id.coreid == SSB_DEV_80211) {
return (chip_id == 0x4322 || chip_id == 43221 ||
chip_id == 43231 || chip_id == 43222);
}
return 0;
}
u32 ssb_dma_translation(struct ssb_device *dev)
{
switch (dev->bus->bustype) {
case SSB_BUSTYPE_SSB:
return 0;
case SSB_BUSTYPE_PCI:
if (pci_is_pcie(dev->bus->host_pci) &&
ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64) {
return SSB_PCIE_DMA_H32;
} else {
if (ssb_dma_translation_special_bit(dev))
return SSB_PCIE_DMA_H32;
else
return SSB_PCI_DMA;
}
default:
__ssb_dma_not_implemented(dev);
}
return 0;
}
EXPORT_SYMBOL(ssb_dma_translation);
int ssb_bus_may_powerdown(struct ssb_bus *bus)
{
struct ssb_chipcommon *cc;
int err = 0;
/* On buses where more than one core may be working
* at a time, we must not powerdown stuff if there are
* still cores that may want to run. */
if (bus->bustype == SSB_BUSTYPE_SSB)
goto out;
cc = &bus->chipco;
if (!cc->dev)
goto out;
if (cc->dev->id.revision < 5)
goto out;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
if (err)
goto error;
out:
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 0;
#endif
return err;
error:
ssb_err("Bus powerdown failed\n");
goto out;
}
EXPORT_SYMBOL(ssb_bus_may_powerdown);
int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
{
int err;
enum ssb_clkmode mode;
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto error;
#ifdef CONFIG_SSB_DEBUG
bus->powered_up = 1;
#endif
mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
ssb_chipco_set_clockmode(&bus->chipco, mode);
return 0;
error:
ssb_err("Bus powerup failed\n");
return err;
}
EXPORT_SYMBOL(ssb_bus_powerup);
static void ssb_broadcast_value(struct ssb_device *dev,
u32 address, u32 data)
{
#ifdef CONFIG_SSB_DRIVER_PCICORE
/* This is used for both, PCI and ChipCommon core, so be careful. */
BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
#endif
ssb_write32(dev, SSB_CHIPCO_BCAST_ADDR, address);
ssb_read32(dev, SSB_CHIPCO_BCAST_ADDR); /* flush */
ssb_write32(dev, SSB_CHIPCO_BCAST_DATA, data);
ssb_read32(dev, SSB_CHIPCO_BCAST_DATA); /* flush */
}
void ssb_commit_settings(struct ssb_bus *bus)
{
struct ssb_device *dev;
#ifdef CONFIG_SSB_DRIVER_PCICORE
dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
#else
dev = bus->chipco.dev;
#endif
if (WARN_ON(!dev))
return;
/* This forces an update of the cached registers. */
ssb_broadcast_value(dev, 0xFD8, 0);
}
EXPORT_SYMBOL(ssb_commit_settings);
u32 ssb_admatch_base(u32 adm)
{
u32 base = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
base = (adm & SSB_ADM_BASE0);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE1);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
base = (adm & SSB_ADM_BASE2);
break;
default:
SSB_WARN_ON(1);
}
return base;
}
EXPORT_SYMBOL(ssb_admatch_base);
u32 ssb_admatch_size(u32 adm)
{
u32 size = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
break;
case SSB_ADM_TYPE1:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
break;
case SSB_ADM_TYPE2:
SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
break;
default:
SSB_WARN_ON(1);
}
size = (1 << (size + 1));
return size;
}
EXPORT_SYMBOL(ssb_admatch_size);
static int __init ssb_modinit(void)
{
int err;
/* See the comment at the ssb_is_early_boot definition */
ssb_is_early_boot = 0;
err = bus_register(&ssb_bustype);
if (err)
return err;
/* Maybe we already registered some buses at early boot.
* Check for this and attach them
*/
ssb_buses_lock();
err = ssb_attach_queued_buses();
ssb_buses_unlock();
if (err) {
bus_unregister(&ssb_bustype);
goto out;
}
err = b43_pci_ssb_bridge_init();
if (err) {
ssb_err("Broadcom 43xx PCI-SSB-bridge initialization failed\n");
/* don't fail SSB init because of this */
err = 0;
}
err = ssb_gige_init();
if (err) {
ssb_err("SSB Broadcom Gigabit Ethernet driver initialization failed\n");
/* don't fail SSB init because of this */
err = 0;
}
out:
return err;
}
/* ssb must be initialized after PCI but before the ssb drivers.
* That means we must use some initcall between subsys_initcall
* and device_initcall. */
fs_initcall(ssb_modinit);
static void __exit ssb_modexit(void)
{
ssb_gige_exit();
b43_pci_ssb_bridge_exit();
bus_unregister(&ssb_bustype);
}
module_exit(ssb_modexit)