2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/net/sctp/input.c
Vlad Yasevich bbd0d59809 [SCTP]: Implement the receive and verification of AUTH chunk
This patch implements the receive path needed to process authenticated
chunks.  Add ability to process the AUTH chunk and handle edge cases
for authenticated COOKIE-ECHO as well.

Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-10 16:51:31 -07:00

1031 lines
27 KiB
C

/* SCTP kernel reference Implementation
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001-2003 International Business Machines, Corp.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel reference Implementation
*
* These functions handle all input from the IP layer into SCTP.
*
* The SCTP reference implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* The SCTP reference implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Xingang Guo <xingang.guo@intel.com>
* Jon Grimm <jgrimm@us.ibm.com>
* Hui Huang <hui.huang@nokia.com>
* Daisy Chang <daisyc@us.ibm.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#include <linux/types.h>
#include <linux/list.h> /* For struct list_head */
#include <linux/socket.h>
#include <linux/ip.h>
#include <linux/time.h> /* For struct timeval */
#include <net/ip.h>
#include <net/icmp.h>
#include <net/snmp.h>
#include <net/sock.h>
#include <net/xfrm.h>
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* Forward declarations for internal helpers. */
static int sctp_rcv_ootb(struct sk_buff *);
static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
const union sctp_addr *laddr,
const union sctp_addr *paddr,
struct sctp_transport **transportp);
static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
static struct sctp_association *__sctp_lookup_association(
const union sctp_addr *local,
const union sctp_addr *peer,
struct sctp_transport **pt);
static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
/* Calculate the SCTP checksum of an SCTP packet. */
static inline int sctp_rcv_checksum(struct sk_buff *skb)
{
struct sk_buff *list = skb_shinfo(skb)->frag_list;
struct sctphdr *sh = sctp_hdr(skb);
__u32 cmp = ntohl(sh->checksum);
__u32 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
for (; list; list = list->next)
val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
val);
val = sctp_end_cksum(val);
if (val != cmp) {
/* CRC failure, dump it. */
SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
return -1;
}
return 0;
}
struct sctp_input_cb {
union {
struct inet_skb_parm h4;
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
struct inet6_skb_parm h6;
#endif
} header;
struct sctp_chunk *chunk;
};
#define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0]))
/*
* This is the routine which IP calls when receiving an SCTP packet.
*/
int sctp_rcv(struct sk_buff *skb)
{
struct sock *sk;
struct sctp_association *asoc;
struct sctp_endpoint *ep = NULL;
struct sctp_ep_common *rcvr;
struct sctp_transport *transport = NULL;
struct sctp_chunk *chunk;
struct sctphdr *sh;
union sctp_addr src;
union sctp_addr dest;
int family;
struct sctp_af *af;
if (skb->pkt_type!=PACKET_HOST)
goto discard_it;
SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
if (skb_linearize(skb))
goto discard_it;
sh = sctp_hdr(skb);
/* Pull up the IP and SCTP headers. */
__skb_pull(skb, skb_transport_offset(skb));
if (skb->len < sizeof(struct sctphdr))
goto discard_it;
if (!skb_csum_unnecessary(skb) && sctp_rcv_checksum(skb) < 0)
goto discard_it;
skb_pull(skb, sizeof(struct sctphdr));
/* Make sure we at least have chunk headers worth of data left. */
if (skb->len < sizeof(struct sctp_chunkhdr))
goto discard_it;
family = ipver2af(ip_hdr(skb)->version);
af = sctp_get_af_specific(family);
if (unlikely(!af))
goto discard_it;
/* Initialize local addresses for lookups. */
af->from_skb(&src, skb, 1);
af->from_skb(&dest, skb, 0);
/* If the packet is to or from a non-unicast address,
* silently discard the packet.
*
* This is not clearly defined in the RFC except in section
* 8.4 - OOTB handling. However, based on the book "Stream Control
* Transmission Protocol" 2.1, "It is important to note that the
* IP address of an SCTP transport address must be a routable
* unicast address. In other words, IP multicast addresses and
* IP broadcast addresses cannot be used in an SCTP transport
* address."
*/
if (!af->addr_valid(&src, NULL, skb) ||
!af->addr_valid(&dest, NULL, skb))
goto discard_it;
asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
if (!asoc)
ep = __sctp_rcv_lookup_endpoint(&dest);
/* Retrieve the common input handling substructure. */
rcvr = asoc ? &asoc->base : &ep->base;
sk = rcvr->sk;
/*
* If a frame arrives on an interface and the receiving socket is
* bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
*/
if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
{
if (asoc) {
sctp_association_put(asoc);
asoc = NULL;
} else {
sctp_endpoint_put(ep);
ep = NULL;
}
sk = sctp_get_ctl_sock();
ep = sctp_sk(sk)->ep;
sctp_endpoint_hold(ep);
rcvr = &ep->base;
}
/*
* RFC 2960, 8.4 - Handle "Out of the blue" Packets.
* An SCTP packet is called an "out of the blue" (OOTB)
* packet if it is correctly formed, i.e., passed the
* receiver's checksum check, but the receiver is not
* able to identify the association to which this
* packet belongs.
*/
if (!asoc) {
if (sctp_rcv_ootb(skb)) {
SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
goto discard_release;
}
}
if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
goto discard_release;
nf_reset(skb);
if (sk_filter(sk, skb))
goto discard_release;
/* Create an SCTP packet structure. */
chunk = sctp_chunkify(skb, asoc, sk);
if (!chunk)
goto discard_release;
SCTP_INPUT_CB(skb)->chunk = chunk;
/* Remember what endpoint is to handle this packet. */
chunk->rcvr = rcvr;
/* Remember the SCTP header. */
chunk->sctp_hdr = sh;
/* Set the source and destination addresses of the incoming chunk. */
sctp_init_addrs(chunk, &src, &dest);
/* Remember where we came from. */
chunk->transport = transport;
/* Acquire access to the sock lock. Note: We are safe from other
* bottom halves on this lock, but a user may be in the lock too,
* so check if it is busy.
*/
sctp_bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
sctp_add_backlog(sk, skb);
} else {
SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
sctp_inq_push(&chunk->rcvr->inqueue, chunk);
}
sctp_bh_unlock_sock(sk);
/* Release the asoc/ep ref we took in the lookup calls. */
if (asoc)
sctp_association_put(asoc);
else
sctp_endpoint_put(ep);
return 0;
discard_it:
SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
kfree_skb(skb);
return 0;
discard_release:
/* Release the asoc/ep ref we took in the lookup calls. */
if (asoc)
sctp_association_put(asoc);
else
sctp_endpoint_put(ep);
goto discard_it;
}
/* Process the backlog queue of the socket. Every skb on
* the backlog holds a ref on an association or endpoint.
* We hold this ref throughout the state machine to make
* sure that the structure we need is still around.
*/
int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
struct sctp_ep_common *rcvr = NULL;
int backloged = 0;
rcvr = chunk->rcvr;
/* If the rcvr is dead then the association or endpoint
* has been deleted and we can safely drop the chunk
* and refs that we are holding.
*/
if (rcvr->dead) {
sctp_chunk_free(chunk);
goto done;
}
if (unlikely(rcvr->sk != sk)) {
/* In this case, the association moved from one socket to
* another. We are currently sitting on the backlog of the
* old socket, so we need to move.
* However, since we are here in the process context we
* need to take make sure that the user doesn't own
* the new socket when we process the packet.
* If the new socket is user-owned, queue the chunk to the
* backlog of the new socket without dropping any refs.
* Otherwise, we can safely push the chunk on the inqueue.
*/
sk = rcvr->sk;
sctp_bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
sk_add_backlog(sk, skb);
backloged = 1;
} else
sctp_inq_push(inqueue, chunk);
sctp_bh_unlock_sock(sk);
/* If the chunk was backloged again, don't drop refs */
if (backloged)
return 0;
} else {
sctp_inq_push(inqueue, chunk);
}
done:
/* Release the refs we took in sctp_add_backlog */
if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
sctp_association_put(sctp_assoc(rcvr));
else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
sctp_endpoint_put(sctp_ep(rcvr));
else
BUG();
return 0;
}
static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
{
struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
struct sctp_ep_common *rcvr = chunk->rcvr;
/* Hold the assoc/ep while hanging on the backlog queue.
* This way, we know structures we need will not disappear from us
*/
if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
sctp_association_hold(sctp_assoc(rcvr));
else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
sctp_endpoint_hold(sctp_ep(rcvr));
else
BUG();
sk_add_backlog(sk, skb);
}
/* Handle icmp frag needed error. */
void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
struct sctp_transport *t, __u32 pmtu)
{
if (!t || (t->pathmtu == pmtu))
return;
if (sock_owned_by_user(sk)) {
asoc->pmtu_pending = 1;
t->pmtu_pending = 1;
return;
}
if (t->param_flags & SPP_PMTUD_ENABLE) {
/* Update transports view of the MTU */
sctp_transport_update_pmtu(t, pmtu);
/* Update association pmtu. */
sctp_assoc_sync_pmtu(asoc);
}
/* Retransmit with the new pmtu setting.
* Normally, if PMTU discovery is disabled, an ICMP Fragmentation
* Needed will never be sent, but if a message was sent before
* PMTU discovery was disabled that was larger than the PMTU, it
* would not be fragmented, so it must be re-transmitted fragmented.
*/
sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
}
/*
* SCTP Implementer's Guide, 2.37 ICMP handling procedures
*
* ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
* or a "Protocol Unreachable" treat this message as an abort
* with the T bit set.
*
* This function sends an event to the state machine, which will abort the
* association.
*
*/
void sctp_icmp_proto_unreachable(struct sock *sk,
struct sctp_association *asoc,
struct sctp_transport *t)
{
SCTP_DEBUG_PRINTK("%s\n", __FUNCTION__);
sctp_do_sm(SCTP_EVENT_T_OTHER,
SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
asoc->state, asoc->ep, asoc, t,
GFP_ATOMIC);
}
/* Common lookup code for icmp/icmpv6 error handler. */
struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
struct sctphdr *sctphdr,
struct sctp_association **app,
struct sctp_transport **tpp)
{
union sctp_addr saddr;
union sctp_addr daddr;
struct sctp_af *af;
struct sock *sk = NULL;
struct sctp_association *asoc;
struct sctp_transport *transport = NULL;
*app = NULL; *tpp = NULL;
af = sctp_get_af_specific(family);
if (unlikely(!af)) {
return NULL;
}
/* Initialize local addresses for lookups. */
af->from_skb(&saddr, skb, 1);
af->from_skb(&daddr, skb, 0);
/* Look for an association that matches the incoming ICMP error
* packet.
*/
asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
if (!asoc)
return NULL;
sk = asoc->base.sk;
if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
goto out;
}
sctp_bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
*/
if (sock_owned_by_user(sk))
NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
*app = asoc;
*tpp = transport;
return sk;
out:
if (asoc)
sctp_association_put(asoc);
return NULL;
}
/* Common cleanup code for icmp/icmpv6 error handler. */
void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
{
sctp_bh_unlock_sock(sk);
if (asoc)
sctp_association_put(asoc);
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
{
struct iphdr *iph = (struct iphdr *)skb->data;
const int ihlen = iph->ihl * 4;
const int type = icmp_hdr(skb)->type;
const int code = icmp_hdr(skb)->code;
struct sock *sk;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport;
struct inet_sock *inet;
sk_buff_data_t saveip, savesctp;
int err;
if (skb->len < ihlen + 8) {
ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
return;
}
/* Fix up skb to look at the embedded net header. */
saveip = skb->network_header;
savesctp = skb->transport_header;
skb_reset_network_header(skb);
skb_set_transport_header(skb, ihlen);
sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
/* Put back, the original values. */
skb->network_header = saveip;
skb->transport_header = savesctp;
if (!sk) {
ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMP_PARAMETERPROB:
err = EPROTO;
break;
case ICMP_DEST_UNREACH:
if (code > NR_ICMP_UNREACH)
goto out_unlock;
/* PMTU discovery (RFC1191) */
if (ICMP_FRAG_NEEDED == code) {
sctp_icmp_frag_needed(sk, asoc, transport, info);
goto out_unlock;
}
else {
if (ICMP_PROT_UNREACH == code) {
sctp_icmp_proto_unreachable(sk, asoc,
transport);
goto out_unlock;
}
}
err = icmp_err_convert[code].errno;
break;
case ICMP_TIME_EXCEEDED:
/* Ignore any time exceeded errors due to fragment reassembly
* timeouts.
*/
if (ICMP_EXC_FRAGTIME == code)
goto out_unlock;
err = EHOSTUNREACH;
break;
default:
goto out_unlock;
}
inet = inet_sk(sk);
if (!sock_owned_by_user(sk) && inet->recverr) {
sk->sk_err = err;
sk->sk_error_report(sk);
} else { /* Only an error on timeout */
sk->sk_err_soft = err;
}
out_unlock:
sctp_err_finish(sk, asoc);
}
/*
* RFC 2960, 8.4 - Handle "Out of the blue" Packets.
*
* This function scans all the chunks in the OOTB packet to determine if
* the packet should be discarded right away. If a response might be needed
* for this packet, or, if further processing is possible, the packet will
* be queued to a proper inqueue for the next phase of handling.
*
* Output:
* Return 0 - If further processing is needed.
* Return 1 - If the packet can be discarded right away.
*/
static int sctp_rcv_ootb(struct sk_buff *skb)
{
sctp_chunkhdr_t *ch;
__u8 *ch_end;
sctp_errhdr_t *err;
ch = (sctp_chunkhdr_t *) skb->data;
/* Scan through all the chunks in the packet. */
do {
/* Break out if chunk length is less then minimal. */
if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
break;
ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
if (ch_end > skb_tail_pointer(skb))
break;
/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
* receiver MUST silently discard the OOTB packet and take no
* further action.
*/
if (SCTP_CID_ABORT == ch->type)
goto discard;
/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
* chunk, the receiver should silently discard the packet
* and take no further action.
*/
if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
goto discard;
/* RFC 4460, 2.11.2
* This will discard packets with INIT chunk bundled as
* subsequent chunks in the packet. When INIT is first,
* the normal INIT processing will discard the chunk.
*/
if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
goto discard;
/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
* or a COOKIE ACK the SCTP Packet should be silently
* discarded.
*/
if (SCTP_CID_COOKIE_ACK == ch->type)
goto discard;
if (SCTP_CID_ERROR == ch->type) {
sctp_walk_errors(err, ch) {
if (SCTP_ERROR_STALE_COOKIE == err->cause)
goto discard;
}
}
ch = (sctp_chunkhdr_t *) ch_end;
} while (ch_end < skb_tail_pointer(skb));
return 0;
discard:
return 1;
}
/* Insert endpoint into the hash table. */
static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
{
struct sctp_ep_common **epp;
struct sctp_ep_common *epb;
struct sctp_hashbucket *head;
epb = &ep->base;
epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
head = &sctp_ep_hashtable[epb->hashent];
sctp_write_lock(&head->lock);
epp = &head->chain;
epb->next = *epp;
if (epb->next)
(*epp)->pprev = &epb->next;
*epp = epb;
epb->pprev = epp;
sctp_write_unlock(&head->lock);
}
/* Add an endpoint to the hash. Local BH-safe. */
void sctp_hash_endpoint(struct sctp_endpoint *ep)
{
sctp_local_bh_disable();
__sctp_hash_endpoint(ep);
sctp_local_bh_enable();
}
/* Remove endpoint from the hash table. */
static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
{
struct sctp_hashbucket *head;
struct sctp_ep_common *epb;
epb = &ep->base;
epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
head = &sctp_ep_hashtable[epb->hashent];
sctp_write_lock(&head->lock);
if (epb->pprev) {
if (epb->next)
epb->next->pprev = epb->pprev;
*epb->pprev = epb->next;
epb->pprev = NULL;
}
sctp_write_unlock(&head->lock);
}
/* Remove endpoint from the hash. Local BH-safe. */
void sctp_unhash_endpoint(struct sctp_endpoint *ep)
{
sctp_local_bh_disable();
__sctp_unhash_endpoint(ep);
sctp_local_bh_enable();
}
/* Look up an endpoint. */
static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
{
struct sctp_hashbucket *head;
struct sctp_ep_common *epb;
struct sctp_endpoint *ep;
int hash;
hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
head = &sctp_ep_hashtable[hash];
read_lock(&head->lock);
for (epb = head->chain; epb; epb = epb->next) {
ep = sctp_ep(epb);
if (sctp_endpoint_is_match(ep, laddr))
goto hit;
}
ep = sctp_sk((sctp_get_ctl_sock()))->ep;
epb = &ep->base;
hit:
sctp_endpoint_hold(ep);
read_unlock(&head->lock);
return ep;
}
/* Insert association into the hash table. */
static void __sctp_hash_established(struct sctp_association *asoc)
{
struct sctp_ep_common **epp;
struct sctp_ep_common *epb;
struct sctp_hashbucket *head;
epb = &asoc->base;
/* Calculate which chain this entry will belong to. */
epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
head = &sctp_assoc_hashtable[epb->hashent];
sctp_write_lock(&head->lock);
epp = &head->chain;
epb->next = *epp;
if (epb->next)
(*epp)->pprev = &epb->next;
*epp = epb;
epb->pprev = epp;
sctp_write_unlock(&head->lock);
}
/* Add an association to the hash. Local BH-safe. */
void sctp_hash_established(struct sctp_association *asoc)
{
if (asoc->temp)
return;
sctp_local_bh_disable();
__sctp_hash_established(asoc);
sctp_local_bh_enable();
}
/* Remove association from the hash table. */
static void __sctp_unhash_established(struct sctp_association *asoc)
{
struct sctp_hashbucket *head;
struct sctp_ep_common *epb;
epb = &asoc->base;
epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
asoc->peer.port);
head = &sctp_assoc_hashtable[epb->hashent];
sctp_write_lock(&head->lock);
if (epb->pprev) {
if (epb->next)
epb->next->pprev = epb->pprev;
*epb->pprev = epb->next;
epb->pprev = NULL;
}
sctp_write_unlock(&head->lock);
}
/* Remove association from the hash table. Local BH-safe. */
void sctp_unhash_established(struct sctp_association *asoc)
{
if (asoc->temp)
return;
sctp_local_bh_disable();
__sctp_unhash_established(asoc);
sctp_local_bh_enable();
}
/* Look up an association. */
static struct sctp_association *__sctp_lookup_association(
const union sctp_addr *local,
const union sctp_addr *peer,
struct sctp_transport **pt)
{
struct sctp_hashbucket *head;
struct sctp_ep_common *epb;
struct sctp_association *asoc;
struct sctp_transport *transport;
int hash;
/* Optimize here for direct hit, only listening connections can
* have wildcards anyways.
*/
hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
head = &sctp_assoc_hashtable[hash];
read_lock(&head->lock);
for (epb = head->chain; epb; epb = epb->next) {
asoc = sctp_assoc(epb);
transport = sctp_assoc_is_match(asoc, local, peer);
if (transport)
goto hit;
}
read_unlock(&head->lock);
return NULL;
hit:
*pt = transport;
sctp_association_hold(asoc);
read_unlock(&head->lock);
return asoc;
}
/* Look up an association. BH-safe. */
SCTP_STATIC
struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
const union sctp_addr *paddr,
struct sctp_transport **transportp)
{
struct sctp_association *asoc;
sctp_local_bh_disable();
asoc = __sctp_lookup_association(laddr, paddr, transportp);
sctp_local_bh_enable();
return asoc;
}
/* Is there an association matching the given local and peer addresses? */
int sctp_has_association(const union sctp_addr *laddr,
const union sctp_addr *paddr)
{
struct sctp_association *asoc;
struct sctp_transport *transport;
if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
sctp_association_put(asoc);
return 1;
}
return 0;
}
/*
* SCTP Implementors Guide, 2.18 Handling of address
* parameters within the INIT or INIT-ACK.
*
* D) When searching for a matching TCB upon reception of an INIT
* or INIT-ACK chunk the receiver SHOULD use not only the
* source address of the packet (containing the INIT or
* INIT-ACK) but the receiver SHOULD also use all valid
* address parameters contained within the chunk.
*
* 2.18.3 Solution description
*
* This new text clearly specifies to an implementor the need
* to look within the INIT or INIT-ACK. Any implementation that
* does not do this, may not be able to establish associations
* in certain circumstances.
*
*/
static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
const union sctp_addr *laddr, struct sctp_transport **transportp)
{
struct sctp_association *asoc;
union sctp_addr addr;
union sctp_addr *paddr = &addr;
struct sctphdr *sh = sctp_hdr(skb);
sctp_chunkhdr_t *ch;
union sctp_params params;
sctp_init_chunk_t *init;
struct sctp_transport *transport;
struct sctp_af *af;
ch = (sctp_chunkhdr_t *) skb->data;
/* The code below will attempt to walk the chunk and extract
* parameter information. Before we do that, we need to verify
* that the chunk length doesn't cause overflow. Otherwise, we'll
* walk off the end.
*/
if (WORD_ROUND(ntohs(ch->length)) > skb->len)
return NULL;
/*
* This code will NOT touch anything inside the chunk--it is
* strictly READ-ONLY.
*
* RFC 2960 3 SCTP packet Format
*
* Multiple chunks can be bundled into one SCTP packet up to
* the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
* COMPLETE chunks. These chunks MUST NOT be bundled with any
* other chunk in a packet. See Section 6.10 for more details
* on chunk bundling.
*/
/* Find the start of the TLVs and the end of the chunk. This is
* the region we search for address parameters.
*/
init = (sctp_init_chunk_t *)skb->data;
/* Walk the parameters looking for embedded addresses. */
sctp_walk_params(params, init, init_hdr.params) {
/* Note: Ignoring hostname addresses. */
af = sctp_get_af_specific(param_type2af(params.p->type));
if (!af)
continue;
af->from_addr_param(paddr, params.addr, sh->source, 0);
asoc = __sctp_lookup_association(laddr, paddr, &transport);
if (asoc)
return asoc;
}
return NULL;
}
/* SCTP-AUTH, Section 6.3:
* If the receiver does not find a STCB for a packet containing an AUTH
* chunk as the first chunk and not a COOKIE-ECHO chunk as the second
* chunk, it MUST use the chunks after the AUTH chunk to look up an existing
* association.
*
* This means that any chunks that can help us identify the association need
* to be looked at to find this assocation.
*
* TODO: The only chunk currently defined that can do that is ASCONF, but we
* don't support that functionality yet.
*/
static struct sctp_association *__sctp_rcv_auth_lookup(struct sk_buff *skb,
const union sctp_addr *paddr,
const union sctp_addr *laddr,
struct sctp_transport **transportp)
{
/* XXX - walk through the chunks looking for something that can
* help us find the association. INIT, and INIT-ACK are not permitted.
* That leaves ASCONF, but we don't support that yet.
*/
return NULL;
}
/*
* There are circumstances when we need to look inside the SCTP packet
* for information to help us find the association. Examples
* include looking inside of INIT/INIT-ACK chunks or after the AUTH
* chunks.
*/
static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
const union sctp_addr *paddr,
const union sctp_addr *laddr,
struct sctp_transport **transportp)
{
sctp_chunkhdr_t *ch;
ch = (sctp_chunkhdr_t *) skb->data;
/* If this is INIT/INIT-ACK look inside the chunk too. */
switch (ch->type) {
case SCTP_CID_INIT:
case SCTP_CID_INIT_ACK:
return __sctp_rcv_init_lookup(skb, laddr, transportp);
break;
case SCTP_CID_AUTH:
return __sctp_rcv_auth_lookup(skb, paddr, laddr, transportp);
break;
}
return NULL;
}
/* Lookup an association for an inbound skb. */
static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
const union sctp_addr *paddr,
const union sctp_addr *laddr,
struct sctp_transport **transportp)
{
struct sctp_association *asoc;
asoc = __sctp_lookup_association(laddr, paddr, transportp);
/* Further lookup for INIT/INIT-ACK packets.
* SCTP Implementors Guide, 2.18 Handling of address
* parameters within the INIT or INIT-ACK.
*/
if (!asoc)
asoc = __sctp_rcv_lookup_harder(skb, paddr, laddr, transportp);
return asoc;
}