2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/drivers/clk/mvebu/common.c
Gregory CLEMENT c3828949a2 clk: mvebu: use SPDX-License-Identifier
Convert the remaining files to SPDX license description.

Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2018-10-01 15:12:47 -07:00

295 lines
6.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Marvell EBU SoC common clock handling
*
* Copyright (C) 2012 Marvell
*
* Gregory CLEMENT <gregory.clement@free-electrons.com>
* Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
* Andrew Lunn <andrew@lunn.ch>
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/syscore_ops.h>
#include "common.h"
/*
* Core Clocks
*/
#define SSCG_CONF_MODE(reg) (((reg) >> 16) & 0x3)
#define SSCG_SPREAD_DOWN 0x0
#define SSCG_SPREAD_UP 0x1
#define SSCG_SPREAD_CENTRAL 0x2
#define SSCG_CONF_LOW(reg) (((reg) >> 8) & 0xFF)
#define SSCG_CONF_HIGH(reg) ((reg) & 0xFF)
static struct clk_onecell_data clk_data;
/*
* This function can be used by the Kirkwood, the Armada 370, the
* Armada XP and the Armada 375 SoC. The name of the function was
* chosen following the dt convention: using the first known SoC
* compatible with it.
*/
u32 kirkwood_fix_sscg_deviation(u32 system_clk)
{
struct device_node *sscg_np = NULL;
void __iomem *sscg_map;
u32 sscg_reg;
s32 low_bound, high_bound;
u64 freq_swing_half;
sscg_np = of_find_node_by_name(NULL, "sscg");
if (sscg_np == NULL) {
pr_err("cannot get SSCG register node\n");
return system_clk;
}
sscg_map = of_iomap(sscg_np, 0);
if (sscg_map == NULL) {
pr_err("cannot map SSCG register\n");
goto out;
}
sscg_reg = readl(sscg_map);
high_bound = SSCG_CONF_HIGH(sscg_reg);
low_bound = SSCG_CONF_LOW(sscg_reg);
if ((high_bound - low_bound) <= 0)
goto out;
/*
* From Marvell engineer we got the following formula (when
* this code was written, the datasheet was erroneous)
* Spread percentage = 1/96 * (H - L) / H
* H = SSCG_High_Boundary
* L = SSCG_Low_Boundary
*
* As the deviation is half of spread then it lead to the
* following formula in the code.
*
* To avoid an overflow and not lose any significant digit in
* the same time we have to use a 64 bit integer.
*/
freq_swing_half = (((u64)high_bound - (u64)low_bound)
* (u64)system_clk);
do_div(freq_swing_half, (2 * 96 * high_bound));
switch (SSCG_CONF_MODE(sscg_reg)) {
case SSCG_SPREAD_DOWN:
system_clk -= freq_swing_half;
break;
case SSCG_SPREAD_UP:
system_clk += freq_swing_half;
break;
case SSCG_SPREAD_CENTRAL:
default:
break;
}
iounmap(sscg_map);
out:
of_node_put(sscg_np);
return system_clk;
}
void __init mvebu_coreclk_setup(struct device_node *np,
const struct coreclk_soc_desc *desc)
{
const char *tclk_name = "tclk";
const char *cpuclk_name = "cpuclk";
void __iomem *base;
unsigned long rate;
int n;
base = of_iomap(np, 0);
if (WARN_ON(!base))
return;
/* Allocate struct for TCLK, cpu clk, and core ratio clocks */
clk_data.clk_num = 2 + desc->num_ratios;
/* One more clock for the optional refclk */
if (desc->get_refclk_freq)
clk_data.clk_num += 1;
clk_data.clks = kcalloc(clk_data.clk_num, sizeof(*clk_data.clks),
GFP_KERNEL);
if (WARN_ON(!clk_data.clks)) {
iounmap(base);
return;
}
/* Register TCLK */
of_property_read_string_index(np, "clock-output-names", 0,
&tclk_name);
rate = desc->get_tclk_freq(base);
clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL, 0,
rate);
WARN_ON(IS_ERR(clk_data.clks[0]));
/* Register CPU clock */
of_property_read_string_index(np, "clock-output-names", 1,
&cpuclk_name);
rate = desc->get_cpu_freq(base);
if (desc->is_sscg_enabled && desc->fix_sscg_deviation
&& desc->is_sscg_enabled(base))
rate = desc->fix_sscg_deviation(rate);
clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL, 0,
rate);
WARN_ON(IS_ERR(clk_data.clks[1]));
/* Register fixed-factor clocks derived from CPU clock */
for (n = 0; n < desc->num_ratios; n++) {
const char *rclk_name = desc->ratios[n].name;
int mult, div;
of_property_read_string_index(np, "clock-output-names",
2+n, &rclk_name);
desc->get_clk_ratio(base, desc->ratios[n].id, &mult, &div);
clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,
cpuclk_name, 0, mult, div);
WARN_ON(IS_ERR(clk_data.clks[2+n]));
}
/* Register optional refclk */
if (desc->get_refclk_freq) {
const char *name = "refclk";
of_property_read_string_index(np, "clock-output-names",
2 + desc->num_ratios, &name);
rate = desc->get_refclk_freq(base);
clk_data.clks[2 + desc->num_ratios] =
clk_register_fixed_rate(NULL, name, NULL, 0, rate);
WARN_ON(IS_ERR(clk_data.clks[2 + desc->num_ratios]));
}
/* SAR register isn't needed anymore */
iounmap(base);
of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
}
/*
* Clock Gating Control
*/
DEFINE_SPINLOCK(ctrl_gating_lock);
struct clk_gating_ctrl {
spinlock_t *lock;
struct clk **gates;
int num_gates;
void __iomem *base;
u32 saved_reg;
};
static struct clk_gating_ctrl *ctrl;
static struct clk *clk_gating_get_src(
struct of_phandle_args *clkspec, void *data)
{
int n;
if (clkspec->args_count < 1)
return ERR_PTR(-EINVAL);
for (n = 0; n < ctrl->num_gates; n++) {
struct clk_gate *gate =
to_clk_gate(__clk_get_hw(ctrl->gates[n]));
if (clkspec->args[0] == gate->bit_idx)
return ctrl->gates[n];
}
return ERR_PTR(-ENODEV);
}
static int mvebu_clk_gating_suspend(void)
{
ctrl->saved_reg = readl(ctrl->base);
return 0;
}
static void mvebu_clk_gating_resume(void)
{
writel(ctrl->saved_reg, ctrl->base);
}
static struct syscore_ops clk_gate_syscore_ops = {
.suspend = mvebu_clk_gating_suspend,
.resume = mvebu_clk_gating_resume,
};
void __init mvebu_clk_gating_setup(struct device_node *np,
const struct clk_gating_soc_desc *desc)
{
struct clk *clk;
void __iomem *base;
const char *default_parent = NULL;
int n;
if (ctrl) {
pr_err("mvebu-clk-gating: cannot instantiate more than one gatable clock device\n");
return;
}
base = of_iomap(np, 0);
if (WARN_ON(!base))
return;
clk = of_clk_get(np, 0);
if (!IS_ERR(clk)) {
default_parent = __clk_get_name(clk);
clk_put(clk);
}
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (WARN_ON(!ctrl))
goto ctrl_out;
/* lock must already be initialized */
ctrl->lock = &ctrl_gating_lock;
ctrl->base = base;
/* Count, allocate, and register clock gates */
for (n = 0; desc[n].name;)
n++;
ctrl->num_gates = n;
ctrl->gates = kcalloc(ctrl->num_gates, sizeof(*ctrl->gates),
GFP_KERNEL);
if (WARN_ON(!ctrl->gates))
goto gates_out;
for (n = 0; n < ctrl->num_gates; n++) {
const char *parent =
(desc[n].parent) ? desc[n].parent : default_parent;
ctrl->gates[n] = clk_register_gate(NULL, desc[n].name, parent,
desc[n].flags, base, desc[n].bit_idx,
0, ctrl->lock);
WARN_ON(IS_ERR(ctrl->gates[n]));
}
of_clk_add_provider(np, clk_gating_get_src, ctrl);
register_syscore_ops(&clk_gate_syscore_ops);
return;
gates_out:
kfree(ctrl);
ctrl_out:
iounmap(base);
}