2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/drivers/auxdisplay/cfag12864b.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

395 lines
8.2 KiB
C

/*
* Filename: cfag12864b.c
* Version: 0.1.0
* Description: cfag12864b LCD driver
* License: GPLv2
* Depends: ks0108
*
* Author: Copyright (C) Miguel Ojeda Sandonis
* Date: 2006-10-31
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/ks0108.h>
#include <linux/cfag12864b.h>
#define CFAG12864B_NAME "cfag12864b"
/*
* Module Parameters
*/
static unsigned int cfag12864b_rate = CONFIG_CFAG12864B_RATE;
module_param(cfag12864b_rate, uint, S_IRUGO);
MODULE_PARM_DESC(cfag12864b_rate,
"Refresh rate (hertzs)");
unsigned int cfag12864b_getrate(void)
{
return cfag12864b_rate;
}
/*
* cfag12864b Commands
*
* E = Enable signal
* Everytime E switch from low to high,
* cfag12864b/ks0108 reads the command/data.
*
* CS1 = First ks0108controller.
* If high, the first ks0108 controller receives commands/data.
*
* CS2 = Second ks0108 controller
* If high, the second ks0108 controller receives commands/data.
*
* DI = Data/Instruction
* If low, cfag12864b will expect commands.
* If high, cfag12864b will expect data.
*
*/
#define bit(n) (((unsigned char)1)<<(n))
#define CFAG12864B_BIT_E (0)
#define CFAG12864B_BIT_CS1 (2)
#define CFAG12864B_BIT_CS2 (1)
#define CFAG12864B_BIT_DI (3)
static unsigned char cfag12864b_state;
static void cfag12864b_set(void)
{
ks0108_writecontrol(cfag12864b_state);
}
static void cfag12864b_setbit(unsigned char state, unsigned char n)
{
if (state)
cfag12864b_state |= bit(n);
else
cfag12864b_state &= ~bit(n);
}
static void cfag12864b_e(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_E);
cfag12864b_set();
}
static void cfag12864b_cs1(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_CS1);
}
static void cfag12864b_cs2(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_CS2);
}
static void cfag12864b_di(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_DI);
}
static void cfag12864b_setcontrollers(unsigned char first,
unsigned char second)
{
if (first)
cfag12864b_cs1(0);
else
cfag12864b_cs1(1);
if (second)
cfag12864b_cs2(0);
else
cfag12864b_cs2(1);
}
static void cfag12864b_controller(unsigned char which)
{
if (which == 0)
cfag12864b_setcontrollers(1, 0);
else if (which == 1)
cfag12864b_setcontrollers(0, 1);
}
static void cfag12864b_displaystate(unsigned char state)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_displaystate(state);
cfag12864b_e(0);
}
static void cfag12864b_address(unsigned char address)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_address(address);
cfag12864b_e(0);
}
static void cfag12864b_page(unsigned char page)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_page(page);
cfag12864b_e(0);
}
static void cfag12864b_startline(unsigned char startline)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_startline(startline);
cfag12864b_e(0);
}
static void cfag12864b_writebyte(unsigned char byte)
{
cfag12864b_di(1);
cfag12864b_e(1);
ks0108_writedata(byte);
cfag12864b_e(0);
}
static void cfag12864b_nop(void)
{
cfag12864b_startline(0);
}
/*
* cfag12864b Internal Commands
*/
static void cfag12864b_on(void)
{
cfag12864b_setcontrollers(1, 1);
cfag12864b_displaystate(1);
}
static void cfag12864b_off(void)
{
cfag12864b_setcontrollers(1, 1);
cfag12864b_displaystate(0);
}
static void cfag12864b_clear(void)
{
unsigned char i, j;
cfag12864b_setcontrollers(1, 1);
for (i = 0; i < CFAG12864B_PAGES; i++) {
cfag12864b_page(i);
cfag12864b_address(0);
for (j = 0; j < CFAG12864B_ADDRESSES; j++)
cfag12864b_writebyte(0);
}
}
/*
* Update work
*/
unsigned char *cfag12864b_buffer;
static unsigned char *cfag12864b_cache;
static DEFINE_MUTEX(cfag12864b_mutex);
static unsigned char cfag12864b_updating;
static void cfag12864b_update(struct work_struct *delayed_work);
static struct workqueue_struct *cfag12864b_workqueue;
static DECLARE_DELAYED_WORK(cfag12864b_work, cfag12864b_update);
static void cfag12864b_queue(void)
{
queue_delayed_work(cfag12864b_workqueue, &cfag12864b_work,
HZ / cfag12864b_rate);
}
unsigned char cfag12864b_enable(void)
{
unsigned char ret;
mutex_lock(&cfag12864b_mutex);
if (!cfag12864b_updating) {
cfag12864b_updating = 1;
cfag12864b_queue();
ret = 0;
} else
ret = 1;
mutex_unlock(&cfag12864b_mutex);
return ret;
}
void cfag12864b_disable(void)
{
mutex_lock(&cfag12864b_mutex);
if (cfag12864b_updating) {
cfag12864b_updating = 0;
cancel_delayed_work(&cfag12864b_work);
flush_workqueue(cfag12864b_workqueue);
}
mutex_unlock(&cfag12864b_mutex);
}
unsigned char cfag12864b_isenabled(void)
{
return cfag12864b_updating;
}
static void cfag12864b_update(struct work_struct *work)
{
unsigned char c;
unsigned short i, j, k, b;
if (memcmp(cfag12864b_cache, cfag12864b_buffer, CFAG12864B_SIZE)) {
for (i = 0; i < CFAG12864B_CONTROLLERS; i++) {
cfag12864b_controller(i);
cfag12864b_nop();
for (j = 0; j < CFAG12864B_PAGES; j++) {
cfag12864b_page(j);
cfag12864b_nop();
cfag12864b_address(0);
cfag12864b_nop();
for (k = 0; k < CFAG12864B_ADDRESSES; k++) {
for (c = 0, b = 0; b < 8; b++)
if (cfag12864b_buffer
[i * CFAG12864B_ADDRESSES / 8
+ k / 8 + (j * 8 + b) *
CFAG12864B_WIDTH / 8]
& bit(k % 8))
c |= bit(b);
cfag12864b_writebyte(c);
}
}
}
memcpy(cfag12864b_cache, cfag12864b_buffer, CFAG12864B_SIZE);
}
if (cfag12864b_updating)
cfag12864b_queue();
}
/*
* cfag12864b Exported Symbols
*/
EXPORT_SYMBOL_GPL(cfag12864b_buffer);
EXPORT_SYMBOL_GPL(cfag12864b_getrate);
EXPORT_SYMBOL_GPL(cfag12864b_enable);
EXPORT_SYMBOL_GPL(cfag12864b_disable);
EXPORT_SYMBOL_GPL(cfag12864b_isenabled);
/*
* Is the module inited?
*/
static unsigned char cfag12864b_inited;
unsigned char cfag12864b_isinited(void)
{
return cfag12864b_inited;
}
EXPORT_SYMBOL_GPL(cfag12864b_isinited);
/*
* Module Init & Exit
*/
static int __init cfag12864b_init(void)
{
int ret = -EINVAL;
/* ks0108_init() must be called first */
if (!ks0108_isinited()) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"ks0108 is not initialized\n");
goto none;
}
BUILD_BUG_ON(PAGE_SIZE < CFAG12864B_SIZE);
cfag12864b_buffer = (unsigned char *) get_zeroed_page(GFP_KERNEL);
if (cfag12864b_buffer == NULL) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"can't get a free page\n");
ret = -ENOMEM;
goto none;
}
cfag12864b_cache = kmalloc(sizeof(unsigned char) *
CFAG12864B_SIZE, GFP_KERNEL);
if (cfag12864b_cache == NULL) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"can't alloc cache buffer (%i bytes)\n",
CFAG12864B_SIZE);
ret = -ENOMEM;
goto bufferalloced;
}
cfag12864b_workqueue = create_singlethread_workqueue(CFAG12864B_NAME);
if (cfag12864b_workqueue == NULL)
goto cachealloced;
cfag12864b_clear();
cfag12864b_on();
cfag12864b_inited = 1;
return 0;
cachealloced:
kfree(cfag12864b_cache);
bufferalloced:
free_page((unsigned long) cfag12864b_buffer);
none:
return ret;
}
static void __exit cfag12864b_exit(void)
{
cfag12864b_disable();
cfag12864b_off();
destroy_workqueue(cfag12864b_workqueue);
kfree(cfag12864b_cache);
free_page((unsigned long) cfag12864b_buffer);
}
module_init(cfag12864b_init);
module_exit(cfag12864b_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Miguel Ojeda Sandonis <miguel.ojeda.sandonis@gmail.com>");
MODULE_DESCRIPTION("cfag12864b LCD driver");