2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/net/tsi108_eth.c
Joe Perches ad361c9884 Remove multiple KERN_ prefixes from printk formats
Commit 5fd29d6ccb ("printk: clean up
handling of log-levels and newlines") changed printk semantics.  printk
lines with multiple KERN_<level> prefixes are no longer emitted as
before the patch.

<level> is now included in the output on each additional use.

Remove all uses of multiple KERN_<level>s in formats.

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-08 10:30:03 -07:00

1741 lines
47 KiB
C

/*******************************************************************************
Copyright(c) 2006 Tundra Semiconductor Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*******************************************************************************/
/* This driver is based on the driver code originally developed
* for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
* scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
*
* Currently changes from original version are:
* - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
* - modifications to handle two ports independently and support for
* additional PHY devices (alexandre.bounine@tundra.com)
* - Get hardware information from platform device. (tie-fei.zang@freescale.com)
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/rtnetlink.h>
#include <linux/timer.h>
#include <linux/platform_device.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/tsi108.h>
#include "tsi108_eth.h"
#define MII_READ_DELAY 10000 /* max link wait time in msec */
#define TSI108_RXRING_LEN 256
/* NOTE: The driver currently does not support receiving packets
* larger than the buffer size, so don't decrease this (unless you
* want to add such support).
*/
#define TSI108_RXBUF_SIZE 1536
#define TSI108_TXRING_LEN 256
#define TSI108_TX_INT_FREQ 64
/* Check the phy status every half a second. */
#define CHECK_PHY_INTERVAL (HZ/2)
static int tsi108_init_one(struct platform_device *pdev);
static int tsi108_ether_remove(struct platform_device *pdev);
struct tsi108_prv_data {
void __iomem *regs; /* Base of normal regs */
void __iomem *phyregs; /* Base of register bank used for PHY access */
struct net_device *dev;
struct napi_struct napi;
unsigned int phy; /* Index of PHY for this interface */
unsigned int irq_num;
unsigned int id;
unsigned int phy_type;
struct timer_list timer;/* Timer that triggers the check phy function */
unsigned int rxtail; /* Next entry in rxring to read */
unsigned int rxhead; /* Next entry in rxring to give a new buffer */
unsigned int rxfree; /* Number of free, allocated RX buffers */
unsigned int rxpending; /* Non-zero if there are still descriptors
* to be processed from a previous descriptor
* interrupt condition that has been cleared */
unsigned int txtail; /* Next TX descriptor to check status on */
unsigned int txhead; /* Next TX descriptor to use */
/* Number of free TX descriptors. This could be calculated from
* rxhead and rxtail if one descriptor were left unused to disambiguate
* full and empty conditions, but it's simpler to just keep track
* explicitly. */
unsigned int txfree;
unsigned int phy_ok; /* The PHY is currently powered on. */
/* PHY status (duplex is 1 for half, 2 for full,
* so that the default 0 indicates that neither has
* yet been configured). */
unsigned int link_up;
unsigned int speed;
unsigned int duplex;
tx_desc *txring;
rx_desc *rxring;
struct sk_buff *txskbs[TSI108_TXRING_LEN];
struct sk_buff *rxskbs[TSI108_RXRING_LEN];
dma_addr_t txdma, rxdma;
/* txlock nests in misclock and phy_lock */
spinlock_t txlock, misclock;
/* stats is used to hold the upper bits of each hardware counter,
* and tmpstats is used to hold the full values for returning
* to the caller of get_stats(). They must be separate in case
* an overflow interrupt occurs before the stats are consumed.
*/
struct net_device_stats stats;
struct net_device_stats tmpstats;
/* These stats are kept separate in hardware, thus require individual
* fields for handling carry. They are combined in get_stats.
*/
unsigned long rx_fcs; /* Add to rx_frame_errors */
unsigned long rx_short_fcs; /* Add to rx_frame_errors */
unsigned long rx_long_fcs; /* Add to rx_frame_errors */
unsigned long rx_underruns; /* Add to rx_length_errors */
unsigned long rx_overruns; /* Add to rx_length_errors */
unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
unsigned long mc_hash[16];
u32 msg_enable; /* debug message level */
struct mii_if_info mii_if;
unsigned int init_media;
};
/* Structure for a device driver */
static struct platform_driver tsi_eth_driver = {
.probe = tsi108_init_one,
.remove = tsi108_ether_remove,
.driver = {
.name = "tsi-ethernet",
.owner = THIS_MODULE,
},
};
static void tsi108_timed_checker(unsigned long dev_ptr);
static void dump_eth_one(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
printk("Dumping %s...\n", dev->name);
printk("intstat %x intmask %x phy_ok %d"
" link %d speed %d duplex %d\n",
TSI_READ(TSI108_EC_INTSTAT),
TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
data->link_up, data->speed, data->duplex);
printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
data->txhead, data->txtail, data->txfree,
TSI_READ(TSI108_EC_TXSTAT),
TSI_READ(TSI108_EC_TXESTAT),
TSI_READ(TSI108_EC_TXERR));
printk("RX: head %d, tail %d, free %d, stat %x,"
" estat %x, err %x, pending %d\n\n",
data->rxhead, data->rxtail, data->rxfree,
TSI_READ(TSI108_EC_RXSTAT),
TSI_READ(TSI108_EC_RXESTAT),
TSI_READ(TSI108_EC_RXERR), data->rxpending);
}
/* Synchronization is needed between the thread and up/down events.
* Note that the PHY is accessed through the same registers for both
* interfaces, so this can't be made interface-specific.
*/
static DEFINE_SPINLOCK(phy_lock);
static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
{
unsigned i;
TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
(data->phy << TSI108_MAC_MII_ADDR_PHY) |
(reg << TSI108_MAC_MII_ADDR_REG));
TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
for (i = 0; i < 100; i++) {
if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
(TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
break;
udelay(10);
}
if (i == 100)
return 0xffff;
else
return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
}
static void tsi108_write_mii(struct tsi108_prv_data *data,
int reg, u16 val)
{
unsigned i = 100;
TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
(data->phy << TSI108_MAC_MII_ADDR_PHY) |
(reg << TSI108_MAC_MII_ADDR_REG));
TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
while (i--) {
if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
TSI108_MAC_MII_IND_BUSY))
break;
udelay(10);
}
}
static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
{
struct tsi108_prv_data *data = netdev_priv(dev);
return tsi108_read_mii(data, reg);
}
static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
{
struct tsi108_prv_data *data = netdev_priv(dev);
tsi108_write_mii(data, reg, val);
}
static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
int reg, u16 val)
{
unsigned i = 1000;
TSI_WRITE(TSI108_MAC_MII_ADDR,
(0x1e << TSI108_MAC_MII_ADDR_PHY)
| (reg << TSI108_MAC_MII_ADDR_REG));
TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
while(i--) {
if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
return;
udelay(10);
}
printk(KERN_ERR "%s function time out \n", __func__);
}
static int mii_speed(struct mii_if_info *mii)
{
int advert, lpa, val, media;
int lpa2 = 0;
int speed;
if (!mii_link_ok(mii))
return 0;
val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
if ((val & BMSR_ANEGCOMPLETE) == 0)
return 0;
advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
media = mii_nway_result(advert & lpa);
if (mii->supports_gmii)
lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
(media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
return speed;
}
static void tsi108_check_phy(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 mac_cfg2_reg, portctrl_reg;
u32 duplex;
u32 speed;
unsigned long flags;
spin_lock_irqsave(&phy_lock, flags);
if (!data->phy_ok)
goto out;
duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
data->init_media = 0;
if (netif_carrier_ok(dev)) {
speed = mii_speed(&data->mii_if);
if ((speed != data->speed) || duplex) {
mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
if (speed == 1000) {
mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
} else {
mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
}
data->speed = speed;
if (data->mii_if.full_duplex) {
mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
data->duplex = 2;
} else {
mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
data->duplex = 1;
}
TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
}
if (data->link_up == 0) {
/* The manual says it can take 3-4 usecs for the speed change
* to take effect.
*/
udelay(5);
spin_lock(&data->txlock);
if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
netif_wake_queue(dev);
data->link_up = 1;
spin_unlock(&data->txlock);
}
} else {
if (data->link_up == 1) {
netif_stop_queue(dev);
data->link_up = 0;
printk(KERN_NOTICE "%s : link is down\n", dev->name);
}
goto out;
}
out:
spin_unlock_irqrestore(&phy_lock, flags);
}
static inline void
tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
unsigned long *upper)
{
if (carry & carry_bit)
*upper += carry_shift;
}
static void tsi108_stat_carry(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 carry1, carry2;
spin_lock_irq(&data->misclock);
carry1 = TSI_READ(TSI108_STAT_CARRY1);
carry2 = TSI_READ(TSI108_STAT_CARRY2);
TSI_WRITE(TSI108_STAT_CARRY1, carry1);
TSI_WRITE(TSI108_STAT_CARRY2, carry2);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
TSI108_STAT_RXPKTS_CARRY,
&data->stats.rx_packets);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
TSI108_STAT_RXMCAST_CARRY,
&data->stats.multicast);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
TSI108_STAT_RXALIGN_CARRY,
&data->stats.rx_frame_errors);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
TSI108_STAT_RXLENGTH_CARRY,
&data->stats.rx_length_errors);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
TSI108_STAT_RXDROP_CARRY,
&data->stats.rx_missed_errors);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
TSI108_STAT_TXPKTS_CARRY,
&data->stats.tx_packets);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
TSI108_STAT_TXEXDEF_CARRY,
&data->stats.tx_aborted_errors);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
TSI108_STAT_TXTCOL_CARRY,
&data->stats.collisions);
tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
TSI108_STAT_TXPAUSEDROP_CARRY,
&data->tx_pause_drop);
spin_unlock_irq(&data->misclock);
}
/* Read a stat counter atomically with respect to carries.
* data->misclock must be held.
*/
static inline unsigned long
tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
int carry_shift, unsigned long *upper)
{
int carryreg;
unsigned long val;
if (reg < 0xb0)
carryreg = TSI108_STAT_CARRY1;
else
carryreg = TSI108_STAT_CARRY2;
again:
val = TSI_READ(reg) | *upper;
/* Check to see if it overflowed, but the interrupt hasn't
* been serviced yet. If so, handle the carry here, and
* try again.
*/
if (unlikely(TSI_READ(carryreg) & carry_bit)) {
*upper += carry_shift;
TSI_WRITE(carryreg, carry_bit);
goto again;
}
return val;
}
static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
{
unsigned long excol;
struct tsi108_prv_data *data = netdev_priv(dev);
spin_lock_irq(&data->misclock);
data->tmpstats.rx_packets =
tsi108_read_stat(data, TSI108_STAT_RXPKTS,
TSI108_STAT_CARRY1_RXPKTS,
TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
data->tmpstats.tx_packets =
tsi108_read_stat(data, TSI108_STAT_TXPKTS,
TSI108_STAT_CARRY2_TXPKTS,
TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
data->tmpstats.rx_bytes =
tsi108_read_stat(data, TSI108_STAT_RXBYTES,
TSI108_STAT_CARRY1_RXBYTES,
TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
data->tmpstats.tx_bytes =
tsi108_read_stat(data, TSI108_STAT_TXBYTES,
TSI108_STAT_CARRY2_TXBYTES,
TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
data->tmpstats.multicast =
tsi108_read_stat(data, TSI108_STAT_RXMCAST,
TSI108_STAT_CARRY1_RXMCAST,
TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
TSI108_STAT_CARRY2_TXEXCOL,
TSI108_STAT_TXEXCOL_CARRY,
&data->tx_coll_abort);
data->tmpstats.collisions =
tsi108_read_stat(data, TSI108_STAT_TXTCOL,
TSI108_STAT_CARRY2_TXTCOL,
TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
data->tmpstats.collisions += excol;
data->tmpstats.rx_length_errors =
tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
TSI108_STAT_CARRY1_RXLENGTH,
TSI108_STAT_RXLENGTH_CARRY,
&data->stats.rx_length_errors);
data->tmpstats.rx_length_errors +=
tsi108_read_stat(data, TSI108_STAT_RXRUNT,
TSI108_STAT_CARRY1_RXRUNT,
TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
data->tmpstats.rx_length_errors +=
tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
TSI108_STAT_CARRY1_RXJUMBO,
TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
data->tmpstats.rx_frame_errors =
tsi108_read_stat(data, TSI108_STAT_RXALIGN,
TSI108_STAT_CARRY1_RXALIGN,
TSI108_STAT_RXALIGN_CARRY,
&data->stats.rx_frame_errors);
data->tmpstats.rx_frame_errors +=
tsi108_read_stat(data, TSI108_STAT_RXFCS,
TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
&data->rx_fcs);
data->tmpstats.rx_frame_errors +=
tsi108_read_stat(data, TSI108_STAT_RXFRAG,
TSI108_STAT_CARRY1_RXFRAG,
TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
data->tmpstats.rx_missed_errors =
tsi108_read_stat(data, TSI108_STAT_RXDROP,
TSI108_STAT_CARRY1_RXDROP,
TSI108_STAT_RXDROP_CARRY,
&data->stats.rx_missed_errors);
/* These three are maintained by software. */
data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
data->tmpstats.tx_aborted_errors =
tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
TSI108_STAT_CARRY2_TXEXDEF,
TSI108_STAT_TXEXDEF_CARRY,
&data->stats.tx_aborted_errors);
data->tmpstats.tx_aborted_errors +=
tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
TSI108_STAT_CARRY2_TXPAUSE,
TSI108_STAT_TXPAUSEDROP_CARRY,
&data->tx_pause_drop);
data->tmpstats.tx_aborted_errors += excol;
data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
data->tmpstats.rx_crc_errors +
data->tmpstats.rx_frame_errors +
data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
spin_unlock_irq(&data->misclock);
return &data->tmpstats;
}
static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
{
TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
TSI108_EC_RXQ_PTRHIGH_VALID);
TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
| TSI108_EC_RXCTRL_QUEUE0);
}
static void tsi108_restart_tx(struct tsi108_prv_data * data)
{
TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
TSI108_EC_TXQ_PTRHIGH_VALID);
TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
}
/* txlock must be held by caller, with IRQs disabled, and
* with permission to re-enable them when the lock is dropped.
*/
static void tsi108_complete_tx(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
int tx;
struct sk_buff *skb;
int release = 0;
while (!data->txfree || data->txhead != data->txtail) {
tx = data->txtail;
if (data->txring[tx].misc & TSI108_TX_OWN)
break;
skb = data->txskbs[tx];
if (!(data->txring[tx].misc & TSI108_TX_OK))
printk("%s: bad tx packet, misc %x\n",
dev->name, data->txring[tx].misc);
data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
data->txfree++;
if (data->txring[tx].misc & TSI108_TX_EOF) {
dev_kfree_skb_any(skb);
release++;
}
}
if (release) {
if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
netif_wake_queue(dev);
}
}
static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
int frags = skb_shinfo(skb)->nr_frags + 1;
int i;
if (!data->phy_ok && net_ratelimit())
printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
if (!data->link_up) {
printk(KERN_ERR "%s: Transmit while link is down!\n",
dev->name);
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
if (data->txfree < MAX_SKB_FRAGS + 1) {
netif_stop_queue(dev);
if (net_ratelimit())
printk(KERN_ERR "%s: Transmit with full tx ring!\n",
dev->name);
return NETDEV_TX_BUSY;
}
if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
netif_stop_queue(dev);
}
spin_lock_irq(&data->txlock);
for (i = 0; i < frags; i++) {
int misc = 0;
int tx = data->txhead;
/* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
* the interrupt bit. TX descriptor-complete interrupts are
* enabled when the queue fills up, and masked when there is
* still free space. This way, when saturating the outbound
* link, the tx interrupts are kept to a reasonable level.
* When the queue is not full, reclamation of skbs still occurs
* as new packets are transmitted, or on a queue-empty
* interrupt.
*/
if ((tx % TSI108_TX_INT_FREQ == 0) &&
((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
misc = TSI108_TX_INT;
data->txskbs[tx] = skb;
if (i == 0) {
data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
skb->len - skb->data_len, DMA_TO_DEVICE);
data->txring[tx].len = skb->len - skb->data_len;
misc |= TSI108_TX_SOF;
} else {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
data->txring[tx].buf0 =
dma_map_page(NULL, frag->page, frag->page_offset,
frag->size, DMA_TO_DEVICE);
data->txring[tx].len = frag->size;
}
if (i == frags - 1)
misc |= TSI108_TX_EOF;
if (netif_msg_pktdata(data)) {
int i;
printk("%s: Tx Frame contents (%d)\n", dev->name,
skb->len);
for (i = 0; i < skb->len; i++)
printk(" %2.2x", skb->data[i]);
printk(".\n");
}
data->txring[tx].misc = misc | TSI108_TX_OWN;
data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
data->txfree--;
}
tsi108_complete_tx(dev);
/* This must be done after the check for completed tx descriptors,
* so that the tail pointer is correct.
*/
if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
tsi108_restart_tx(data);
spin_unlock_irq(&data->txlock);
return NETDEV_TX_OK;
}
static int tsi108_complete_rx(struct net_device *dev, int budget)
{
struct tsi108_prv_data *data = netdev_priv(dev);
int done = 0;
while (data->rxfree && done != budget) {
int rx = data->rxtail;
struct sk_buff *skb;
if (data->rxring[rx].misc & TSI108_RX_OWN)
break;
skb = data->rxskbs[rx];
data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
data->rxfree--;
done++;
if (data->rxring[rx].misc & TSI108_RX_BAD) {
spin_lock_irq(&data->misclock);
if (data->rxring[rx].misc & TSI108_RX_CRC)
data->stats.rx_crc_errors++;
if (data->rxring[rx].misc & TSI108_RX_OVER)
data->stats.rx_fifo_errors++;
spin_unlock_irq(&data->misclock);
dev_kfree_skb_any(skb);
continue;
}
if (netif_msg_pktdata(data)) {
int i;
printk("%s: Rx Frame contents (%d)\n",
dev->name, data->rxring[rx].len);
for (i = 0; i < data->rxring[rx].len; i++)
printk(" %2.2x", skb->data[i]);
printk(".\n");
}
skb_put(skb, data->rxring[rx].len);
skb->protocol = eth_type_trans(skb, dev);
netif_receive_skb(skb);
}
return done;
}
static int tsi108_refill_rx(struct net_device *dev, int budget)
{
struct tsi108_prv_data *data = netdev_priv(dev);
int done = 0;
while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
int rx = data->rxhead;
struct sk_buff *skb;
data->rxskbs[rx] = skb = netdev_alloc_skb(dev,
TSI108_RXBUF_SIZE + 2);
if (!skb)
break;
skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
TSI108_RX_SKB_SIZE,
DMA_FROM_DEVICE);
/* Sometimes the hardware sets blen to zero after packet
* reception, even though the manual says that it's only ever
* modified by the driver.
*/
data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
data->rxfree++;
done++;
}
if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
TSI108_EC_RXSTAT_QUEUE0))
tsi108_restart_rx(data, dev);
return done;
}
static int tsi108_poll(struct napi_struct *napi, int budget)
{
struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
struct net_device *dev = data->dev;
u32 estat = TSI_READ(TSI108_EC_RXESTAT);
u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
int num_received = 0, num_filled = 0;
intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
TSI_WRITE(TSI108_EC_RXESTAT, estat);
TSI_WRITE(TSI108_EC_INTSTAT, intstat);
if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
num_received = tsi108_complete_rx(dev, budget);
/* This should normally fill no more slots than the number of
* packets received in tsi108_complete_rx(). The exception
* is when we previously ran out of memory for RX SKBs. In that
* case, it's helpful to obey the budget, not only so that the
* CPU isn't hogged, but so that memory (which may still be low)
* is not hogged by one device.
*
* A work unit is considered to be two SKBs to allow us to catch
* up when the ring has shrunk due to out-of-memory but we're
* still removing the full budget's worth of packets each time.
*/
if (data->rxfree < TSI108_RXRING_LEN)
num_filled = tsi108_refill_rx(dev, budget * 2);
if (intstat & TSI108_INT_RXERROR) {
u32 err = TSI_READ(TSI108_EC_RXERR);
TSI_WRITE(TSI108_EC_RXERR, err);
if (err) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: RX error %x\n",
dev->name, err);
if (!(TSI_READ(TSI108_EC_RXSTAT) &
TSI108_EC_RXSTAT_QUEUE0))
tsi108_restart_rx(data, dev);
}
}
if (intstat & TSI108_INT_RXOVERRUN) {
spin_lock_irq(&data->misclock);
data->stats.rx_fifo_errors++;
spin_unlock_irq(&data->misclock);
}
if (num_received < budget) {
data->rxpending = 0;
napi_complete(napi);
TSI_WRITE(TSI108_EC_INTMASK,
TSI_READ(TSI108_EC_INTMASK)
& ~(TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH |
TSI108_INT_RXOVERRUN |
TSI108_INT_RXERROR |
TSI108_INT_RXWAIT));
} else {
data->rxpending = 1;
}
return num_received;
}
static void tsi108_rx_int(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
/* A race could cause dev to already be scheduled, so it's not an
* error if that happens (and interrupts shouldn't be re-masked,
* because that can cause harmful races, if poll has already
* unmasked them but not cleared LINK_STATE_SCHED).
*
* This can happen if this code races with tsi108_poll(), which masks
* the interrupts after tsi108_irq_one() read the mask, but before
* napi_schedule is called. It could also happen due to calls
* from tsi108_check_rxring().
*/
if (napi_schedule_prep(&data->napi)) {
/* Mask, rather than ack, the receive interrupts. The ack
* will happen in tsi108_poll().
*/
TSI_WRITE(TSI108_EC_INTMASK,
TSI_READ(TSI108_EC_INTMASK) |
TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH |
TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
TSI108_INT_RXWAIT);
__napi_schedule(&data->napi);
} else {
if (!netif_running(dev)) {
/* This can happen if an interrupt occurs while the
* interface is being brought down, as the START
* bit is cleared before the stop function is called.
*
* In this case, the interrupts must be masked, or
* they will continue indefinitely.
*
* There's a race here if the interface is brought down
* and then up in rapid succession, as the device could
* be made running after the above check and before
* the masking below. This will only happen if the IRQ
* thread has a lower priority than the task brining
* up the interface. Fixing this race would likely
* require changes in generic code.
*/
TSI_WRITE(TSI108_EC_INTMASK,
TSI_READ
(TSI108_EC_INTMASK) |
TSI108_INT_RXQUEUE0 |
TSI108_INT_RXTHRESH |
TSI108_INT_RXOVERRUN |
TSI108_INT_RXERROR |
TSI108_INT_RXWAIT);
}
}
}
/* If the RX ring has run out of memory, try periodically
* to allocate some more, as otherwise poll would never
* get called (apart from the initial end-of-queue condition).
*
* This is called once per second (by default) from the thread.
*/
static void tsi108_check_rxring(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
/* A poll is scheduled, as opposed to caling tsi108_refill_rx
* directly, so as to keep the receive path single-threaded
* (and thus not needing a lock).
*/
if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
tsi108_rx_int(dev);
}
static void tsi108_tx_int(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 estat = TSI_READ(TSI108_EC_TXESTAT);
TSI_WRITE(TSI108_EC_TXESTAT, estat);
TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
u32 err = TSI_READ(TSI108_EC_TXERR);
TSI_WRITE(TSI108_EC_TXERR, err);
if (err && net_ratelimit())
printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
}
if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
spin_lock(&data->txlock);
tsi108_complete_tx(dev);
spin_unlock(&data->txlock);
}
}
static irqreturn_t tsi108_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct tsi108_prv_data *data = netdev_priv(dev);
u32 stat = TSI_READ(TSI108_EC_INTSTAT);
if (!(stat & TSI108_INT_ANY))
return IRQ_NONE; /* Not our interrupt */
stat &= ~TSI_READ(TSI108_EC_INTMASK);
if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
TSI108_INT_TXERROR))
tsi108_tx_int(dev);
if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
TSI108_INT_RXERROR))
tsi108_rx_int(dev);
if (stat & TSI108_INT_SFN) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: SFN error\n", dev->name);
TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
}
if (stat & TSI108_INT_STATCARRY) {
tsi108_stat_carry(dev);
TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
}
return IRQ_HANDLED;
}
static void tsi108_stop_ethernet(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
int i = 1000;
/* Disable all TX and RX queues ... */
TSI_WRITE(TSI108_EC_TXCTRL, 0);
TSI_WRITE(TSI108_EC_RXCTRL, 0);
/* ...and wait for them to become idle */
while(i--) {
if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
break;
udelay(10);
}
i = 1000;
while(i--){
if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
return;
udelay(10);
}
printk(KERN_ERR "%s function time out \n", __func__);
}
static void tsi108_reset_ether(struct tsi108_prv_data * data)
{
TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
udelay(100);
TSI_WRITE(TSI108_MAC_CFG1, 0);
TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
udelay(100);
TSI_WRITE(TSI108_EC_PORTCTRL,
TSI_READ(TSI108_EC_PORTCTRL) &
~TSI108_EC_PORTCTRL_STATRST);
TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
udelay(100);
TSI_WRITE(TSI108_EC_TXCFG,
TSI_READ(TSI108_EC_TXCFG) &
~TSI108_EC_TXCFG_RST);
TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
udelay(100);
TSI_WRITE(TSI108_EC_RXCFG,
TSI_READ(TSI108_EC_RXCFG) &
~TSI108_EC_RXCFG_RST);
TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
TSI108_MAC_MII_MGMT_RST);
udelay(100);
TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
(TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
~(TSI108_MAC_MII_MGMT_RST |
TSI108_MAC_MII_MGMT_CLK)) | 0x07);
}
static int tsi108_get_mac(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
/* Note that the octets are reversed from what the manual says,
* producing an even weirder ordering...
*/
if (word2 == 0 && word1 == 0) {
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x06;
dev->dev_addr[2] = 0xd2;
dev->dev_addr[3] = 0x00;
dev->dev_addr[4] = 0x00;
if (0x8 == data->phy)
dev->dev_addr[5] = 0x01;
else
dev->dev_addr[5] = 0x02;
word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
(dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
TSI_WRITE(TSI108_MAC_ADDR1, word1);
TSI_WRITE(TSI108_MAC_ADDR2, word2);
} else {
dev->dev_addr[0] = (word2 >> 16) & 0xff;
dev->dev_addr[1] = (word2 >> 24) & 0xff;
dev->dev_addr[2] = (word1 >> 0) & 0xff;
dev->dev_addr[3] = (word1 >> 8) & 0xff;
dev->dev_addr[4] = (word1 >> 16) & 0xff;
dev->dev_addr[5] = (word1 >> 24) & 0xff;
}
if (!is_valid_ether_addr(dev->dev_addr)) {
printk(KERN_ERR
"%s: Invalid MAC address. word1: %08x, word2: %08x\n",
dev->name, word1, word2);
return -EINVAL;
}
return 0;
}
static int tsi108_set_mac(struct net_device *dev, void *addr)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 word1, word2;
int i;
if (!is_valid_ether_addr(addr))
return -EINVAL;
for (i = 0; i < 6; i++)
/* +2 is for the offset of the HW addr type */
dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
(dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
spin_lock_irq(&data->misclock);
TSI_WRITE(TSI108_MAC_ADDR1, word1);
TSI_WRITE(TSI108_MAC_ADDR2, word2);
spin_lock(&data->txlock);
if (data->txfree && data->link_up)
netif_wake_queue(dev);
spin_unlock(&data->txlock);
spin_unlock_irq(&data->misclock);
return 0;
}
/* Protected by dev->xmit_lock. */
static void tsi108_set_rx_mode(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
if (dev->flags & IFF_PROMISC) {
rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
goto out;
}
rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
int i;
struct dev_mc_list *mc = dev->mc_list;
rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
memset(data->mc_hash, 0, sizeof(data->mc_hash));
while (mc) {
u32 hash, crc;
if (mc->dmi_addrlen == 6) {
crc = ether_crc(6, mc->dmi_addr);
hash = crc >> 23;
__set_bit(hash, &data->mc_hash[0]);
} else {
printk(KERN_ERR
"%s: got multicast address of length %d instead of 6.\n",
dev->name,
mc->dmi_addrlen);
}
mc = mc->next;
}
TSI_WRITE(TSI108_EC_HASHADDR,
TSI108_EC_HASHADDR_AUTOINC |
TSI108_EC_HASHADDR_MCAST);
for (i = 0; i < 16; i++) {
/* The manual says that the hardware may drop
* back-to-back writes to the data register.
*/
udelay(1);
TSI_WRITE(TSI108_EC_HASHDATA,
data->mc_hash[i]);
}
}
out:
TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
}
static void tsi108_init_phy(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
u32 i = 0;
u16 phyval = 0;
unsigned long flags;
spin_lock_irqsave(&phy_lock, flags);
tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
while (--i) {
if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
break;
udelay(10);
}
if (i == 0)
printk(KERN_ERR "%s function time out \n", __func__);
if (data->phy_type == TSI108_PHY_BCM54XX) {
tsi108_write_mii(data, 0x09, 0x0300);
tsi108_write_mii(data, 0x10, 0x1020);
tsi108_write_mii(data, 0x1c, 0x8c00);
}
tsi108_write_mii(data,
MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
cpu_relax();
/* Set G/MII mode and receive clock select in TBI control #2. The
* second port won't work if this isn't done, even though we don't
* use TBI mode.
*/
tsi108_write_tbi(data, 0x11, 0x30);
/* FIXME: It seems to take more than 2 back-to-back reads to the
* PHY_STAT register before the link up status bit is set.
*/
data->link_up = 0;
while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
BMSR_LSTATUS)) {
if (i++ > (MII_READ_DELAY / 10)) {
break;
}
spin_unlock_irqrestore(&phy_lock, flags);
msleep(10);
spin_lock_irqsave(&phy_lock, flags);
}
data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
data->phy_ok = 1;
data->init_media = 1;
spin_unlock_irqrestore(&phy_lock, flags);
}
static void tsi108_kill_phy(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&phy_lock, flags);
tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
data->phy_ok = 0;
spin_unlock_irqrestore(&phy_lock, flags);
}
static int tsi108_open(struct net_device *dev)
{
int i;
struct tsi108_prv_data *data = netdev_priv(dev);
unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
if (i != 0) {
printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
data->id, data->irq_num);
return i;
} else {
dev->irq = data->irq_num;
printk(KERN_NOTICE
"tsi108_open : Port %d Assigned IRQ %d to %s\n",
data->id, dev->irq, dev->name);
}
data->rxring = dma_alloc_coherent(NULL, rxring_size,
&data->rxdma, GFP_KERNEL);
if (!data->rxring) {
printk(KERN_DEBUG
"TSI108_ETH: failed to allocate memory for rxring!\n");
return -ENOMEM;
} else {
memset(data->rxring, 0, rxring_size);
}
data->txring = dma_alloc_coherent(NULL, txring_size,
&data->txdma, GFP_KERNEL);
if (!data->txring) {
printk(KERN_DEBUG
"TSI108_ETH: failed to allocate memory for txring!\n");
pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
return -ENOMEM;
} else {
memset(data->txring, 0, txring_size);
}
for (i = 0; i < TSI108_RXRING_LEN; i++) {
data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
data->rxring[i].blen = TSI108_RXBUF_SIZE;
data->rxring[i].vlan = 0;
}
data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
data->rxtail = 0;
data->rxhead = 0;
for (i = 0; i < TSI108_RXRING_LEN; i++) {
struct sk_buff *skb;
skb = netdev_alloc_skb(dev, TSI108_RXBUF_SIZE + NET_IP_ALIGN);
if (!skb) {
/* Bah. No memory for now, but maybe we'll get
* some more later.
* For now, we'll live with the smaller ring.
*/
printk(KERN_WARNING
"%s: Could only allocate %d receive skb(s).\n",
dev->name, i);
data->rxhead = i;
break;
}
data->rxskbs[i] = skb;
/* Align the payload on a 4-byte boundary */
skb_reserve(skb, 2);
data->rxskbs[i] = skb;
data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
}
data->rxfree = i;
TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
for (i = 0; i < TSI108_TXRING_LEN; i++) {
data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
data->txring[i].misc = 0;
}
data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
data->txtail = 0;
data->txhead = 0;
data->txfree = TSI108_TXRING_LEN;
TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
tsi108_init_phy(dev);
napi_enable(&data->napi);
setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
mod_timer(&data->timer, jiffies + 1);
tsi108_restart_rx(data, dev);
TSI_WRITE(TSI108_EC_INTSTAT, ~0);
TSI_WRITE(TSI108_EC_INTMASK,
~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
TSI108_INT_SFN | TSI108_INT_STATCARRY));
TSI_WRITE(TSI108_MAC_CFG1,
TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
netif_start_queue(dev);
return 0;
}
static int tsi108_close(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
netif_stop_queue(dev);
napi_disable(&data->napi);
del_timer_sync(&data->timer);
tsi108_stop_ethernet(dev);
tsi108_kill_phy(dev);
TSI_WRITE(TSI108_EC_INTMASK, ~0);
TSI_WRITE(TSI108_MAC_CFG1, 0);
/* Check for any pending TX packets, and drop them. */
while (!data->txfree || data->txhead != data->txtail) {
int tx = data->txtail;
struct sk_buff *skb;
skb = data->txskbs[tx];
data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
data->txfree++;
dev_kfree_skb(skb);
}
free_irq(data->irq_num, dev);
/* Discard the RX ring. */
while (data->rxfree) {
int rx = data->rxtail;
struct sk_buff *skb;
skb = data->rxskbs[rx];
data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
data->rxfree--;
dev_kfree_skb(skb);
}
dma_free_coherent(0,
TSI108_RXRING_LEN * sizeof(rx_desc),
data->rxring, data->rxdma);
dma_free_coherent(0,
TSI108_TXRING_LEN * sizeof(tx_desc),
data->txring, data->txdma);
return 0;
}
static void tsi108_init_mac(struct net_device *dev)
{
struct tsi108_prv_data *data = netdev_priv(dev);
TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
TSI108_MAC_CFG2_PADCRC);
TSI_WRITE(TSI108_EC_TXTHRESH,
(192 << TSI108_EC_TXTHRESH_STARTFILL) |
(192 << TSI108_EC_TXTHRESH_STOPFILL));
TSI_WRITE(TSI108_STAT_CARRYMASK1,
~(TSI108_STAT_CARRY1_RXBYTES |
TSI108_STAT_CARRY1_RXPKTS |
TSI108_STAT_CARRY1_RXFCS |
TSI108_STAT_CARRY1_RXMCAST |
TSI108_STAT_CARRY1_RXALIGN |
TSI108_STAT_CARRY1_RXLENGTH |
TSI108_STAT_CARRY1_RXRUNT |
TSI108_STAT_CARRY1_RXJUMBO |
TSI108_STAT_CARRY1_RXFRAG |
TSI108_STAT_CARRY1_RXJABBER |
TSI108_STAT_CARRY1_RXDROP));
TSI_WRITE(TSI108_STAT_CARRYMASK2,
~(TSI108_STAT_CARRY2_TXBYTES |
TSI108_STAT_CARRY2_TXPKTS |
TSI108_STAT_CARRY2_TXEXDEF |
TSI108_STAT_CARRY2_TXEXCOL |
TSI108_STAT_CARRY2_TXTCOL |
TSI108_STAT_CARRY2_TXPAUSE));
TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
TSI_WRITE(TSI108_MAC_CFG1, 0);
TSI_WRITE(TSI108_EC_RXCFG,
TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
TSI108_EC_TXQ_CFG_SFNPORT));
TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
TSI108_EC_RXQ_CFG_SFNPORT));
TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
TSI108_EC_TXQ_BUFCFG_BURST256 |
TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
TSI108_EC_TXQ_BUFCFG_SFNPORT));
TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
TSI108_EC_RXQ_BUFCFG_BURST256 |
TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
TSI108_EC_RXQ_BUFCFG_SFNPORT));
TSI_WRITE(TSI108_EC_INTMASK, ~0);
}
static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tsi108_prv_data *data = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&data->txlock, flags);
rc = mii_ethtool_gset(&data->mii_if, cmd);
spin_unlock_irqrestore(&data->txlock, flags);
return rc;
}
static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tsi108_prv_data *data = netdev_priv(dev);
unsigned long flags;
int rc;
spin_lock_irqsave(&data->txlock, flags);
rc = mii_ethtool_sset(&data->mii_if, cmd);
spin_unlock_irqrestore(&data->txlock, flags);
return rc;
}
static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tsi108_prv_data *data = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
}
static const struct ethtool_ops tsi108_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_settings = tsi108_get_settings,
.set_settings = tsi108_set_settings,
};
static const struct net_device_ops tsi108_netdev_ops = {
.ndo_open = tsi108_open,
.ndo_stop = tsi108_close,
.ndo_start_xmit = tsi108_send_packet,
.ndo_set_multicast_list = tsi108_set_rx_mode,
.ndo_get_stats = tsi108_get_stats,
.ndo_do_ioctl = tsi108_do_ioctl,
.ndo_set_mac_address = tsi108_set_mac,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
};
static int
tsi108_init_one(struct platform_device *pdev)
{
struct net_device *dev = NULL;
struct tsi108_prv_data *data = NULL;
hw_info *einfo;
int err = 0;
einfo = pdev->dev.platform_data;
if (NULL == einfo) {
printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
pdev->id);
return -ENODEV;
}
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
if (!dev) {
printk("tsi108_eth: Could not allocate a device structure\n");
return -ENOMEM;
}
printk("tsi108_eth%d: probe...\n", pdev->id);
data = netdev_priv(dev);
data->dev = dev;
pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
pdev->id, einfo->regs, einfo->phyregs,
einfo->phy, einfo->irq_num);
data->regs = ioremap(einfo->regs, 0x400);
if (NULL == data->regs) {
err = -ENOMEM;
goto regs_fail;
}
data->phyregs = ioremap(einfo->phyregs, 0x400);
if (NULL == data->phyregs) {
err = -ENOMEM;
goto regs_fail;
}
/* MII setup */
data->mii_if.dev = dev;
data->mii_if.mdio_read = tsi108_mdio_read;
data->mii_if.mdio_write = tsi108_mdio_write;
data->mii_if.phy_id = einfo->phy;
data->mii_if.phy_id_mask = 0x1f;
data->mii_if.reg_num_mask = 0x1f;
data->phy = einfo->phy;
data->phy_type = einfo->phy_type;
data->irq_num = einfo->irq_num;
data->id = pdev->id;
netif_napi_add(dev, &data->napi, tsi108_poll, 64);
dev->netdev_ops = &tsi108_netdev_ops;
dev->ethtool_ops = &tsi108_ethtool_ops;
/* Apparently, the Linux networking code won't use scatter-gather
* if the hardware doesn't do checksums. However, it's faster
* to checksum in place and use SG, as (among other reasons)
* the cache won't be dirtied (which then has to be flushed
* before DMA). The checksumming is done by the driver (via
* a new function skb_csum_dev() in net/core/skbuff.c).
*/
dev->features = NETIF_F_HIGHDMA;
spin_lock_init(&data->txlock);
spin_lock_init(&data->misclock);
tsi108_reset_ether(data);
tsi108_kill_phy(dev);
if ((err = tsi108_get_mac(dev)) != 0) {
printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
dev->name);
goto register_fail;
}
tsi108_init_mac(dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
dev->name, dev->dev_addr);
#ifdef DEBUG
data->msg_enable = DEBUG;
dump_eth_one(dev);
#endif
return 0;
register_fail:
iounmap(data->regs);
iounmap(data->phyregs);
regs_fail:
free_netdev(dev);
return err;
}
/* There's no way to either get interrupts from the PHY when
* something changes, or to have the Tsi108 automatically communicate
* with the PHY to reconfigure itself.
*
* Thus, we have to do it using a timer.
*/
static void tsi108_timed_checker(unsigned long dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
struct tsi108_prv_data *data = netdev_priv(dev);
tsi108_check_phy(dev);
tsi108_check_rxring(dev);
mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
}
static int tsi108_ether_init(void)
{
int ret;
ret = platform_driver_register (&tsi_eth_driver);
if (ret < 0){
printk("tsi108_ether_init: error initializing ethernet "
"device\n");
return ret;
}
return 0;
}
static int tsi108_ether_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct tsi108_prv_data *priv = netdev_priv(dev);
unregister_netdev(dev);
tsi108_stop_ethernet(dev);
platform_set_drvdata(pdev, NULL);
iounmap(priv->regs);
iounmap(priv->phyregs);
free_netdev(dev);
return 0;
}
static void tsi108_ether_exit(void)
{
platform_driver_unregister(&tsi_eth_driver);
}
module_init(tsi108_ether_init);
module_exit(tsi108_ether_exit);
MODULE_AUTHOR("Tundra Semiconductor Corporation");
MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:tsi-ethernet");