2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 07:34:06 +08:00
linux-next/drivers/net/cpmac.c
Florian Fainelli 4e43af323a cpmac: bump version to 0.5.1
Signed-off-by: Florian Fainelli <florian@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-05 12:22:11 -07:00

1295 lines
35 KiB
C

/*
* Copyright (C) 2006, 2007 Eugene Konev
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <asm/gpio.h>
#include <asm/atomic.h>
MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:cpmac");
static int debug_level = 8;
static int dumb_switch;
/* Next 2 are only used in cpmac_probe, so it's pointless to change them */
module_param(debug_level, int, 0444);
module_param(dumb_switch, int, 0444);
MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
#define CPMAC_VERSION "0.5.1"
/* frame size + 802.1q tag */
#define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
#define CPMAC_QUEUES 8
/* Ethernet registers */
#define CPMAC_TX_CONTROL 0x0004
#define CPMAC_TX_TEARDOWN 0x0008
#define CPMAC_RX_CONTROL 0x0014
#define CPMAC_RX_TEARDOWN 0x0018
#define CPMAC_MBP 0x0100
# define MBP_RXPASSCRC 0x40000000
# define MBP_RXQOS 0x20000000
# define MBP_RXNOCHAIN 0x10000000
# define MBP_RXCMF 0x01000000
# define MBP_RXSHORT 0x00800000
# define MBP_RXCEF 0x00400000
# define MBP_RXPROMISC 0x00200000
# define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
# define MBP_RXBCAST 0x00002000
# define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
# define MBP_RXMCAST 0x00000020
# define MBP_MCASTCHAN(channel) ((channel) & 0x7)
#define CPMAC_UNICAST_ENABLE 0x0104
#define CPMAC_UNICAST_CLEAR 0x0108
#define CPMAC_MAX_LENGTH 0x010c
#define CPMAC_BUFFER_OFFSET 0x0110
#define CPMAC_MAC_CONTROL 0x0160
# define MAC_TXPTYPE 0x00000200
# define MAC_TXPACE 0x00000040
# define MAC_MII 0x00000020
# define MAC_TXFLOW 0x00000010
# define MAC_RXFLOW 0x00000008
# define MAC_MTEST 0x00000004
# define MAC_LOOPBACK 0x00000002
# define MAC_FDX 0x00000001
#define CPMAC_MAC_STATUS 0x0164
# define MAC_STATUS_QOS 0x00000004
# define MAC_STATUS_RXFLOW 0x00000002
# define MAC_STATUS_TXFLOW 0x00000001
#define CPMAC_TX_INT_ENABLE 0x0178
#define CPMAC_TX_INT_CLEAR 0x017c
#define CPMAC_MAC_INT_VECTOR 0x0180
# define MAC_INT_STATUS 0x00080000
# define MAC_INT_HOST 0x00040000
# define MAC_INT_RX 0x00020000
# define MAC_INT_TX 0x00010000
#define CPMAC_MAC_EOI_VECTOR 0x0184
#define CPMAC_RX_INT_ENABLE 0x0198
#define CPMAC_RX_INT_CLEAR 0x019c
#define CPMAC_MAC_INT_ENABLE 0x01a8
#define CPMAC_MAC_INT_CLEAR 0x01ac
#define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
#define CPMAC_MAC_ADDR_MID 0x01d0
#define CPMAC_MAC_ADDR_HI 0x01d4
#define CPMAC_MAC_HASH_LO 0x01d8
#define CPMAC_MAC_HASH_HI 0x01dc
#define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
#define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
#define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
#define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
#define CPMAC_REG_END 0x0680
/*
* Rx/Tx statistics
* TODO: use some of them to fill stats in cpmac_stats()
*/
#define CPMAC_STATS_RX_GOOD 0x0200
#define CPMAC_STATS_RX_BCAST 0x0204
#define CPMAC_STATS_RX_MCAST 0x0208
#define CPMAC_STATS_RX_PAUSE 0x020c
#define CPMAC_STATS_RX_CRC 0x0210
#define CPMAC_STATS_RX_ALIGN 0x0214
#define CPMAC_STATS_RX_OVER 0x0218
#define CPMAC_STATS_RX_JABBER 0x021c
#define CPMAC_STATS_RX_UNDER 0x0220
#define CPMAC_STATS_RX_FRAG 0x0224
#define CPMAC_STATS_RX_FILTER 0x0228
#define CPMAC_STATS_RX_QOSFILTER 0x022c
#define CPMAC_STATS_RX_OCTETS 0x0230
#define CPMAC_STATS_TX_GOOD 0x0234
#define CPMAC_STATS_TX_BCAST 0x0238
#define CPMAC_STATS_TX_MCAST 0x023c
#define CPMAC_STATS_TX_PAUSE 0x0240
#define CPMAC_STATS_TX_DEFER 0x0244
#define CPMAC_STATS_TX_COLLISION 0x0248
#define CPMAC_STATS_TX_SINGLECOLL 0x024c
#define CPMAC_STATS_TX_MULTICOLL 0x0250
#define CPMAC_STATS_TX_EXCESSCOLL 0x0254
#define CPMAC_STATS_TX_LATECOLL 0x0258
#define CPMAC_STATS_TX_UNDERRUN 0x025c
#define CPMAC_STATS_TX_CARRIERSENSE 0x0260
#define CPMAC_STATS_TX_OCTETS 0x0264
#define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
#define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
(reg)))
/* MDIO bus */
#define CPMAC_MDIO_VERSION 0x0000
#define CPMAC_MDIO_CONTROL 0x0004
# define MDIOC_IDLE 0x80000000
# define MDIOC_ENABLE 0x40000000
# define MDIOC_PREAMBLE 0x00100000
# define MDIOC_FAULT 0x00080000
# define MDIOC_FAULTDETECT 0x00040000
# define MDIOC_INTTEST 0x00020000
# define MDIOC_CLKDIV(div) ((div) & 0xff)
#define CPMAC_MDIO_ALIVE 0x0008
#define CPMAC_MDIO_LINK 0x000c
#define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
# define MDIO_BUSY 0x80000000
# define MDIO_WRITE 0x40000000
# define MDIO_REG(reg) (((reg) & 0x1f) << 21)
# define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
# define MDIO_DATA(data) ((data) & 0xffff)
#define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
# define PHYSEL_LINKSEL 0x00000040
# define PHYSEL_LINKINT 0x00000020
struct cpmac_desc {
u32 hw_next;
u32 hw_data;
u16 buflen;
u16 bufflags;
u16 datalen;
u16 dataflags;
#define CPMAC_SOP 0x8000
#define CPMAC_EOP 0x4000
#define CPMAC_OWN 0x2000
#define CPMAC_EOQ 0x1000
struct sk_buff *skb;
struct cpmac_desc *next;
struct cpmac_desc *prev;
dma_addr_t mapping;
dma_addr_t data_mapping;
};
struct cpmac_priv {
spinlock_t lock;
spinlock_t rx_lock;
struct cpmac_desc *rx_head;
int ring_size;
struct cpmac_desc *desc_ring;
dma_addr_t dma_ring;
void __iomem *regs;
struct mii_bus *mii_bus;
struct phy_device *phy;
char phy_name[MII_BUS_ID_SIZE + 3];
int oldlink, oldspeed, oldduplex;
u32 msg_enable;
struct net_device *dev;
struct work_struct reset_work;
struct platform_device *pdev;
struct napi_struct napi;
atomic_t reset_pending;
};
static irqreturn_t cpmac_irq(int, void *);
static void cpmac_hw_start(struct net_device *dev);
static void cpmac_hw_stop(struct net_device *dev);
static int cpmac_stop(struct net_device *dev);
static int cpmac_open(struct net_device *dev);
static void cpmac_dump_regs(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
for (i = 0; i < CPMAC_REG_END; i += 4) {
if (i % 16 == 0) {
if (i)
printk("\n");
printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
priv->regs + i);
}
printk(" %08x", cpmac_read(priv->regs, i));
}
printk("\n");
}
static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
{
int i;
printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
for (i = 0; i < sizeof(*desc) / 4; i++)
printk(" %08x", ((u32 *)desc)[i]);
printk("\n");
}
static void cpmac_dump_all_desc(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *dump = priv->rx_head;
do {
cpmac_dump_desc(dev, dump);
dump = dump->next;
} while (dump != priv->rx_head);
}
static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
{
int i;
printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
for (i = 0; i < skb->len; i++) {
if (i % 16 == 0) {
if (i)
printk("\n");
printk(KERN_DEBUG "%s: data[%p]:", dev->name,
skb->data + i);
}
printk(" %02x", ((u8 *)skb->data)[i]);
}
printk("\n");
}
static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
{
u32 val;
while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
cpu_relax();
cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
MDIO_PHY(phy_id));
while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
cpu_relax();
return MDIO_DATA(val);
}
static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
int reg, u16 val)
{
while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
cpu_relax();
cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
return 0;
}
static int cpmac_mdio_reset(struct mii_bus *bus)
{
ar7_device_reset(AR7_RESET_BIT_MDIO);
cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
return 0;
}
static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
static struct mii_bus *cpmac_mii;
static int cpmac_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
/* Don't allow changing the I/O address */
if (map->base_addr != dev->base_addr)
return -EOPNOTSUPP;
/* ignore other fields */
return 0;
}
static void cpmac_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *iter;
int i;
u8 tmp;
u32 mbp, bit, hash[2] = { 0, };
struct cpmac_priv *priv = netdev_priv(dev);
mbp = cpmac_read(priv->regs, CPMAC_MBP);
if (dev->flags & IFF_PROMISC) {
cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
MBP_RXPROMISC);
} else {
cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
if (dev->flags & IFF_ALLMULTI) {
/* enable all multicast mode */
cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
} else {
/*
* cpmac uses some strange mac address hashing
* (not crc32)
*/
for (i = 0, iter = dev->mc_list; i < dev->mc_count;
i++, iter = iter->next) {
bit = 0;
tmp = iter->dmi_addr[0];
bit ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[1];
bit ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[2];
bit ^= (tmp >> 6) ^ tmp;
tmp = iter->dmi_addr[3];
bit ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[4];
bit ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[5];
bit ^= (tmp >> 6) ^ tmp;
bit &= 0x3f;
hash[bit / 32] |= 1 << (bit % 32);
}
cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
}
}
}
static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
struct cpmac_desc *desc)
{
struct sk_buff *skb, *result = NULL;
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(priv->dev, desc);
cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
if (unlikely(!desc->datalen)) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx: spurious interrupt\n",
priv->dev->name);
return NULL;
}
skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE);
if (likely(skb)) {
skb_reserve(skb, 2);
skb_put(desc->skb, desc->datalen);
desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
desc->skb->ip_summed = CHECKSUM_NONE;
priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += desc->datalen;
result = desc->skb;
dma_unmap_single(&priv->dev->dev, desc->data_mapping,
CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
desc->skb = skb;
desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
if (unlikely(netif_msg_pktdata(priv))) {
printk(KERN_DEBUG "%s: received packet:\n",
priv->dev->name);
cpmac_dump_skb(priv->dev, result);
}
} else {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING
"%s: low on skbs, dropping packet\n",
priv->dev->name);
priv->dev->stats.rx_dropped++;
}
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
return result;
}
static int cpmac_poll(struct napi_struct *napi, int budget)
{
struct sk_buff *skb;
struct cpmac_desc *desc, *restart;
struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
int received = 0, processed = 0;
spin_lock(&priv->rx_lock);
if (unlikely(!priv->rx_head)) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx: polling, but no queue\n",
priv->dev->name);
spin_unlock(&priv->rx_lock);
napi_complete(napi);
return 0;
}
desc = priv->rx_head;
restart = NULL;
while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
processed++;
if ((desc->dataflags & CPMAC_EOQ) != 0) {
/* The last update to eoq->hw_next didn't happen
* soon enough, and the receiver stopped here.
*Remember this descriptor so we can restart
* the receiver after freeing some space.
*/
if (unlikely(restart)) {
if (netif_msg_rx_err(priv))
printk(KERN_ERR "%s: poll found a"
" duplicate EOQ: %p and %p\n",
priv->dev->name, restart, desc);
goto fatal_error;
}
restart = desc->next;
}
skb = cpmac_rx_one(priv, desc);
if (likely(skb)) {
netif_receive_skb(skb);
received++;
}
desc = desc->next;
}
if (desc != priv->rx_head) {
/* We freed some buffers, but not the whole ring,
* add what we did free to the rx list */
desc->prev->hw_next = (u32)0;
priv->rx_head->prev->hw_next = priv->rx_head->mapping;
}
/* Optimization: If we did not actually process an EOQ (perhaps because
* of quota limits), check to see if the tail of the queue has EOQ set.
* We should immediately restart in that case so that the receiver can
* restart and run in parallel with more packet processing.
* This lets us handle slightly larger bursts before running
* out of ring space (assuming dev->weight < ring_size) */
if (!restart &&
(priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
== CPMAC_EOQ &&
(priv->rx_head->dataflags & CPMAC_OWN) != 0) {
/* reset EOQ so the poll loop (above) doesn't try to
* restart this when it eventually gets to this descriptor.
*/
priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
restart = priv->rx_head;
}
if (restart) {
priv->dev->stats.rx_errors++;
priv->dev->stats.rx_fifo_errors++;
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx dma ring overrun\n",
priv->dev->name);
if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: cpmac_poll is trying to "
"restart rx from a descriptor that's "
"not free: %p\n",
priv->dev->name, restart);
goto fatal_error;
}
cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
}
priv->rx_head = desc;
spin_unlock(&priv->rx_lock);
if (unlikely(netif_msg_rx_status(priv)))
printk(KERN_DEBUG "%s: poll processed %d packets\n",
priv->dev->name, received);
if (processed == 0) {
/* we ran out of packets to read,
* revert to interrupt-driven mode */
napi_complete(napi);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
return 0;
}
return 1;
fatal_error:
/* Something went horribly wrong.
* Reset hardware to try to recover rather than wedging. */
if (netif_msg_drv(priv)) {
printk(KERN_ERR "%s: cpmac_poll is confused. "
"Resetting hardware\n", priv->dev->name);
cpmac_dump_all_desc(priv->dev);
printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
priv->dev->name,
cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
}
spin_unlock(&priv->rx_lock);
napi_complete(napi);
netif_tx_stop_all_queues(priv->dev);
napi_disable(&priv->napi);
atomic_inc(&priv->reset_pending);
cpmac_hw_stop(priv->dev);
if (!schedule_work(&priv->reset_work))
atomic_dec(&priv->reset_pending);
return 0;
}
static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
int queue, len;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(atomic_read(&priv->reset_pending)))
return NETDEV_TX_BUSY;
if (unlikely(skb_padto(skb, ETH_ZLEN)))
return NETDEV_TX_OK;
len = max(skb->len, ETH_ZLEN);
queue = skb_get_queue_mapping(skb);
netif_stop_subqueue(dev, queue);
desc = &priv->desc_ring[queue];
if (unlikely(desc->dataflags & CPMAC_OWN)) {
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: tx dma ring full\n",
dev->name);
return NETDEV_TX_BUSY;
}
spin_lock(&priv->lock);
dev->trans_start = jiffies;
spin_unlock(&priv->lock);
desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
DMA_TO_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
desc->datalen = len;
desc->buflen = len;
if (unlikely(netif_msg_tx_queued(priv)))
printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
skb->len);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(dev, desc);
if (unlikely(netif_msg_pktdata(priv)))
cpmac_dump_skb(dev, skb);
cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
return NETDEV_TX_OK;
}
static void cpmac_end_xmit(struct net_device *dev, int queue)
{
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
desc = &priv->desc_ring[queue];
cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
if (likely(desc->skb)) {
spin_lock(&priv->lock);
dev->stats.tx_packets++;
dev->stats.tx_bytes += desc->skb->len;
spin_unlock(&priv->lock);
dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
DMA_TO_DEVICE);
if (unlikely(netif_msg_tx_done(priv)))
printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
desc->skb, desc->skb->len);
dev_kfree_skb_irq(desc->skb);
desc->skb = NULL;
if (__netif_subqueue_stopped(dev, queue))
netif_wake_subqueue(dev, queue);
} else {
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING
"%s: end_xmit: spurious interrupt\n", dev->name);
if (__netif_subqueue_stopped(dev, queue))
netif_wake_subqueue(dev, queue);
}
}
static void cpmac_hw_stop(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
ar7_device_reset(pdata->reset_bit);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
}
static void cpmac_hw_start(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
ar7_device_reset(pdata->reset_bit);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
MBP_RXMCAST);
cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
(dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[3] << 24));
cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
MAC_FDX);
}
static void cpmac_clear_rx(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc;
int i;
if (unlikely(!priv->rx_head))
return;
desc = priv->rx_head;
for (i = 0; i < priv->ring_size; i++) {
if ((desc->dataflags & CPMAC_OWN) == 0) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: packet dropped\n",
dev->name);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(dev, desc);
desc->dataflags = CPMAC_OWN;
dev->stats.rx_dropped++;
}
desc->hw_next = desc->next->mapping;
desc = desc->next;
}
priv->rx_head->prev->hw_next = 0;
}
static void cpmac_clear_tx(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
int i;
if (unlikely(!priv->desc_ring))
return;
for (i = 0; i < CPMAC_QUEUES; i++) {
priv->desc_ring[i].dataflags = 0;
if (priv->desc_ring[i].skb) {
dev_kfree_skb_any(priv->desc_ring[i].skb);
priv->desc_ring[i].skb = NULL;
}
}
}
static void cpmac_hw_error(struct work_struct *work)
{
struct cpmac_priv *priv =
container_of(work, struct cpmac_priv, reset_work);
spin_lock(&priv->rx_lock);
cpmac_clear_rx(priv->dev);
spin_unlock(&priv->rx_lock);
cpmac_clear_tx(priv->dev);
cpmac_hw_start(priv->dev);
barrier();
atomic_dec(&priv->reset_pending);
netif_tx_wake_all_queues(priv->dev);
cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
}
static void cpmac_check_status(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
int rx_channel = (macstatus >> 8) & 7;
int rx_code = (macstatus >> 12) & 15;
int tx_channel = (macstatus >> 16) & 7;
int tx_code = (macstatus >> 20) & 15;
if (rx_code || tx_code) {
if (netif_msg_drv(priv) && net_ratelimit()) {
/* Can't find any documentation on what these
*error codes actually are. So just log them and hope..
*/
if (rx_code)
printk(KERN_WARNING "%s: host error %d on rx "
"channel %d (macstatus %08x), resetting\n",
dev->name, rx_code, rx_channel, macstatus);
if (tx_code)
printk(KERN_WARNING "%s: host error %d on tx "
"channel %d (macstatus %08x), resetting\n",
dev->name, tx_code, tx_channel, macstatus);
}
netif_tx_stop_all_queues(dev);
cpmac_hw_stop(dev);
if (schedule_work(&priv->reset_work))
atomic_inc(&priv->reset_pending);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_regs(dev);
}
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
}
static irqreturn_t cpmac_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct cpmac_priv *priv;
int queue;
u32 status;
priv = netdev_priv(dev);
status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
if (unlikely(netif_msg_intr(priv)))
printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
status);
if (status & MAC_INT_TX)
cpmac_end_xmit(dev, (status & 7));
if (status & MAC_INT_RX) {
queue = (status >> 8) & 7;
if (napi_schedule_prep(&priv->napi)) {
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
__napi_schedule(&priv->napi);
}
}
cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
cpmac_check_status(dev);
return IRQ_HANDLED;
}
static void cpmac_tx_timeout(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
dev->stats.tx_errors++;
spin_unlock(&priv->lock);
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
atomic_inc(&priv->reset_pending);
barrier();
cpmac_clear_tx(dev);
barrier();
atomic_dec(&priv->reset_pending);
netif_tx_wake_all_queues(priv->dev);
}
static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!(netif_running(dev)))
return -EINVAL;
if (!priv->phy)
return -EINVAL;
if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
(cmd == SIOCSMIIREG))
return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
return -EOPNOTSUPP;
}
static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (priv->phy)
return phy_ethtool_gset(priv->phy, cmd);
return -EINVAL;
}
static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (priv->phy)
return phy_ethtool_sset(priv->phy, cmd);
return -EINVAL;
}
static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct cpmac_priv *priv = netdev_priv(dev);
ring->rx_max_pending = 1024;
ring->rx_mini_max_pending = 1;
ring->rx_jumbo_max_pending = 1;
ring->tx_max_pending = 1;
ring->rx_pending = priv->ring_size;
ring->rx_mini_pending = 1;
ring->rx_jumbo_pending = 1;
ring->tx_pending = 1;
}
static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (netif_running(dev))
return -EBUSY;
priv->ring_size = ring->rx_pending;
return 0;
}
static void cpmac_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, "cpmac");
strcpy(info->version, CPMAC_VERSION);
info->fw_version[0] = '\0';
sprintf(info->bus_info, "%s", "cpmac");
info->regdump_len = 0;
}
static const struct ethtool_ops cpmac_ethtool_ops = {
.get_settings = cpmac_get_settings,
.set_settings = cpmac_set_settings,
.get_drvinfo = cpmac_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ringparam = cpmac_get_ringparam,
.set_ringparam = cpmac_set_ringparam,
};
static void cpmac_adjust_link(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
int new_state = 0;
spin_lock(&priv->lock);
if (priv->phy->link) {
netif_tx_start_all_queues(dev);
if (priv->phy->duplex != priv->oldduplex) {
new_state = 1;
priv->oldduplex = priv->phy->duplex;
}
if (priv->phy->speed != priv->oldspeed) {
new_state = 1;
priv->oldspeed = priv->phy->speed;
}
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv) && net_ratelimit())
phy_print_status(priv->phy);
spin_unlock(&priv->lock);
}
static int cpmac_open(struct net_device *dev)
{
int i, size, res;
struct cpmac_priv *priv = netdev_priv(dev);
struct resource *mem;
struct cpmac_desc *desc;
struct sk_buff *skb;
mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to request registers\n",
dev->name);
res = -ENXIO;
goto fail_reserve;
}
priv->regs = ioremap(mem->start, mem->end - mem->start);
if (!priv->regs) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to remap registers\n",
dev->name);
res = -ENXIO;
goto fail_remap;
}
size = priv->ring_size + CPMAC_QUEUES;
priv->desc_ring = dma_alloc_coherent(&dev->dev,
sizeof(struct cpmac_desc) * size,
&priv->dma_ring,
GFP_KERNEL);
if (!priv->desc_ring) {
res = -ENOMEM;
goto fail_alloc;
}
for (i = 0; i < size; i++)
priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
if (unlikely(!skb)) {
res = -ENOMEM;
goto fail_desc;
}
skb_reserve(skb, 2);
desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
desc->next->prev = desc;
desc->hw_next = (u32)desc->next->mapping;
}
priv->rx_head->prev->hw_next = (u32)0;
if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
dev->name, dev))) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to obtain irq\n",
dev->name);
goto fail_irq;
}
atomic_set(&priv->reset_pending, 0);
INIT_WORK(&priv->reset_work, cpmac_hw_error);
cpmac_hw_start(dev);
napi_enable(&priv->napi);
priv->phy->state = PHY_CHANGELINK;
phy_start(priv->phy);
return 0;
fail_irq:
fail_desc:
for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) {
dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
kfree_skb(priv->rx_head[i].skb);
}
}
fail_alloc:
kfree(priv->desc_ring);
iounmap(priv->regs);
fail_remap:
release_mem_region(mem->start, mem->end - mem->start);
fail_reserve:
return res;
}
static int cpmac_stop(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
struct resource *mem;
netif_tx_stop_all_queues(dev);
cancel_work_sync(&priv->reset_work);
napi_disable(&priv->napi);
phy_stop(priv->phy);
cpmac_hw_stop(dev);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
cpmac_write(priv->regs, CPMAC_MBP, 0);
free_irq(dev->irq, dev);
iounmap(priv->regs);
mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
release_mem_region(mem->start, mem->end - mem->start);
priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) {
dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
kfree_skb(priv->rx_head[i].skb);
}
}
dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
(CPMAC_QUEUES + priv->ring_size),
priv->desc_ring, priv->dma_ring);
return 0;
}
static const struct net_device_ops cpmac_netdev_ops = {
.ndo_open = cpmac_open,
.ndo_stop = cpmac_stop,
.ndo_start_xmit = cpmac_start_xmit,
.ndo_tx_timeout = cpmac_tx_timeout,
.ndo_set_multicast_list = cpmac_set_multicast_list,
.ndo_do_ioctl = cpmac_ioctl,
.ndo_set_config = cpmac_config,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
};
static int external_switch;
static int __devinit cpmac_probe(struct platform_device *pdev)
{
int rc, phy_id;
char mdio_bus_id[BUS_ID_SIZE];
struct resource *mem;
struct cpmac_priv *priv;
struct net_device *dev;
struct plat_cpmac_data *pdata;
pdata = pdev->dev.platform_data;
if (external_switch || dumb_switch) {
strncpy(mdio_bus_id, "0", BUS_ID_SIZE); /* fixed phys bus */
phy_id = pdev->id;
} else {
for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
if (!(pdata->phy_mask & (1 << phy_id)))
continue;
if (!cpmac_mii->phy_map[phy_id])
continue;
strncpy(mdio_bus_id, cpmac_mii->id, BUS_ID_SIZE);
break;
}
}
if (phy_id == PHY_MAX_ADDR) {
dev_err(&pdev->dev, "no PHY present\n");
return -ENODEV;
}
dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
if (!dev) {
printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, dev);
priv = netdev_priv(dev);
priv->pdev = pdev;
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!mem) {
rc = -ENODEV;
goto fail;
}
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->netdev_ops = &cpmac_netdev_ops;
dev->ethtool_ops = &cpmac_ethtool_ops;
netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
spin_lock_init(&priv->lock);
spin_lock_init(&priv->rx_lock);
priv->dev = dev;
priv->ring_size = 64;
priv->msg_enable = netif_msg_init(debug_level, 0xff);
memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0,
PHY_INTERFACE_MODE_MII);
if (IS_ERR(priv->phy)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Could not attach to PHY\n",
dev->name);
return PTR_ERR(priv->phy);
}
if ((rc = register_netdev(dev))) {
printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
dev->name);
goto fail;
}
if (netif_msg_probe(priv)) {
printk(KERN_INFO
"cpmac: device %s (regs: %p, irq: %d, phy: %s, "
"mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
priv->phy_name, dev->dev_addr);
}
return 0;
fail:
free_netdev(dev);
return rc;
}
static int __devexit cpmac_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
free_netdev(dev);
return 0;
}
static struct platform_driver cpmac_driver = {
.driver.name = "cpmac",
.driver.owner = THIS_MODULE,
.probe = cpmac_probe,
.remove = __devexit_p(cpmac_remove),
};
int __devinit cpmac_init(void)
{
u32 mask;
int i, res;
cpmac_mii = mdiobus_alloc();
if (cpmac_mii == NULL)
return -ENOMEM;
cpmac_mii->name = "cpmac-mii";
cpmac_mii->read = cpmac_mdio_read;
cpmac_mii->write = cpmac_mdio_write;
cpmac_mii->reset = cpmac_mdio_reset;
cpmac_mii->irq = mii_irqs;
cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
if (!cpmac_mii->priv) {
printk(KERN_ERR "Can't ioremap mdio registers\n");
res = -ENXIO;
goto fail_alloc;
}
#warning FIXME: unhardcode gpio&reset bits
ar7_gpio_disable(26);
ar7_gpio_disable(27);
ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
ar7_device_reset(AR7_RESET_BIT_EPHY);
cpmac_mii->reset(cpmac_mii);
for (i = 0; i < 300; i++)
if ((mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE)))
break;
else
msleep(10);
mask &= 0x7fffffff;
if (mask & (mask - 1)) {
external_switch = 1;
mask = 0;
}
cpmac_mii->phy_mask = ~(mask | 0x80000000);
snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
res = mdiobus_register(cpmac_mii);
if (res)
goto fail_mii;
res = platform_driver_register(&cpmac_driver);
if (res)
goto fail_cpmac;
return 0;
fail_cpmac:
mdiobus_unregister(cpmac_mii);
fail_mii:
iounmap(cpmac_mii->priv);
fail_alloc:
mdiobus_free(cpmac_mii);
return res;
}
void __devexit cpmac_exit(void)
{
platform_driver_unregister(&cpmac_driver);
mdiobus_unregister(cpmac_mii);
mdiobus_free(cpmac_mii);
iounmap(cpmac_mii->priv);
}
module_init(cpmac_init);
module_exit(cpmac_exit);