2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/fs/pnode.c
Eric W. Biederman 5ec0811d30 propogate_mnt: Handle the first propogated copy being a slave
When the first propgated copy was a slave the following oops would result:
> BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
> IP: [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0
> PGD bacd4067 PUD bac66067 PMD 0
> Oops: 0000 [#1] SMP
> Modules linked in:
> CPU: 1 PID: 824 Comm: mount Not tainted 4.6.0-rc5userns+ #1523
> Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007
> task: ffff8800bb0a8000 ti: ffff8800bac3c000 task.ti: ffff8800bac3c000
> RIP: 0010:[<ffffffff811fba4e>]  [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0
> RSP: 0018:ffff8800bac3fd38  EFLAGS: 00010283
> RAX: 0000000000000000 RBX: ffff8800bb77ec00 RCX: 0000000000000010
> RDX: 0000000000000000 RSI: ffff8800bb58c000 RDI: ffff8800bb58c480
> RBP: ffff8800bac3fd48 R08: 0000000000000001 R09: 0000000000000000
> R10: 0000000000001ca1 R11: 0000000000001c9d R12: 0000000000000000
> R13: ffff8800ba713800 R14: ffff8800bac3fda0 R15: ffff8800bb77ec00
> FS:  00007f3c0cd9b7e0(0000) GS:ffff8800bfb00000(0000) knlGS:0000000000000000
> CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 0000000000000010 CR3: 00000000bb79d000 CR4: 00000000000006e0
> Stack:
>  ffff8800bb77ec00 0000000000000000 ffff8800bac3fd88 ffffffff811fbf85
>  ffff8800bac3fd98 ffff8800bb77f080 ffff8800ba713800 ffff8800bb262b40
>  0000000000000000 0000000000000000 ffff8800bac3fdd8 ffffffff811f1da0
> Call Trace:
>  [<ffffffff811fbf85>] propagate_mnt+0x105/0x140
>  [<ffffffff811f1da0>] attach_recursive_mnt+0x120/0x1e0
>  [<ffffffff811f1ec3>] graft_tree+0x63/0x70
>  [<ffffffff811f1f6b>] do_add_mount+0x9b/0x100
>  [<ffffffff811f2c1a>] do_mount+0x2aa/0xdf0
>  [<ffffffff8117efbe>] ? strndup_user+0x4e/0x70
>  [<ffffffff811f3a45>] SyS_mount+0x75/0xc0
>  [<ffffffff8100242b>] do_syscall_64+0x4b/0xa0
>  [<ffffffff81988f3c>] entry_SYSCALL64_slow_path+0x25/0x25
> Code: 00 00 75 ec 48 89 0d 02 22 22 01 8b 89 10 01 00 00 48 89 05 fd 21 22 01 39 8e 10 01 00 00 0f 84 e0 00 00 00 48 8b 80 d8 00 00 00 <48> 8b 50 10 48 89 05 df 21 22 01 48 89 15 d0 21 22 01 8b 53 30
> RIP  [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0
>  RSP <ffff8800bac3fd38>
> CR2: 0000000000000010
> ---[ end trace 2725ecd95164f217 ]---

This oops happens with the namespace_sem held and can be triggered by
non-root users.  An all around not pleasant experience.

To avoid this scenario when finding the appropriate source mount to
copy stop the walk up the mnt_master chain when the first source mount
is encountered.

Further rewrite the walk up the last_source mnt_master chain so that
it is clear what is going on.

The reason why the first source mount is special is that it it's
mnt_parent is not a mount in the dest_mnt propagation tree, and as
such termination conditions based up on the dest_mnt mount propgation
tree do not make sense.

To avoid other kinds of confusion last_dest is not changed when
computing last_source.  last_dest is only used once in propagate_one
and that is above the point of the code being modified, so changing
the global variable is meaningless and confusing.

Cc: stable@vger.kernel.org
fixes: f2ebb3a921 ("smarter propagate_mnt()")
Reported-by: Tycho Andersen <tycho.andersen@canonical.com>
Reviewed-by: Seth Forshee <seth.forshee@canonical.com>
Tested-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-05-05 09:54:45 -05:00

461 lines
11 KiB
C

/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Released under GPL v2.
* Author : Ram Pai (linuxram@us.ibm.com)
*
*/
#include <linux/mnt_namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include "internal.h"
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct mount *next_peer(struct mount *p)
{
return list_entry(p->mnt_share.next, struct mount, mnt_share);
}
static inline struct mount *first_slave(struct mount *p)
{
return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
}
static inline struct mount *next_slave(struct mount *p)
{
return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
}
static struct mount *get_peer_under_root(struct mount *mnt,
struct mnt_namespace *ns,
const struct path *root)
{
struct mount *m = mnt;
do {
/* Check the namespace first for optimization */
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
return m;
m = next_peer(m);
} while (m != mnt);
return NULL;
}
/*
* Get ID of closest dominating peer group having a representative
* under the given root.
*
* Caller must hold namespace_sem
*/
int get_dominating_id(struct mount *mnt, const struct path *root)
{
struct mount *m;
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
if (d)
return d->mnt_group_id;
}
return 0;
}
static int do_make_slave(struct mount *mnt)
{
struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
struct mount *slave_mnt;
/*
* slave 'mnt' to a peer mount that has the
* same root dentry. If none is available then
* slave it to anything that is available.
*/
while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
if (peer_mnt == mnt) {
peer_mnt = next_peer(mnt);
if (peer_mnt == mnt)
peer_mnt = NULL;
}
if (mnt->mnt_group_id && IS_MNT_SHARED(mnt) &&
list_empty(&mnt->mnt_share))
mnt_release_group_id(mnt);
list_del_init(&mnt->mnt_share);
mnt->mnt_group_id = 0;
if (peer_mnt)
master = peer_mnt;
if (master) {
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
slave_mnt->mnt_master = master;
list_move(&mnt->mnt_slave, &master->mnt_slave_list);
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
} else {
struct list_head *p = &mnt->mnt_slave_list;
while (!list_empty(p)) {
slave_mnt = list_first_entry(p,
struct mount, mnt_slave);
list_del_init(&slave_mnt->mnt_slave);
slave_mnt->mnt_master = NULL;
}
}
mnt->mnt_master = master;
CLEAR_MNT_SHARED(mnt);
return 0;
}
/*
* vfsmount lock must be held for write
*/
void change_mnt_propagation(struct mount *mnt, int type)
{
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
do_make_slave(mnt);
if (type != MS_SLAVE) {
list_del_init(&mnt->mnt_slave);
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
else
mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*
* Note that peer groups form contiguous segments of slave lists.
* We rely on that in get_source() to be able to find out if
* vfsmount found while iterating with propagation_next() is
* a peer of one we'd found earlier.
*/
static struct mount *propagation_next(struct mount *m,
struct mount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
while (1) {
struct mount *master = m->mnt_master;
if (master == origin->mnt_master) {
struct mount *next = next_peer(m);
return (next == origin) ? NULL : next;
} else if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
/* back at master */
m = master;
}
}
static struct mount *next_group(struct mount *m, struct mount *origin)
{
while (1) {
while (1) {
struct mount *next;
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
next = next_peer(m);
if (m->mnt_group_id == origin->mnt_group_id) {
if (next == origin)
return NULL;
} else if (m->mnt_slave.next != &next->mnt_slave)
break;
m = next;
}
/* m is the last peer */
while (1) {
struct mount *master = m->mnt_master;
if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
m = next_peer(master);
if (master->mnt_group_id == origin->mnt_group_id)
break;
if (master->mnt_slave.next == &m->mnt_slave)
break;
m = master;
}
if (m == origin)
return NULL;
}
}
/* all accesses are serialized by namespace_sem */
static struct user_namespace *user_ns;
static struct mount *last_dest, *first_source, *last_source, *dest_master;
static struct mountpoint *mp;
static struct hlist_head *list;
static inline bool peers(struct mount *m1, struct mount *m2)
{
return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
}
static int propagate_one(struct mount *m)
{
struct mount *child;
int type;
/* skip ones added by this propagate_mnt() */
if (IS_MNT_NEW(m))
return 0;
/* skip if mountpoint isn't covered by it */
if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
return 0;
if (peers(m, last_dest)) {
type = CL_MAKE_SHARED;
} else {
struct mount *n, *p;
bool done;
for (n = m; ; n = p) {
p = n->mnt_master;
if (p == dest_master || IS_MNT_MARKED(p))
break;
}
do {
struct mount *parent = last_source->mnt_parent;
if (last_source == first_source)
break;
done = parent->mnt_master == p;
if (done && peers(n, parent))
break;
last_source = last_source->mnt_master;
} while (!done);
type = CL_SLAVE;
/* beginning of peer group among the slaves? */
if (IS_MNT_SHARED(m))
type |= CL_MAKE_SHARED;
}
/* Notice when we are propagating across user namespaces */
if (m->mnt_ns->user_ns != user_ns)
type |= CL_UNPRIVILEGED;
child = copy_tree(last_source, last_source->mnt.mnt_root, type);
if (IS_ERR(child))
return PTR_ERR(child);
child->mnt.mnt_flags &= ~MNT_LOCKED;
mnt_set_mountpoint(m, mp, child);
last_dest = m;
last_source = child;
if (m->mnt_master != dest_master) {
read_seqlock_excl(&mount_lock);
SET_MNT_MARK(m->mnt_master);
read_sequnlock_excl(&mount_lock);
}
hlist_add_head(&child->mnt_hash, list);
return 0;
}
/*
* mount 'source_mnt' under the destination 'dest_mnt' at
* dentry 'dest_dentry'. And propagate that mount to
* all the peer and slave mounts of 'dest_mnt'.
* Link all the new mounts into a propagation tree headed at
* source_mnt. Also link all the new mounts using ->mnt_list
* headed at source_mnt's ->mnt_list
*
* @dest_mnt: destination mount.
* @dest_dentry: destination dentry.
* @source_mnt: source mount.
* @tree_list : list of heads of trees to be attached.
*/
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
struct mount *source_mnt, struct hlist_head *tree_list)
{
struct mount *m, *n;
int ret = 0;
/*
* we don't want to bother passing tons of arguments to
* propagate_one(); everything is serialized by namespace_sem,
* so globals will do just fine.
*/
user_ns = current->nsproxy->mnt_ns->user_ns;
last_dest = dest_mnt;
first_source = source_mnt;
last_source = source_mnt;
mp = dest_mp;
list = tree_list;
dest_master = dest_mnt->mnt_master;
/* all peers of dest_mnt, except dest_mnt itself */
for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
ret = propagate_one(n);
if (ret)
goto out;
}
/* all slave groups */
for (m = next_group(dest_mnt, dest_mnt); m;
m = next_group(m, dest_mnt)) {
/* everything in that slave group */
n = m;
do {
ret = propagate_one(n);
if (ret)
goto out;
n = next_peer(n);
} while (n != m);
}
out:
read_seqlock_excl(&mount_lock);
hlist_for_each_entry(n, tree_list, mnt_hash) {
m = n->mnt_parent;
if (m->mnt_master != dest_mnt->mnt_master)
CLEAR_MNT_MARK(m->mnt_master);
}
read_sequnlock_excl(&mount_lock);
return ret;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct mount *mnt, int count)
{
return mnt_get_count(mnt) > count;
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*
* vfsmount lock must be held for write
*/
int propagate_mount_busy(struct mount *mnt, int refcnt)
{
struct mount *m, *child;
struct mount *parent = mnt->mnt_parent;
int ret = 0;
if (mnt == parent)
return do_refcount_check(mnt, refcnt);
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
if (child && list_empty(&child->mnt_mounts) &&
(ret = do_refcount_check(child, 1)))
break;
}
return ret;
}
/*
* Clear MNT_LOCKED when it can be shown to be safe.
*
* mount_lock lock must be held for write
*/
void propagate_mount_unlock(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m, *child;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt_last(&m->mnt, mnt->mnt_mountpoint);
if (child)
child->mnt.mnt_flags &= ~MNT_LOCKED;
}
}
/*
* Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
*/
static void mark_umount_candidates(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct mount *child = __lookup_mnt_last(&m->mnt,
mnt->mnt_mountpoint);
if (child && (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m))) {
SET_MNT_MARK(child);
}
}
}
/*
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
* parent propagates to.
*/
static void __propagate_umount(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct mount *child = __lookup_mnt_last(&m->mnt,
mnt->mnt_mountpoint);
/*
* umount the child only if the child has no children
* and the child is marked safe to unmount.
*/
if (!child || !IS_MNT_MARKED(child))
continue;
CLEAR_MNT_MARK(child);
if (list_empty(&child->mnt_mounts)) {
list_del_init(&child->mnt_child);
child->mnt.mnt_flags |= MNT_UMOUNT;
list_move_tail(&child->mnt_list, &mnt->mnt_list);
}
}
}
/*
* collect all mounts that receive propagation from the mount in @list,
* and return these additional mounts in the same list.
* @list: the list of mounts to be unmounted.
*
* vfsmount lock must be held for write
*/
int propagate_umount(struct list_head *list)
{
struct mount *mnt;
list_for_each_entry_reverse(mnt, list, mnt_list)
mark_umount_candidates(mnt);
list_for_each_entry(mnt, list, mnt_list)
__propagate_umount(mnt);
return 0;
}