mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-25 05:34:00 +08:00
da15c03b04
Testing has revealed the existence of a race condition where a XIVE interrupt being shut down can be in one of the XIVE interrupt queues (of which there are up to 8 per CPU, one for each priority) at the point where free_irq() is called. If this happens, can return an interrupt number which has been shut down. This can lead to various symptoms: - irq_to_desc(irq) can be NULL. In this case, no end-of-interrupt function gets called, resulting in the CPU's elevated interrupt priority (numerically lowered CPPR) never gets reset. That then means that the CPU stops processing interrupts, causing device timeouts and other errors in various device drivers. - The irq descriptor or related data structures can be in the process of being freed as the interrupt code is using them. This typically leads to crashes due to bad pointer dereferences. This race is basically what commit62e0468650
("genirq: Add optional hardware synchronization for shutdown", 2019-06-28) is intended to fix, given a get_irqchip_state() method for the interrupt controller being used. It works by polling the interrupt controller when an interrupt is being freed until the controller says it is not pending. With XIVE, the PQ bits of the interrupt source indicate the state of the interrupt source, and in particular the P bit goes from 0 to 1 at the point where the hardware writes an entry into the interrupt queue that this interrupt is directed towards. Normally, the code will then process the interrupt and do an end-of-interrupt (EOI) operation which will reset PQ to 00 (assuming another interrupt hasn't been generated in the meantime). However, there are situations where the code resets P even though a queue entry exists (for example, by setting PQ to 01, which disables the interrupt source), and also situations where the code leaves P at 1 after removing the queue entry (for example, this is done for escalation interrupts so they cannot fire again until they are explicitly re-enabled). The code already has a 'saved_p' flag for the interrupt source which indicates that a queue entry exists, although it isn't maintained consistently. This patch adds a 'stale_p' flag to indicate that P has been left at 1 after processing a queue entry, and adds code to set and clear saved_p and stale_p as necessary to maintain a consistent indication of whether a queue entry may or may not exist. With this, we can implement xive_get_irqchip_state() by looking at stale_p, saved_p and the ESB PQ bits for the interrupt. There is some additional code to handle escalation interrupts properly; because they are enabled and disabled in KVM assembly code, which does not have access to the xive_irq_data struct for the escalation interrupt. Hence, stale_p may be incorrect when the escalation interrupt is freed in kvmppc_xive_{,native_}cleanup_vcpu(). Fortunately, we can fix it up by looking at vcpu->arch.xive_esc_on, with some careful attention to barriers in order to ensure the correct result if xive_esc_irq() races with kvmppc_xive_cleanup_vcpu(). Finally, this adds code to make noise on the console (pr_crit and WARN_ON(1)) if we find an interrupt queue entry for an interrupt which does not have a descriptor. While this won't catch the race reliably, if it does get triggered it will be an indication that the race is occurring and needs to be debugged. Fixes:243e25112d
("powerpc/xive: Native exploitation of the XIVE interrupt controller") Cc: stable@vger.kernel.org # v4.12+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190813100648.GE9567@blackberry
2187 lines
57 KiB
C
2187 lines
57 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "xive-kvm: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/err.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/xics.h>
|
|
#include <asm/xive.h>
|
|
#include <asm/xive-regs.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/time.h>
|
|
#include <asm/opal.h>
|
|
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include "book3s_xive.h"
|
|
|
|
|
|
/*
|
|
* Virtual mode variants of the hcalls for use on radix/radix
|
|
* with AIL. They require the VCPU's VP to be "pushed"
|
|
*
|
|
* We still instantiate them here because we use some of the
|
|
* generated utility functions as well in this file.
|
|
*/
|
|
#define XIVE_RUNTIME_CHECKS
|
|
#define X_PFX xive_vm_
|
|
#define X_STATIC static
|
|
#define X_STAT_PFX stat_vm_
|
|
#define __x_tima xive_tima
|
|
#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
|
|
#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
|
|
#define __x_writeb __raw_writeb
|
|
#define __x_readw __raw_readw
|
|
#define __x_readq __raw_readq
|
|
#define __x_writeq __raw_writeq
|
|
|
|
#include "book3s_xive_template.c"
|
|
|
|
/*
|
|
* We leave a gap of a couple of interrupts in the queue to
|
|
* account for the IPI and additional safety guard.
|
|
*/
|
|
#define XIVE_Q_GAP 2
|
|
|
|
/*
|
|
* Push a vcpu's context to the XIVE on guest entry.
|
|
* This assumes we are in virtual mode (MMU on)
|
|
*/
|
|
void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
|
|
u64 pq;
|
|
|
|
/*
|
|
* Nothing to do if the platform doesn't have a XIVE
|
|
* or this vCPU doesn't have its own XIVE context
|
|
* (e.g. because it's not using an in-kernel interrupt controller).
|
|
*/
|
|
if (!tima || !vcpu->arch.xive_cam_word)
|
|
return;
|
|
|
|
eieio();
|
|
__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
|
|
__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
|
|
vcpu->arch.xive_pushed = 1;
|
|
eieio();
|
|
|
|
/*
|
|
* We clear the irq_pending flag. There is a small chance of a
|
|
* race vs. the escalation interrupt happening on another
|
|
* processor setting it again, but the only consequence is to
|
|
* cause a spurious wakeup on the next H_CEDE, which is not an
|
|
* issue.
|
|
*/
|
|
vcpu->arch.irq_pending = 0;
|
|
|
|
/*
|
|
* In single escalation mode, if the escalation interrupt is
|
|
* on, we mask it.
|
|
*/
|
|
if (vcpu->arch.xive_esc_on) {
|
|
pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
|
|
XIVE_ESB_SET_PQ_01));
|
|
mb();
|
|
|
|
/*
|
|
* We have a possible subtle race here: The escalation
|
|
* interrupt might have fired and be on its way to the
|
|
* host queue while we mask it, and if we unmask it
|
|
* early enough (re-cede right away), there is a
|
|
* theorical possibility that it fires again, thus
|
|
* landing in the target queue more than once which is
|
|
* a big no-no.
|
|
*
|
|
* Fortunately, solving this is rather easy. If the
|
|
* above load setting PQ to 01 returns a previous
|
|
* value where P is set, then we know the escalation
|
|
* interrupt is somewhere on its way to the host. In
|
|
* that case we simply don't clear the xive_esc_on
|
|
* flag below. It will be eventually cleared by the
|
|
* handler for the escalation interrupt.
|
|
*
|
|
* Then, when doing a cede, we check that flag again
|
|
* before re-enabling the escalation interrupt, and if
|
|
* set, we abort the cede.
|
|
*/
|
|
if (!(pq & XIVE_ESB_VAL_P))
|
|
/* Now P is 0, we can clear the flag */
|
|
vcpu->arch.xive_esc_on = 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
|
|
|
|
/*
|
|
* This is a simple trigger for a generic XIVE IRQ. This must
|
|
* only be called for interrupts that support a trigger page
|
|
*/
|
|
static bool xive_irq_trigger(struct xive_irq_data *xd)
|
|
{
|
|
/* This should be only for MSIs */
|
|
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
|
|
return false;
|
|
|
|
/* Those interrupts should always have a trigger page */
|
|
if (WARN_ON(!xd->trig_mmio))
|
|
return false;
|
|
|
|
out_be64(xd->trig_mmio, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static irqreturn_t xive_esc_irq(int irq, void *data)
|
|
{
|
|
struct kvm_vcpu *vcpu = data;
|
|
|
|
vcpu->arch.irq_pending = 1;
|
|
smp_mb();
|
|
if (vcpu->arch.ceded)
|
|
kvmppc_fast_vcpu_kick(vcpu);
|
|
|
|
/* Since we have the no-EOI flag, the interrupt is effectively
|
|
* disabled now. Clearing xive_esc_on means we won't bother
|
|
* doing so on the next entry.
|
|
*
|
|
* This also allows the entry code to know that if a PQ combination
|
|
* of 10 is observed while xive_esc_on is true, it means the queue
|
|
* contains an unprocessed escalation interrupt. We don't make use of
|
|
* that knowledge today but might (see comment in book3s_hv_rmhandler.S)
|
|
*/
|
|
vcpu->arch.xive_esc_on = false;
|
|
|
|
/* This orders xive_esc_on = false vs. subsequent stale_p = true */
|
|
smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
|
|
bool single_escalation)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct xive_q *q = &xc->queues[prio];
|
|
char *name = NULL;
|
|
int rc;
|
|
|
|
/* Already there ? */
|
|
if (xc->esc_virq[prio])
|
|
return 0;
|
|
|
|
/* Hook up the escalation interrupt */
|
|
xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
|
|
if (!xc->esc_virq[prio]) {
|
|
pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
|
|
prio, xc->server_num);
|
|
return -EIO;
|
|
}
|
|
|
|
if (single_escalation)
|
|
name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
|
|
vcpu->kvm->arch.lpid, xc->server_num);
|
|
else
|
|
name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
|
|
vcpu->kvm->arch.lpid, xc->server_num, prio);
|
|
if (!name) {
|
|
pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
|
|
prio, xc->server_num);
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
|
|
|
|
rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
|
|
IRQF_NO_THREAD, name, vcpu);
|
|
if (rc) {
|
|
pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
|
|
prio, xc->server_num);
|
|
goto error;
|
|
}
|
|
xc->esc_virq_names[prio] = name;
|
|
|
|
/* In single escalation mode, we grab the ESB MMIO of the
|
|
* interrupt and mask it. Also populate the VCPU v/raddr
|
|
* of the ESB page for use by asm entry/exit code. Finally
|
|
* set the XIVE_IRQ_NO_EOI flag which will prevent the
|
|
* core code from performing an EOI on the escalation
|
|
* interrupt, thus leaving it effectively masked after
|
|
* it fires once.
|
|
*/
|
|
if (single_escalation) {
|
|
struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
|
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
|
|
|
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
|
|
vcpu->arch.xive_esc_raddr = xd->eoi_page;
|
|
vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
|
|
xd->flags |= XIVE_IRQ_NO_EOI;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
irq_dispose_mapping(xc->esc_virq[prio]);
|
|
xc->esc_virq[prio] = 0;
|
|
kfree(name);
|
|
return rc;
|
|
}
|
|
|
|
static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct kvmppc_xive *xive = xc->xive;
|
|
struct xive_q *q = &xc->queues[prio];
|
|
void *qpage;
|
|
int rc;
|
|
|
|
if (WARN_ON(q->qpage))
|
|
return 0;
|
|
|
|
/* Allocate the queue and retrieve infos on current node for now */
|
|
qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
|
|
if (!qpage) {
|
|
pr_err("Failed to allocate queue %d for VCPU %d\n",
|
|
prio, xc->server_num);
|
|
return -ENOMEM;
|
|
}
|
|
memset(qpage, 0, 1 << xive->q_order);
|
|
|
|
/*
|
|
* Reconfigure the queue. This will set q->qpage only once the
|
|
* queue is fully configured. This is a requirement for prio 0
|
|
* as we will stop doing EOIs for every IPI as soon as we observe
|
|
* qpage being non-NULL, and instead will only EOI when we receive
|
|
* corresponding queue 0 entries
|
|
*/
|
|
rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
|
|
xive->q_order, true);
|
|
if (rc)
|
|
pr_err("Failed to configure queue %d for VCPU %d\n",
|
|
prio, xc->server_num);
|
|
return rc;
|
|
}
|
|
|
|
/* Called with xive->lock held */
|
|
static int xive_check_provisioning(struct kvm *kvm, u8 prio)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, rc;
|
|
|
|
lockdep_assert_held(&xive->lock);
|
|
|
|
/* Already provisioned ? */
|
|
if (xive->qmap & (1 << prio))
|
|
return 0;
|
|
|
|
pr_devel("Provisioning prio... %d\n", prio);
|
|
|
|
/* Provision each VCPU and enable escalations if needed */
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!vcpu->arch.xive_vcpu)
|
|
continue;
|
|
rc = xive_provision_queue(vcpu, prio);
|
|
if (rc == 0 && !xive->single_escalation)
|
|
kvmppc_xive_attach_escalation(vcpu, prio,
|
|
xive->single_escalation);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* Order previous stores and mark it as provisioned */
|
|
mb();
|
|
xive->qmap |= (1 << prio);
|
|
return 0;
|
|
}
|
|
|
|
static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvmppc_xive_vcpu *xc;
|
|
struct xive_q *q;
|
|
|
|
/* Locate target server */
|
|
vcpu = kvmppc_xive_find_server(kvm, server);
|
|
if (!vcpu) {
|
|
pr_warn("%s: Can't find server %d\n", __func__, server);
|
|
return;
|
|
}
|
|
xc = vcpu->arch.xive_vcpu;
|
|
if (WARN_ON(!xc))
|
|
return;
|
|
|
|
q = &xc->queues[prio];
|
|
atomic_inc(&q->pending_count);
|
|
}
|
|
|
|
static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct xive_q *q;
|
|
u32 max;
|
|
|
|
if (WARN_ON(!xc))
|
|
return -ENXIO;
|
|
if (!xc->valid)
|
|
return -ENXIO;
|
|
|
|
q = &xc->queues[prio];
|
|
if (WARN_ON(!q->qpage))
|
|
return -ENXIO;
|
|
|
|
/* Calculate max number of interrupts in that queue. */
|
|
max = (q->msk + 1) - XIVE_Q_GAP;
|
|
return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
|
|
}
|
|
|
|
int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i, rc;
|
|
|
|
/* Locate target server */
|
|
vcpu = kvmppc_xive_find_server(kvm, *server);
|
|
if (!vcpu) {
|
|
pr_devel("Can't find server %d\n", *server);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
|
|
|
|
/* Try pick it */
|
|
rc = xive_try_pick_queue(vcpu, prio);
|
|
if (rc == 0)
|
|
return rc;
|
|
|
|
pr_devel(" .. failed, looking up candidate...\n");
|
|
|
|
/* Failed, pick another VCPU */
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!vcpu->arch.xive_vcpu)
|
|
continue;
|
|
rc = xive_try_pick_queue(vcpu, prio);
|
|
if (rc == 0) {
|
|
*server = vcpu->arch.xive_vcpu->server_num;
|
|
pr_devel(" found on 0x%x/%d\n", *server, prio);
|
|
return rc;
|
|
}
|
|
}
|
|
pr_devel(" no available target !\n");
|
|
|
|
/* No available target ! */
|
|
return -EBUSY;
|
|
}
|
|
|
|
static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
|
|
struct kvmppc_xive_src_block *sb,
|
|
struct kvmppc_xive_irq_state *state)
|
|
{
|
|
struct xive_irq_data *xd;
|
|
u32 hw_num;
|
|
u8 old_prio;
|
|
u64 val;
|
|
|
|
/*
|
|
* Take the lock, set masked, try again if racing
|
|
* with H_EOI
|
|
*/
|
|
for (;;) {
|
|
arch_spin_lock(&sb->lock);
|
|
old_prio = state->guest_priority;
|
|
state->guest_priority = MASKED;
|
|
mb();
|
|
if (!state->in_eoi)
|
|
break;
|
|
state->guest_priority = old_prio;
|
|
arch_spin_unlock(&sb->lock);
|
|
}
|
|
|
|
/* No change ? Bail */
|
|
if (old_prio == MASKED)
|
|
return old_prio;
|
|
|
|
/* Get the right irq */
|
|
kvmppc_xive_select_irq(state, &hw_num, &xd);
|
|
|
|
/*
|
|
* If the interrupt is marked as needing masking via
|
|
* firmware, we do it here. Firmware masking however
|
|
* is "lossy", it won't return the old p and q bits
|
|
* and won't set the interrupt to a state where it will
|
|
* record queued ones. If this is an issue we should do
|
|
* lazy masking instead.
|
|
*
|
|
* For now, we work around this in unmask by forcing
|
|
* an interrupt whenever we unmask a non-LSI via FW
|
|
* (if ever).
|
|
*/
|
|
if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
|
|
xive_native_configure_irq(hw_num,
|
|
kvmppc_xive_vp(xive, state->act_server),
|
|
MASKED, state->number);
|
|
/* set old_p so we can track if an H_EOI was done */
|
|
state->old_p = true;
|
|
state->old_q = false;
|
|
} else {
|
|
/* Set PQ to 10, return old P and old Q and remember them */
|
|
val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
|
|
state->old_p = !!(val & 2);
|
|
state->old_q = !!(val & 1);
|
|
|
|
/*
|
|
* Synchronize hardware to sensure the queues are updated
|
|
* when masking
|
|
*/
|
|
xive_native_sync_source(hw_num);
|
|
}
|
|
|
|
return old_prio;
|
|
}
|
|
|
|
static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
|
|
struct kvmppc_xive_irq_state *state)
|
|
{
|
|
/*
|
|
* Take the lock try again if racing with H_EOI
|
|
*/
|
|
for (;;) {
|
|
arch_spin_lock(&sb->lock);
|
|
if (!state->in_eoi)
|
|
break;
|
|
arch_spin_unlock(&sb->lock);
|
|
}
|
|
}
|
|
|
|
static void xive_finish_unmask(struct kvmppc_xive *xive,
|
|
struct kvmppc_xive_src_block *sb,
|
|
struct kvmppc_xive_irq_state *state,
|
|
u8 prio)
|
|
{
|
|
struct xive_irq_data *xd;
|
|
u32 hw_num;
|
|
|
|
/* If we aren't changing a thing, move on */
|
|
if (state->guest_priority != MASKED)
|
|
goto bail;
|
|
|
|
/* Get the right irq */
|
|
kvmppc_xive_select_irq(state, &hw_num, &xd);
|
|
|
|
/*
|
|
* See command in xive_lock_and_mask() concerning masking
|
|
* via firmware.
|
|
*/
|
|
if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
|
|
xive_native_configure_irq(hw_num,
|
|
kvmppc_xive_vp(xive, state->act_server),
|
|
state->act_priority, state->number);
|
|
/* If an EOI is needed, do it here */
|
|
if (!state->old_p)
|
|
xive_vm_source_eoi(hw_num, xd);
|
|
/* If this is not an LSI, force a trigger */
|
|
if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
|
|
xive_irq_trigger(xd);
|
|
goto bail;
|
|
}
|
|
|
|
/* Old Q set, set PQ to 11 */
|
|
if (state->old_q)
|
|
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
|
|
|
|
/*
|
|
* If not old P, then perform an "effective" EOI,
|
|
* on the source. This will handle the cases where
|
|
* FW EOI is needed.
|
|
*/
|
|
if (!state->old_p)
|
|
xive_vm_source_eoi(hw_num, xd);
|
|
|
|
/* Synchronize ordering and mark unmasked */
|
|
mb();
|
|
bail:
|
|
state->guest_priority = prio;
|
|
}
|
|
|
|
/*
|
|
* Target an interrupt to a given server/prio, this will fallback
|
|
* to another server if necessary and perform the HW targetting
|
|
* updates as needed
|
|
*
|
|
* NOTE: Must be called with the state lock held
|
|
*/
|
|
static int xive_target_interrupt(struct kvm *kvm,
|
|
struct kvmppc_xive_irq_state *state,
|
|
u32 server, u8 prio)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
u32 hw_num;
|
|
int rc;
|
|
|
|
/*
|
|
* This will return a tentative server and actual
|
|
* priority. The count for that new target will have
|
|
* already been incremented.
|
|
*/
|
|
rc = kvmppc_xive_select_target(kvm, &server, prio);
|
|
|
|
/*
|
|
* We failed to find a target ? Not much we can do
|
|
* at least until we support the GIQ.
|
|
*/
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Increment the old queue pending count if there
|
|
* was one so that the old queue count gets adjusted later
|
|
* when observed to be empty.
|
|
*/
|
|
if (state->act_priority != MASKED)
|
|
xive_inc_q_pending(kvm,
|
|
state->act_server,
|
|
state->act_priority);
|
|
/*
|
|
* Update state and HW
|
|
*/
|
|
state->act_priority = prio;
|
|
state->act_server = server;
|
|
|
|
/* Get the right irq */
|
|
kvmppc_xive_select_irq(state, &hw_num, NULL);
|
|
|
|
return xive_native_configure_irq(hw_num,
|
|
kvmppc_xive_vp(xive, server),
|
|
prio, state->number);
|
|
}
|
|
|
|
/*
|
|
* Targetting rules: In order to avoid losing track of
|
|
* pending interrupts accross mask and unmask, which would
|
|
* allow queue overflows, we implement the following rules:
|
|
*
|
|
* - Unless it was never enabled (or we run out of capacity)
|
|
* an interrupt is always targetted at a valid server/queue
|
|
* pair even when "masked" by the guest. This pair tends to
|
|
* be the last one used but it can be changed under some
|
|
* circumstances. That allows us to separate targetting
|
|
* from masking, we only handle accounting during (re)targetting,
|
|
* this also allows us to let an interrupt drain into its target
|
|
* queue after masking, avoiding complex schemes to remove
|
|
* interrupts out of remote processor queues.
|
|
*
|
|
* - When masking, we set PQ to 10 and save the previous value
|
|
* of P and Q.
|
|
*
|
|
* - When unmasking, if saved Q was set, we set PQ to 11
|
|
* otherwise we leave PQ to the HW state which will be either
|
|
* 10 if nothing happened or 11 if the interrupt fired while
|
|
* masked. Effectively we are OR'ing the previous Q into the
|
|
* HW Q.
|
|
*
|
|
* Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
|
|
* which will unmask the interrupt and shoot a new one if Q was
|
|
* set.
|
|
*
|
|
* Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
|
|
* effectively meaning an H_EOI from the guest is still expected
|
|
* for that interrupt).
|
|
*
|
|
* - If H_EOI occurs while masked, we clear the saved P.
|
|
*
|
|
* - When changing target, we account on the new target and
|
|
* increment a separate "pending" counter on the old one.
|
|
* This pending counter will be used to decrement the old
|
|
* target's count when its queue has been observed empty.
|
|
*/
|
|
|
|
int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
|
|
u32 priority)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u8 new_act_prio;
|
|
int rc = 0;
|
|
u16 idx;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
|
|
irq, server, priority);
|
|
|
|
/* First, check provisioning of queues */
|
|
if (priority != MASKED) {
|
|
mutex_lock(&xive->lock);
|
|
rc = xive_check_provisioning(xive->kvm,
|
|
xive_prio_from_guest(priority));
|
|
mutex_unlock(&xive->lock);
|
|
}
|
|
if (rc) {
|
|
pr_devel(" provisioning failure %d !\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
|
|
/*
|
|
* We first handle masking/unmasking since the locking
|
|
* might need to be retried due to EOIs, we'll handle
|
|
* targetting changes later. These functions will return
|
|
* with the SB lock held.
|
|
*
|
|
* xive_lock_and_mask() will also set state->guest_priority
|
|
* but won't otherwise change other fields of the state.
|
|
*
|
|
* xive_lock_for_unmask will not actually unmask, this will
|
|
* be done later by xive_finish_unmask() once the targetting
|
|
* has been done, so we don't try to unmask an interrupt
|
|
* that hasn't yet been targetted.
|
|
*/
|
|
if (priority == MASKED)
|
|
xive_lock_and_mask(xive, sb, state);
|
|
else
|
|
xive_lock_for_unmask(sb, state);
|
|
|
|
|
|
/*
|
|
* Then we handle targetting.
|
|
*
|
|
* First calculate a new "actual priority"
|
|
*/
|
|
new_act_prio = state->act_priority;
|
|
if (priority != MASKED)
|
|
new_act_prio = xive_prio_from_guest(priority);
|
|
|
|
pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
|
|
new_act_prio, state->act_server, state->act_priority);
|
|
|
|
/*
|
|
* Then check if we actually need to change anything,
|
|
*
|
|
* The condition for re-targetting the interrupt is that
|
|
* we have a valid new priority (new_act_prio is not 0xff)
|
|
* and either the server or the priority changed.
|
|
*
|
|
* Note: If act_priority was ff and the new priority is
|
|
* also ff, we don't do anything and leave the interrupt
|
|
* untargetted. An attempt of doing an int_on on an
|
|
* untargetted interrupt will fail. If that is a problem
|
|
* we could initialize interrupts with valid default
|
|
*/
|
|
|
|
if (new_act_prio != MASKED &&
|
|
(state->act_server != server ||
|
|
state->act_priority != new_act_prio))
|
|
rc = xive_target_interrupt(kvm, state, server, new_act_prio);
|
|
|
|
/*
|
|
* Perform the final unmasking of the interrupt source
|
|
* if necessary
|
|
*/
|
|
if (priority != MASKED)
|
|
xive_finish_unmask(xive, sb, state, priority);
|
|
|
|
/*
|
|
* Finally Update saved_priority to match. Only int_on/off
|
|
* set this field to a different value.
|
|
*/
|
|
state->saved_priority = priority;
|
|
|
|
arch_spin_unlock(&sb->lock);
|
|
return rc;
|
|
}
|
|
|
|
int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
|
|
u32 *priority)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
arch_spin_lock(&sb->lock);
|
|
*server = state->act_server;
|
|
*priority = state->guest_priority;
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
|
|
pr_devel("int_on(irq=0x%x)\n", irq);
|
|
|
|
/*
|
|
* Check if interrupt was not targetted
|
|
*/
|
|
if (state->act_priority == MASKED) {
|
|
pr_devel("int_on on untargetted interrupt\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If saved_priority is 0xff, do nothing */
|
|
if (state->saved_priority == MASKED)
|
|
return 0;
|
|
|
|
/*
|
|
* Lock and unmask it.
|
|
*/
|
|
xive_lock_for_unmask(sb, state);
|
|
xive_finish_unmask(xive, sb, state, state->saved_priority);
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
|
|
pr_devel("int_off(irq=0x%x)\n", irq);
|
|
|
|
/*
|
|
* Lock and mask
|
|
*/
|
|
state->saved_priority = xive_lock_and_mask(xive, sb, state);
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
|
|
{
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return false;
|
|
state = &sb->irq_state[idx];
|
|
if (!state->valid)
|
|
return false;
|
|
|
|
/*
|
|
* Trigger the IPI. This assumes we never restore a pass-through
|
|
* interrupt which should be safe enough
|
|
*/
|
|
xive_irq_trigger(&state->ipi_data);
|
|
|
|
return true;
|
|
}
|
|
|
|
u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
|
|
if (!xc)
|
|
return 0;
|
|
|
|
/* Return the per-cpu state for state saving/migration */
|
|
return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
|
|
(u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
|
|
(u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
|
|
}
|
|
|
|
int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
|
|
u8 cppr, mfrr;
|
|
u32 xisr;
|
|
|
|
if (!xc || !xive)
|
|
return -ENOENT;
|
|
|
|
/* Grab individual state fields. We don't use pending_pri */
|
|
cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
|
|
xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
|
|
KVM_REG_PPC_ICP_XISR_MASK;
|
|
mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
|
|
|
|
pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
|
|
xc->server_num, cppr, mfrr, xisr);
|
|
|
|
/*
|
|
* We can't update the state of a "pushed" VCPU, but that
|
|
* shouldn't happen because the vcpu->mutex makes running a
|
|
* vcpu mutually exclusive with doing one_reg get/set on it.
|
|
*/
|
|
if (WARN_ON(vcpu->arch.xive_pushed))
|
|
return -EIO;
|
|
|
|
/* Update VCPU HW saved state */
|
|
vcpu->arch.xive_saved_state.cppr = cppr;
|
|
xc->hw_cppr = xc->cppr = cppr;
|
|
|
|
/*
|
|
* Update MFRR state. If it's not 0xff, we mark the VCPU as
|
|
* having a pending MFRR change, which will re-evaluate the
|
|
* target. The VCPU will thus potentially get a spurious
|
|
* interrupt but that's not a big deal.
|
|
*/
|
|
xc->mfrr = mfrr;
|
|
if (mfrr < cppr)
|
|
xive_irq_trigger(&xc->vp_ipi_data);
|
|
|
|
/*
|
|
* Now saved XIRR is "interesting". It means there's something in
|
|
* the legacy "1 element" queue... for an IPI we simply ignore it,
|
|
* as the MFRR restore will handle that. For anything else we need
|
|
* to force a resend of the source.
|
|
* However the source may not have been setup yet. If that's the
|
|
* case, we keep that info and increment a counter in the xive to
|
|
* tell subsequent xive_set_source() to go look.
|
|
*/
|
|
if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
|
|
xc->delayed_irq = xisr;
|
|
xive->delayed_irqs++;
|
|
pr_devel(" xisr restore delayed\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
|
|
struct irq_desc *host_desc)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
|
|
unsigned int host_irq = irq_desc_get_irq(host_desc);
|
|
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
|
|
u16 idx;
|
|
u8 prio;
|
|
int rc;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
|
|
|
|
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
|
|
/*
|
|
* Mark the passed-through interrupt as going to a VCPU,
|
|
* this will prevent further EOIs and similar operations
|
|
* from the XIVE code. It will also mask the interrupt
|
|
* to either PQ=10 or 11 state, the latter if the interrupt
|
|
* is pending. This will allow us to unmask or retrigger it
|
|
* after routing it to the guest with a simple EOI.
|
|
*
|
|
* The "state" argument is a "token", all it needs is to be
|
|
* non-NULL to switch to passed-through or NULL for the
|
|
* other way around. We may not yet have an actual VCPU
|
|
* target here and we don't really care.
|
|
*/
|
|
rc = irq_set_vcpu_affinity(host_irq, state);
|
|
if (rc) {
|
|
pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Mask and read state of IPI. We need to know if its P bit
|
|
* is set as that means it's potentially already using a
|
|
* queue entry in the target
|
|
*/
|
|
prio = xive_lock_and_mask(xive, sb, state);
|
|
pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
|
|
state->old_p, state->old_q);
|
|
|
|
/* Turn the IPI hard off */
|
|
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
|
|
|
|
/*
|
|
* Reset ESB guest mapping. Needed when ESB pages are exposed
|
|
* to the guest in XIVE native mode
|
|
*/
|
|
if (xive->ops && xive->ops->reset_mapped)
|
|
xive->ops->reset_mapped(kvm, guest_irq);
|
|
|
|
/* Grab info about irq */
|
|
state->pt_number = hw_irq;
|
|
state->pt_data = irq_data_get_irq_handler_data(host_data);
|
|
|
|
/*
|
|
* Configure the IRQ to match the existing configuration of
|
|
* the IPI if it was already targetted. Otherwise this will
|
|
* mask the interrupt in a lossy way (act_priority is 0xff)
|
|
* which is fine for a never started interrupt.
|
|
*/
|
|
xive_native_configure_irq(hw_irq,
|
|
kvmppc_xive_vp(xive, state->act_server),
|
|
state->act_priority, state->number);
|
|
|
|
/*
|
|
* We do an EOI to enable the interrupt (and retrigger if needed)
|
|
* if the guest has the interrupt unmasked and the P bit was *not*
|
|
* set in the IPI. If it was set, we know a slot may still be in
|
|
* use in the target queue thus we have to wait for a guest
|
|
* originated EOI
|
|
*/
|
|
if (prio != MASKED && !state->old_p)
|
|
xive_vm_source_eoi(hw_irq, state->pt_data);
|
|
|
|
/* Clear old_p/old_q as they are no longer relevant */
|
|
state->old_p = state->old_q = false;
|
|
|
|
/* Restore guest prio (unlocks EOI) */
|
|
mb();
|
|
state->guest_priority = prio;
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
|
|
|
|
int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
|
|
struct irq_desc *host_desc)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
unsigned int host_irq = irq_desc_get_irq(host_desc);
|
|
u16 idx;
|
|
u8 prio;
|
|
int rc;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
|
|
|
|
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
state = &sb->irq_state[idx];
|
|
|
|
/*
|
|
* Mask and read state of IRQ. We need to know if its P bit
|
|
* is set as that means it's potentially already using a
|
|
* queue entry in the target
|
|
*/
|
|
prio = xive_lock_and_mask(xive, sb, state);
|
|
pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
|
|
state->old_p, state->old_q);
|
|
|
|
/*
|
|
* If old_p is set, the interrupt is pending, we switch it to
|
|
* PQ=11. This will force a resend in the host so the interrupt
|
|
* isn't lost to whatver host driver may pick it up
|
|
*/
|
|
if (state->old_p)
|
|
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
|
|
|
|
/* Release the passed-through interrupt to the host */
|
|
rc = irq_set_vcpu_affinity(host_irq, NULL);
|
|
if (rc) {
|
|
pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
|
|
return rc;
|
|
}
|
|
|
|
/* Forget about the IRQ */
|
|
state->pt_number = 0;
|
|
state->pt_data = NULL;
|
|
|
|
/*
|
|
* Reset ESB guest mapping. Needed when ESB pages are exposed
|
|
* to the guest in XIVE native mode
|
|
*/
|
|
if (xive->ops && xive->ops->reset_mapped) {
|
|
xive->ops->reset_mapped(kvm, guest_irq);
|
|
}
|
|
|
|
/* Reconfigure the IPI */
|
|
xive_native_configure_irq(state->ipi_number,
|
|
kvmppc_xive_vp(xive, state->act_server),
|
|
state->act_priority, state->number);
|
|
|
|
/*
|
|
* If old_p is set (we have a queue entry potentially
|
|
* occupied) or the interrupt is masked, we set the IPI
|
|
* to PQ=10 state. Otherwise we just re-enable it (PQ=00).
|
|
*/
|
|
if (prio == MASKED || state->old_p)
|
|
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
|
|
else
|
|
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
|
|
|
|
/* Restore guest prio (unlocks EOI) */
|
|
mb();
|
|
state->guest_priority = prio;
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
|
|
|
|
void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
int i, j;
|
|
|
|
for (i = 0; i <= xive->max_sbid; i++) {
|
|
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
|
|
|
|
if (!sb)
|
|
continue;
|
|
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
|
|
struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
|
|
|
|
if (!state->valid)
|
|
continue;
|
|
if (state->act_priority == MASKED)
|
|
continue;
|
|
if (state->act_server != xc->server_num)
|
|
continue;
|
|
|
|
/* Clean it up */
|
|
arch_spin_lock(&sb->lock);
|
|
state->act_priority = MASKED;
|
|
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
|
|
xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
|
|
if (state->pt_number) {
|
|
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
|
|
xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
|
|
}
|
|
arch_spin_unlock(&sb->lock);
|
|
}
|
|
}
|
|
|
|
/* Disable vcpu's escalation interrupt */
|
|
if (vcpu->arch.xive_esc_on) {
|
|
__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
|
|
XIVE_ESB_SET_PQ_01));
|
|
vcpu->arch.xive_esc_on = false;
|
|
}
|
|
|
|
/*
|
|
* Clear pointers to escalation interrupt ESB.
|
|
* This is safe because the vcpu->mutex is held, preventing
|
|
* any other CPU from concurrently executing a KVM_RUN ioctl.
|
|
*/
|
|
vcpu->arch.xive_esc_vaddr = 0;
|
|
vcpu->arch.xive_esc_raddr = 0;
|
|
}
|
|
|
|
/*
|
|
* In single escalation mode, the escalation interrupt is marked so
|
|
* that EOI doesn't re-enable it, but just sets the stale_p flag to
|
|
* indicate that the P bit has already been dealt with. However, the
|
|
* assembly code that enters the guest sets PQ to 00 without clearing
|
|
* stale_p (because it has no easy way to address it). Hence we have
|
|
* to adjust stale_p before shutting down the interrupt.
|
|
*/
|
|
void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_xive_vcpu *xc, int irq)
|
|
{
|
|
struct irq_data *d = irq_get_irq_data(irq);
|
|
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
|
|
|
|
/*
|
|
* This slightly odd sequence gives the right result
|
|
* (i.e. stale_p set if xive_esc_on is false) even if
|
|
* we race with xive_esc_irq() and xive_irq_eoi().
|
|
*/
|
|
xd->stale_p = false;
|
|
smp_mb(); /* paired with smb_wmb in xive_esc_irq */
|
|
if (!vcpu->arch.xive_esc_on)
|
|
xd->stale_p = true;
|
|
}
|
|
|
|
void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
|
|
int i;
|
|
|
|
if (!kvmppc_xics_enabled(vcpu))
|
|
return;
|
|
|
|
if (!xc)
|
|
return;
|
|
|
|
pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
|
|
|
|
/* Ensure no interrupt is still routed to that VP */
|
|
xc->valid = false;
|
|
kvmppc_xive_disable_vcpu_interrupts(vcpu);
|
|
|
|
/* Mask the VP IPI */
|
|
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
|
|
|
|
/* Free escalations */
|
|
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
|
|
if (xc->esc_virq[i]) {
|
|
if (xc->xive->single_escalation)
|
|
xive_cleanup_single_escalation(vcpu, xc,
|
|
xc->esc_virq[i]);
|
|
free_irq(xc->esc_virq[i], vcpu);
|
|
irq_dispose_mapping(xc->esc_virq[i]);
|
|
kfree(xc->esc_virq_names[i]);
|
|
}
|
|
}
|
|
|
|
/* Disable the VP */
|
|
xive_native_disable_vp(xc->vp_id);
|
|
|
|
/* Clear the cam word so guest entry won't try to push context */
|
|
vcpu->arch.xive_cam_word = 0;
|
|
|
|
/* Free the queues */
|
|
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
|
|
struct xive_q *q = &xc->queues[i];
|
|
|
|
xive_native_disable_queue(xc->vp_id, q, i);
|
|
if (q->qpage) {
|
|
free_pages((unsigned long)q->qpage,
|
|
xive->q_page_order);
|
|
q->qpage = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free the IPI */
|
|
if (xc->vp_ipi) {
|
|
xive_cleanup_irq_data(&xc->vp_ipi_data);
|
|
xive_native_free_irq(xc->vp_ipi);
|
|
}
|
|
/* Free the VP */
|
|
kfree(xc);
|
|
|
|
/* Cleanup the vcpu */
|
|
vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
|
|
vcpu->arch.xive_vcpu = NULL;
|
|
}
|
|
|
|
int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
|
|
struct kvm_vcpu *vcpu, u32 cpu)
|
|
{
|
|
struct kvmppc_xive *xive = dev->private;
|
|
struct kvmppc_xive_vcpu *xc;
|
|
int i, r = -EBUSY;
|
|
|
|
pr_devel("connect_vcpu(cpu=%d)\n", cpu);
|
|
|
|
if (dev->ops != &kvm_xive_ops) {
|
|
pr_devel("Wrong ops !\n");
|
|
return -EPERM;
|
|
}
|
|
if (xive->kvm != vcpu->kvm)
|
|
return -EPERM;
|
|
if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
|
|
return -EBUSY;
|
|
if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
|
|
pr_devel("Duplicate !\n");
|
|
return -EEXIST;
|
|
}
|
|
if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
|
|
pr_devel("Out of bounds !\n");
|
|
return -EINVAL;
|
|
}
|
|
xc = kzalloc(sizeof(*xc), GFP_KERNEL);
|
|
if (!xc)
|
|
return -ENOMEM;
|
|
|
|
/* We need to synchronize with queue provisioning */
|
|
mutex_lock(&xive->lock);
|
|
vcpu->arch.xive_vcpu = xc;
|
|
xc->xive = xive;
|
|
xc->vcpu = vcpu;
|
|
xc->server_num = cpu;
|
|
xc->vp_id = kvmppc_xive_vp(xive, cpu);
|
|
xc->mfrr = 0xff;
|
|
xc->valid = true;
|
|
|
|
r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
|
|
if (r)
|
|
goto bail;
|
|
|
|
/* Configure VCPU fields for use by assembly push/pull */
|
|
vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
|
|
vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
|
|
|
|
/* Allocate IPI */
|
|
xc->vp_ipi = xive_native_alloc_irq();
|
|
if (!xc->vp_ipi) {
|
|
pr_err("Failed to allocate xive irq for VCPU IPI\n");
|
|
r = -EIO;
|
|
goto bail;
|
|
}
|
|
pr_devel(" IPI=0x%x\n", xc->vp_ipi);
|
|
|
|
r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
|
|
if (r)
|
|
goto bail;
|
|
|
|
/*
|
|
* Enable the VP first as the single escalation mode will
|
|
* affect escalation interrupts numbering
|
|
*/
|
|
r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
|
|
if (r) {
|
|
pr_err("Failed to enable VP in OPAL, err %d\n", r);
|
|
goto bail;
|
|
}
|
|
|
|
/*
|
|
* Initialize queues. Initially we set them all for no queueing
|
|
* and we enable escalation for queue 0 only which we'll use for
|
|
* our mfrr change notifications. If the VCPU is hot-plugged, we
|
|
* do handle provisioning however based on the existing "map"
|
|
* of enabled queues.
|
|
*/
|
|
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
|
|
struct xive_q *q = &xc->queues[i];
|
|
|
|
/* Single escalation, no queue 7 */
|
|
if (i == 7 && xive->single_escalation)
|
|
break;
|
|
|
|
/* Is queue already enabled ? Provision it */
|
|
if (xive->qmap & (1 << i)) {
|
|
r = xive_provision_queue(vcpu, i);
|
|
if (r == 0 && !xive->single_escalation)
|
|
kvmppc_xive_attach_escalation(
|
|
vcpu, i, xive->single_escalation);
|
|
if (r)
|
|
goto bail;
|
|
} else {
|
|
r = xive_native_configure_queue(xc->vp_id,
|
|
q, i, NULL, 0, true);
|
|
if (r) {
|
|
pr_err("Failed to configure queue %d for VCPU %d\n",
|
|
i, cpu);
|
|
goto bail;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If not done above, attach priority 0 escalation */
|
|
r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
|
|
if (r)
|
|
goto bail;
|
|
|
|
/* Route the IPI */
|
|
r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
|
|
if (!r)
|
|
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
|
|
|
|
bail:
|
|
mutex_unlock(&xive->lock);
|
|
if (r) {
|
|
kvmppc_xive_cleanup_vcpu(vcpu);
|
|
return r;
|
|
}
|
|
|
|
vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Scanning of queues before/after migration save
|
|
*/
|
|
static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
|
|
{
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return;
|
|
|
|
state = &sb->irq_state[idx];
|
|
|
|
/* Some sanity checking */
|
|
if (!state->valid) {
|
|
pr_err("invalid irq 0x%x in cpu queue!\n", irq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the interrupt is in a queue it should have P set.
|
|
* We warn so that gets reported. A backtrace isn't useful
|
|
* so no need to use a WARN_ON.
|
|
*/
|
|
if (!state->saved_p)
|
|
pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
|
|
|
|
/* Set flag */
|
|
state->in_queue = true;
|
|
}
|
|
|
|
static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
|
|
struct kvmppc_xive_src_block *sb,
|
|
u32 irq)
|
|
{
|
|
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
|
|
|
|
if (!state->valid)
|
|
return;
|
|
|
|
/* Mask and save state, this will also sync HW queues */
|
|
state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
|
|
|
|
/* Transfer P and Q */
|
|
state->saved_p = state->old_p;
|
|
state->saved_q = state->old_q;
|
|
|
|
/* Unlock */
|
|
arch_spin_unlock(&sb->lock);
|
|
}
|
|
|
|
static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
|
|
struct kvmppc_xive_src_block *sb,
|
|
u32 irq)
|
|
{
|
|
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
|
|
|
|
if (!state->valid)
|
|
return;
|
|
|
|
/*
|
|
* Lock / exclude EOI (not technically necessary if the
|
|
* guest isn't running concurrently. If this becomes a
|
|
* performance issue we can probably remove the lock.
|
|
*/
|
|
xive_lock_for_unmask(sb, state);
|
|
|
|
/* Restore mask/prio if it wasn't masked */
|
|
if (state->saved_scan_prio != MASKED)
|
|
xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
|
|
|
|
/* Unlock */
|
|
arch_spin_unlock(&sb->lock);
|
|
}
|
|
|
|
static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
|
|
{
|
|
u32 idx = q->idx;
|
|
u32 toggle = q->toggle;
|
|
u32 irq;
|
|
|
|
do {
|
|
irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
|
|
if (irq > XICS_IPI)
|
|
xive_pre_save_set_queued(xive, irq);
|
|
} while(irq);
|
|
}
|
|
|
|
static void xive_pre_save_scan(struct kvmppc_xive *xive)
|
|
{
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
int i, j;
|
|
|
|
/*
|
|
* See comment in xive_get_source() about how this
|
|
* work. Collect a stable state for all interrupts
|
|
*/
|
|
for (i = 0; i <= xive->max_sbid; i++) {
|
|
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
|
|
if (!sb)
|
|
continue;
|
|
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
|
|
xive_pre_save_mask_irq(xive, sb, j);
|
|
}
|
|
|
|
/* Then scan the queues and update the "in_queue" flag */
|
|
kvm_for_each_vcpu(i, vcpu, xive->kvm) {
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
if (!xc)
|
|
continue;
|
|
for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
|
|
if (xc->queues[j].qpage)
|
|
xive_pre_save_queue(xive, &xc->queues[j]);
|
|
}
|
|
}
|
|
|
|
/* Finally restore interrupt states */
|
|
for (i = 0; i <= xive->max_sbid; i++) {
|
|
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
|
|
if (!sb)
|
|
continue;
|
|
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
|
|
xive_pre_save_unmask_irq(xive, sb, j);
|
|
}
|
|
}
|
|
|
|
static void xive_post_save_scan(struct kvmppc_xive *xive)
|
|
{
|
|
u32 i, j;
|
|
|
|
/* Clear all the in_queue flags */
|
|
for (i = 0; i <= xive->max_sbid; i++) {
|
|
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
|
|
if (!sb)
|
|
continue;
|
|
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
|
|
sb->irq_state[j].in_queue = false;
|
|
}
|
|
|
|
/* Next get_source() will do a new scan */
|
|
xive->saved_src_count = 0;
|
|
}
|
|
|
|
/*
|
|
* This returns the source configuration and state to user space.
|
|
*/
|
|
static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
|
|
{
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u64 __user *ubufp = (u64 __user *) addr;
|
|
u64 val, prio;
|
|
u16 idx;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -ENOENT;
|
|
|
|
state = &sb->irq_state[idx];
|
|
|
|
if (!state->valid)
|
|
return -ENOENT;
|
|
|
|
pr_devel("get_source(%ld)...\n", irq);
|
|
|
|
/*
|
|
* So to properly save the state into something that looks like a
|
|
* XICS migration stream we cannot treat interrupts individually.
|
|
*
|
|
* We need, instead, mask them all (& save their previous PQ state)
|
|
* to get a stable state in the HW, then sync them to ensure that
|
|
* any interrupt that had already fired hits its queue, and finally
|
|
* scan all the queues to collect which interrupts are still present
|
|
* in the queues, so we can set the "pending" flag on them and
|
|
* they can be resent on restore.
|
|
*
|
|
* So we do it all when the "first" interrupt gets saved, all the
|
|
* state is collected at that point, the rest of xive_get_source()
|
|
* will merely collect and convert that state to the expected
|
|
* userspace bit mask.
|
|
*/
|
|
if (xive->saved_src_count == 0)
|
|
xive_pre_save_scan(xive);
|
|
xive->saved_src_count++;
|
|
|
|
/* Convert saved state into something compatible with xics */
|
|
val = state->act_server;
|
|
prio = state->saved_scan_prio;
|
|
|
|
if (prio == MASKED) {
|
|
val |= KVM_XICS_MASKED;
|
|
prio = state->saved_priority;
|
|
}
|
|
val |= prio << KVM_XICS_PRIORITY_SHIFT;
|
|
if (state->lsi) {
|
|
val |= KVM_XICS_LEVEL_SENSITIVE;
|
|
if (state->saved_p)
|
|
val |= KVM_XICS_PENDING;
|
|
} else {
|
|
if (state->saved_p)
|
|
val |= KVM_XICS_PRESENTED;
|
|
|
|
if (state->saved_q)
|
|
val |= KVM_XICS_QUEUED;
|
|
|
|
/*
|
|
* We mark it pending (which will attempt a re-delivery)
|
|
* if we are in a queue *or* we were masked and had
|
|
* Q set which is equivalent to the XICS "masked pending"
|
|
* state
|
|
*/
|
|
if (state->in_queue || (prio == MASKED && state->saved_q))
|
|
val |= KVM_XICS_PENDING;
|
|
}
|
|
|
|
/*
|
|
* If that was the last interrupt saved, reset the
|
|
* in_queue flags
|
|
*/
|
|
if (xive->saved_src_count == xive->src_count)
|
|
xive_post_save_scan(xive);
|
|
|
|
/* Copy the result to userspace */
|
|
if (put_user(val, ubufp))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
|
|
struct kvmppc_xive *xive, int irq)
|
|
{
|
|
struct kvmppc_xive_src_block *sb;
|
|
int i, bid;
|
|
|
|
bid = irq >> KVMPPC_XICS_ICS_SHIFT;
|
|
|
|
mutex_lock(&xive->lock);
|
|
|
|
/* block already exists - somebody else got here first */
|
|
if (xive->src_blocks[bid])
|
|
goto out;
|
|
|
|
/* Create the ICS */
|
|
sb = kzalloc(sizeof(*sb), GFP_KERNEL);
|
|
if (!sb)
|
|
goto out;
|
|
|
|
sb->id = bid;
|
|
|
|
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
|
|
sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
|
|
sb->irq_state[i].eisn = 0;
|
|
sb->irq_state[i].guest_priority = MASKED;
|
|
sb->irq_state[i].saved_priority = MASKED;
|
|
sb->irq_state[i].act_priority = MASKED;
|
|
}
|
|
smp_wmb();
|
|
xive->src_blocks[bid] = sb;
|
|
|
|
if (bid > xive->max_sbid)
|
|
xive->max_sbid = bid;
|
|
|
|
out:
|
|
mutex_unlock(&xive->lock);
|
|
return xive->src_blocks[bid];
|
|
}
|
|
|
|
static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
|
|
{
|
|
struct kvm *kvm = xive->kvm;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
int i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
|
|
if (!xc)
|
|
continue;
|
|
|
|
if (xc->delayed_irq == irq) {
|
|
xc->delayed_irq = 0;
|
|
xive->delayed_irqs--;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
|
|
{
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u64 __user *ubufp = (u64 __user *) addr;
|
|
u16 idx;
|
|
u64 val;
|
|
u8 act_prio, guest_prio;
|
|
u32 server;
|
|
int rc = 0;
|
|
|
|
if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
|
|
return -ENOENT;
|
|
|
|
pr_devel("set_source(irq=0x%lx)\n", irq);
|
|
|
|
/* Find the source */
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb) {
|
|
pr_devel("No source, creating source block...\n");
|
|
sb = kvmppc_xive_create_src_block(xive, irq);
|
|
if (!sb) {
|
|
pr_devel("Failed to create block...\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
state = &sb->irq_state[idx];
|
|
|
|
/* Read user passed data */
|
|
if (get_user(val, ubufp)) {
|
|
pr_devel("fault getting user info !\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
server = val & KVM_XICS_DESTINATION_MASK;
|
|
guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
|
|
|
|
pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
|
|
val, server, guest_prio);
|
|
|
|
/*
|
|
* If the source doesn't already have an IPI, allocate
|
|
* one and get the corresponding data
|
|
*/
|
|
if (!state->ipi_number) {
|
|
state->ipi_number = xive_native_alloc_irq();
|
|
if (state->ipi_number == 0) {
|
|
pr_devel("Failed to allocate IPI !\n");
|
|
return -ENOMEM;
|
|
}
|
|
xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
|
|
pr_devel(" src_ipi=0x%x\n", state->ipi_number);
|
|
}
|
|
|
|
/*
|
|
* We use lock_and_mask() to set us in the right masked
|
|
* state. We will override that state from the saved state
|
|
* further down, but this will handle the cases of interrupts
|
|
* that need FW masking. We set the initial guest_priority to
|
|
* 0 before calling it to ensure it actually performs the masking.
|
|
*/
|
|
state->guest_priority = 0;
|
|
xive_lock_and_mask(xive, sb, state);
|
|
|
|
/*
|
|
* Now, we select a target if we have one. If we don't we
|
|
* leave the interrupt untargetted. It means that an interrupt
|
|
* can become "untargetted" accross migration if it was masked
|
|
* by set_xive() but there is little we can do about it.
|
|
*/
|
|
|
|
/* First convert prio and mark interrupt as untargetted */
|
|
act_prio = xive_prio_from_guest(guest_prio);
|
|
state->act_priority = MASKED;
|
|
|
|
/*
|
|
* We need to drop the lock due to the mutex below. Hopefully
|
|
* nothing is touching that interrupt yet since it hasn't been
|
|
* advertized to a running guest yet
|
|
*/
|
|
arch_spin_unlock(&sb->lock);
|
|
|
|
/* If we have a priority target the interrupt */
|
|
if (act_prio != MASKED) {
|
|
/* First, check provisioning of queues */
|
|
mutex_lock(&xive->lock);
|
|
rc = xive_check_provisioning(xive->kvm, act_prio);
|
|
mutex_unlock(&xive->lock);
|
|
|
|
/* Target interrupt */
|
|
if (rc == 0)
|
|
rc = xive_target_interrupt(xive->kvm, state,
|
|
server, act_prio);
|
|
/*
|
|
* If provisioning or targetting failed, leave it
|
|
* alone and masked. It will remain disabled until
|
|
* the guest re-targets it.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Find out if this was a delayed irq stashed in an ICP,
|
|
* in which case, treat it as pending
|
|
*/
|
|
if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
|
|
val |= KVM_XICS_PENDING;
|
|
pr_devel(" Found delayed ! forcing PENDING !\n");
|
|
}
|
|
|
|
/* Cleanup the SW state */
|
|
state->old_p = false;
|
|
state->old_q = false;
|
|
state->lsi = false;
|
|
state->asserted = false;
|
|
|
|
/* Restore LSI state */
|
|
if (val & KVM_XICS_LEVEL_SENSITIVE) {
|
|
state->lsi = true;
|
|
if (val & KVM_XICS_PENDING)
|
|
state->asserted = true;
|
|
pr_devel(" LSI ! Asserted=%d\n", state->asserted);
|
|
}
|
|
|
|
/*
|
|
* Restore P and Q. If the interrupt was pending, we
|
|
* force Q and !P, which will trigger a resend.
|
|
*
|
|
* That means that a guest that had both an interrupt
|
|
* pending (queued) and Q set will restore with only
|
|
* one instance of that interrupt instead of 2, but that
|
|
* is perfectly fine as coalescing interrupts that haven't
|
|
* been presented yet is always allowed.
|
|
*/
|
|
if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
|
|
state->old_p = true;
|
|
if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
|
|
state->old_q = true;
|
|
|
|
pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
|
|
|
|
/*
|
|
* If the interrupt was unmasked, update guest priority and
|
|
* perform the appropriate state transition and do a
|
|
* re-trigger if necessary.
|
|
*/
|
|
if (val & KVM_XICS_MASKED) {
|
|
pr_devel(" masked, saving prio\n");
|
|
state->guest_priority = MASKED;
|
|
state->saved_priority = guest_prio;
|
|
} else {
|
|
pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
|
|
xive_finish_unmask(xive, sb, state, guest_prio);
|
|
state->saved_priority = guest_prio;
|
|
}
|
|
|
|
/* Increment the number of valid sources and mark this one valid */
|
|
if (!state->valid)
|
|
xive->src_count++;
|
|
state->valid = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
|
|
bool line_status)
|
|
{
|
|
struct kvmppc_xive *xive = kvm->arch.xive;
|
|
struct kvmppc_xive_src_block *sb;
|
|
struct kvmppc_xive_irq_state *state;
|
|
u16 idx;
|
|
|
|
if (!xive)
|
|
return -ENODEV;
|
|
|
|
sb = kvmppc_xive_find_source(xive, irq, &idx);
|
|
if (!sb)
|
|
return -EINVAL;
|
|
|
|
/* Perform locklessly .... (we need to do some RCUisms here...) */
|
|
state = &sb->irq_state[idx];
|
|
if (!state->valid)
|
|
return -EINVAL;
|
|
|
|
/* We don't allow a trigger on a passed-through interrupt */
|
|
if (state->pt_number)
|
|
return -EINVAL;
|
|
|
|
if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
|
|
state->asserted = 1;
|
|
else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
|
|
state->asserted = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Trigger the IPI */
|
|
xive_irq_trigger(&state->ipi_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
struct kvmppc_xive *xive = dev->private;
|
|
|
|
/* We honor the existing XICS ioctl */
|
|
switch (attr->group) {
|
|
case KVM_DEV_XICS_GRP_SOURCES:
|
|
return xive_set_source(xive, attr->attr, attr->addr);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
struct kvmppc_xive *xive = dev->private;
|
|
|
|
/* We honor the existing XICS ioctl */
|
|
switch (attr->group) {
|
|
case KVM_DEV_XICS_GRP_SOURCES:
|
|
return xive_get_source(xive, attr->attr, attr->addr);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
/* We honor the same limits as XICS, at least for now */
|
|
switch (attr->group) {
|
|
case KVM_DEV_XICS_GRP_SOURCES:
|
|
if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
|
|
attr->attr < KVMPPC_XICS_NR_IRQS)
|
|
return 0;
|
|
break;
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
|
|
{
|
|
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
|
|
xive_native_configure_irq(hw_num, 0, MASKED, 0);
|
|
}
|
|
|
|
void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
|
|
struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
|
|
|
|
if (!state->valid)
|
|
continue;
|
|
|
|
kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
|
|
xive_cleanup_irq_data(&state->ipi_data);
|
|
xive_native_free_irq(state->ipi_number);
|
|
|
|
/* Pass-through, cleanup too but keep IRQ hw data */
|
|
if (state->pt_number)
|
|
kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
|
|
|
|
state->valid = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called when device fd is closed. kvm->lock is held.
|
|
*/
|
|
static void kvmppc_xive_release(struct kvm_device *dev)
|
|
{
|
|
struct kvmppc_xive *xive = dev->private;
|
|
struct kvm *kvm = xive->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
pr_devel("Releasing xive device\n");
|
|
|
|
/*
|
|
* Since this is the device release function, we know that
|
|
* userspace does not have any open fd referring to the
|
|
* device. Therefore there can not be any of the device
|
|
* attribute set/get functions being executed concurrently,
|
|
* and similarly, the connect_vcpu and set/clr_mapped
|
|
* functions also cannot be being executed.
|
|
*/
|
|
|
|
debugfs_remove(xive->dentry);
|
|
|
|
/*
|
|
* We should clean up the vCPU interrupt presenters first.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
/*
|
|
* Take vcpu->mutex to ensure that no one_reg get/set ioctl
|
|
* (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
|
|
* Holding the vcpu->mutex also means that the vcpu cannot
|
|
* be executing the KVM_RUN ioctl, and therefore it cannot
|
|
* be executing the XIVE push or pull code or accessing
|
|
* the XIVE MMIO regions.
|
|
*/
|
|
mutex_lock(&vcpu->mutex);
|
|
kvmppc_xive_cleanup_vcpu(vcpu);
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
/*
|
|
* Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
|
|
* and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
|
|
* against xive code getting called during vcpu execution or
|
|
* set/get one_reg operations.
|
|
*/
|
|
kvm->arch.xive = NULL;
|
|
|
|
/* Mask and free interrupts */
|
|
for (i = 0; i <= xive->max_sbid; i++) {
|
|
if (xive->src_blocks[i])
|
|
kvmppc_xive_free_sources(xive->src_blocks[i]);
|
|
kfree(xive->src_blocks[i]);
|
|
xive->src_blocks[i] = NULL;
|
|
}
|
|
|
|
if (xive->vp_base != XIVE_INVALID_VP)
|
|
xive_native_free_vp_block(xive->vp_base);
|
|
|
|
/*
|
|
* A reference of the kvmppc_xive pointer is now kept under
|
|
* the xive_devices struct of the machine for reuse. It is
|
|
* freed when the VM is destroyed for now until we fix all the
|
|
* execution paths.
|
|
*/
|
|
|
|
kfree(dev);
|
|
}
|
|
|
|
/*
|
|
* When the guest chooses the interrupt mode (XICS legacy or XIVE
|
|
* native), the VM will switch of KVM device. The previous device will
|
|
* be "released" before the new one is created.
|
|
*
|
|
* Until we are sure all execution paths are well protected, provide a
|
|
* fail safe (transitional) method for device destruction, in which
|
|
* the XIVE device pointer is recycled and not directly freed.
|
|
*/
|
|
struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
|
|
{
|
|
struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
|
|
&kvm->arch.xive_devices.native :
|
|
&kvm->arch.xive_devices.xics_on_xive;
|
|
struct kvmppc_xive *xive = *kvm_xive_device;
|
|
|
|
if (!xive) {
|
|
xive = kzalloc(sizeof(*xive), GFP_KERNEL);
|
|
*kvm_xive_device = xive;
|
|
} else {
|
|
memset(xive, 0, sizeof(*xive));
|
|
}
|
|
|
|
return xive;
|
|
}
|
|
|
|
/*
|
|
* Create a XICS device with XIVE backend. kvm->lock is held.
|
|
*/
|
|
static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
|
|
{
|
|
struct kvmppc_xive *xive;
|
|
struct kvm *kvm = dev->kvm;
|
|
int ret = 0;
|
|
|
|
pr_devel("Creating xive for partition\n");
|
|
|
|
xive = kvmppc_xive_get_device(kvm, type);
|
|
if (!xive)
|
|
return -ENOMEM;
|
|
|
|
dev->private = xive;
|
|
xive->dev = dev;
|
|
xive->kvm = kvm;
|
|
mutex_init(&xive->lock);
|
|
|
|
/* Already there ? */
|
|
if (kvm->arch.xive)
|
|
ret = -EEXIST;
|
|
else
|
|
kvm->arch.xive = xive;
|
|
|
|
/* We use the default queue size set by the host */
|
|
xive->q_order = xive_native_default_eq_shift();
|
|
if (xive->q_order < PAGE_SHIFT)
|
|
xive->q_page_order = 0;
|
|
else
|
|
xive->q_page_order = xive->q_order - PAGE_SHIFT;
|
|
|
|
/* Allocate a bunch of VPs */
|
|
xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
|
|
pr_devel("VP_Base=%x\n", xive->vp_base);
|
|
|
|
if (xive->vp_base == XIVE_INVALID_VP)
|
|
ret = -ENOMEM;
|
|
|
|
xive->single_escalation = xive_native_has_single_escalation();
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
|
|
struct xive_q *q = &xc->queues[i];
|
|
u32 i0, i1, idx;
|
|
|
|
if (!q->qpage && !xc->esc_virq[i])
|
|
continue;
|
|
|
|
seq_printf(m, " [q%d]: ", i);
|
|
|
|
if (q->qpage) {
|
|
idx = q->idx;
|
|
i0 = be32_to_cpup(q->qpage + idx);
|
|
idx = (idx + 1) & q->msk;
|
|
i1 = be32_to_cpup(q->qpage + idx);
|
|
seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
|
|
i0, i1);
|
|
}
|
|
if (xc->esc_virq[i]) {
|
|
struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
|
|
struct xive_irq_data *xd =
|
|
irq_data_get_irq_handler_data(d);
|
|
u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
|
|
|
|
seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
|
|
(pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
|
|
(pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
|
|
xc->esc_virq[i], pq, xd->eoi_page);
|
|
seq_puts(m, "\n");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xive_debug_show(struct seq_file *m, void *private)
|
|
{
|
|
struct kvmppc_xive *xive = m->private;
|
|
struct kvm *kvm = xive->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 t_rm_h_xirr = 0;
|
|
u64 t_rm_h_ipoll = 0;
|
|
u64 t_rm_h_cppr = 0;
|
|
u64 t_rm_h_eoi = 0;
|
|
u64 t_rm_h_ipi = 0;
|
|
u64 t_vm_h_xirr = 0;
|
|
u64 t_vm_h_ipoll = 0;
|
|
u64 t_vm_h_cppr = 0;
|
|
u64 t_vm_h_eoi = 0;
|
|
u64 t_vm_h_ipi = 0;
|
|
unsigned int i;
|
|
|
|
if (!kvm)
|
|
return 0;
|
|
|
|
seq_printf(m, "=========\nVCPU state\n=========\n");
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
|
|
|
|
if (!xc)
|
|
continue;
|
|
|
|
seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
|
|
" MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
|
|
xc->server_num, xc->cppr, xc->hw_cppr,
|
|
xc->mfrr, xc->pending,
|
|
xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
|
|
|
|
kvmppc_xive_debug_show_queues(m, vcpu);
|
|
|
|
t_rm_h_xirr += xc->stat_rm_h_xirr;
|
|
t_rm_h_ipoll += xc->stat_rm_h_ipoll;
|
|
t_rm_h_cppr += xc->stat_rm_h_cppr;
|
|
t_rm_h_eoi += xc->stat_rm_h_eoi;
|
|
t_rm_h_ipi += xc->stat_rm_h_ipi;
|
|
t_vm_h_xirr += xc->stat_vm_h_xirr;
|
|
t_vm_h_ipoll += xc->stat_vm_h_ipoll;
|
|
t_vm_h_cppr += xc->stat_vm_h_cppr;
|
|
t_vm_h_eoi += xc->stat_vm_h_eoi;
|
|
t_vm_h_ipi += xc->stat_vm_h_ipi;
|
|
}
|
|
|
|
seq_printf(m, "Hcalls totals\n");
|
|
seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
|
|
seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
|
|
seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
|
|
seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
|
|
seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(xive_debug);
|
|
|
|
static void xive_debugfs_init(struct kvmppc_xive *xive)
|
|
{
|
|
char *name;
|
|
|
|
name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
|
|
if (!name) {
|
|
pr_err("%s: no memory for name\n", __func__);
|
|
return;
|
|
}
|
|
|
|
xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
|
|
xive, &xive_debug_fops);
|
|
|
|
pr_debug("%s: created %s\n", __func__, name);
|
|
kfree(name);
|
|
}
|
|
|
|
static void kvmppc_xive_init(struct kvm_device *dev)
|
|
{
|
|
struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
|
|
|
|
/* Register some debug interfaces */
|
|
xive_debugfs_init(xive);
|
|
}
|
|
|
|
struct kvm_device_ops kvm_xive_ops = {
|
|
.name = "kvm-xive",
|
|
.create = kvmppc_xive_create,
|
|
.init = kvmppc_xive_init,
|
|
.release = kvmppc_xive_release,
|
|
.set_attr = xive_set_attr,
|
|
.get_attr = xive_get_attr,
|
|
.has_attr = xive_has_attr,
|
|
};
|
|
|
|
void kvmppc_xive_init_module(void)
|
|
{
|
|
__xive_vm_h_xirr = xive_vm_h_xirr;
|
|
__xive_vm_h_ipoll = xive_vm_h_ipoll;
|
|
__xive_vm_h_ipi = xive_vm_h_ipi;
|
|
__xive_vm_h_cppr = xive_vm_h_cppr;
|
|
__xive_vm_h_eoi = xive_vm_h_eoi;
|
|
}
|
|
|
|
void kvmppc_xive_exit_module(void)
|
|
{
|
|
__xive_vm_h_xirr = NULL;
|
|
__xive_vm_h_ipoll = NULL;
|
|
__xive_vm_h_ipi = NULL;
|
|
__xive_vm_h_cppr = NULL;
|
|
__xive_vm_h_eoi = NULL;
|
|
}
|