2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 16:14:26 +08:00
linux-next/arch/x86/include/asm/timer.h
Salman Qazi 9993bc635d sched/x86: Fix overflow in cyc2ns_offset
When a machine boots up, the TSC generally gets reset.  However,
when kexec is used to boot into a kernel, the TSC value would be
carried over from the previous kernel.  The computation of
cycns_offset in set_cyc2ns_scale is prone to an overflow, if the
machine has been up more than 208 days prior to the kexec.  The
overflow happens when we multiply *scale, even though there is
enough room to store the final answer.

We fix this issue by decomposing tsc_now into the quotient and
remainder of division by CYC2NS_SCALE_FACTOR and then performing
the multiplication separately on the two components.

Refactor code to share the calculation with the previous
fix in __cycles_2_ns().

Signed-off-by: Salman Qazi <sqazi@google.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20120310004027.19291.88460.stgit@dungbeetle.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-13 16:27:51 +01:00

80 lines
2.1 KiB
C

#ifndef _ASM_X86_TIMER_H
#define _ASM_X86_TIMER_H
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/percpu.h>
#include <linux/interrupt.h>
#define TICK_SIZE (tick_nsec / 1000)
unsigned long long native_sched_clock(void);
extern int recalibrate_cpu_khz(void);
extern int no_timer_check;
/* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*
* In:
*
* ns = cycles * cyc2ns_scale / SC
*
* Although we may still have enough bits to store the value of ns,
* in some cases, we may not have enough bits to store cycles * cyc2ns_scale,
* leading to an incorrect result.
*
* To avoid this, we can decompose 'cycles' into quotient and remainder
* of division by SC. Then,
*
* ns = (quot * SC + rem) * cyc2ns_scale / SC
* = quot * cyc2ns_scale + (rem * cyc2ns_scale) / SC
*
* - sqazi@google.com
*/
DECLARE_PER_CPU(unsigned long, cyc2ns);
DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
{
int cpu = smp_processor_id();
unsigned long long ns = per_cpu(cyc2ns_offset, cpu);
ns += mult_frac(cyc, per_cpu(cyc2ns, cpu),
(1UL << CYC2NS_SCALE_FACTOR));
return ns;
}
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
unsigned long long ns;
unsigned long flags;
local_irq_save(flags);
ns = __cycles_2_ns(cyc);
local_irq_restore(flags);
return ns;
}
#endif /* _ASM_X86_TIMER_H */