2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-03 19:24:02 +08:00
linux-next/Documentation/blackfin/cachefeatures.txt
Bryan Wu 1394f03221 blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and
currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561
(Dual Core) devices, with a variety of development platforms including those
avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP,
BF561-EZKIT), and Bluetechnix!  Tinyboards.

The Blackfin architecture was jointly developed by Intel and Analog Devices
Inc.  (ADI) as the Micro Signal Architecture (MSA) core and introduced it in
December of 2000.  Since then ADI has put this core into its Blackfin
processor family of devices.  The Blackfin core has the advantages of a clean,
orthogonal,RISC-like microprocessor instruction set.  It combines a dual-MAC
(Multiply/Accumulate), state-of-the-art signal processing engine and
single-instruction, multiple-data (SIMD) multimedia capabilities into a single
instruction-set architecture.

The Blackfin architecture, including the instruction set, is described by the
ADSP-BF53x/BF56x Blackfin Processor Programming Reference
http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf

The Blackfin processor is already supported by major releases of gcc, and
there are binary and source rpms/tarballs for many architectures at:
http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete
documentation, including "getting started" guides available at:
http://docs.blackfin.uclinux.org/ which provides links to the sources and
patches you will need in order to set up a cross-compiling environment for
bfin-linux-uclibc

This patch, as well as the other patches (toolchain, distribution,
uClibc) are actively supported by Analog Devices Inc, at:
http://blackfin.uclinux.org/

We have tested this on LTP, and our test plan (including pass/fails) can
be found at:
http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel

[m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files]
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: Aubrey Li <aubrey.li@analog.com>
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:58 -07:00

66 lines
1.5 KiB
Plaintext

/*
* File: Documentation/blackfin/cachefeatures.txt
* Based on:
* Author:
*
* Created:
* Description: This file contains the simple DMA Implementation for Blackfin
*
* Rev: $Id: cachefeatures.txt 2384 2006-11-01 04:12:43Z magicyang $
*
* Modified:
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
*/
- Instruction and Data cache initialization.
icache_init();
dcache_init();
- Instruction and Data cache Invalidation Routines, when flushing the
same is not required.
_icache_invalidate();
_dcache_invalidate();
Also, for invalidating the entire instruction and data cache, the below
routines are provided (another method for invalidation, refer page no 267 and 287 of
ADSP-BF533 Hardware Reference manual)
invalidate_entire_dcache();
invalidate_entire_icache();
-External Flushing of Instruction and data cache routines.
flush_instruction_cache();
flush_data_cache();
- Internal Flushing of Instruction and Data Cache.
icplb_flush();
dcplb_flush();
- Locking the cache.
cache_grab_lock();
cache_lock();
Please refer linux-2.6.x/Documentation/blackfin/cache-lock.txt for how to
lock the cache.
Locking the cache is optional feature.
- Miscellaneous cache functions.
flush_cache_all();
flush_cache_mm();
invalidate_dcache_range();
flush_dcache_range();
flush_dcache_page();
flush_cache_range();
flush_cache_page();
invalidate_dcache_range();
flush_page_to_ram();