2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/tools/perf/util/stat-shadow.c
Andi Kleen 239bd47f83 perf stat: Add computation of TopDown formulas
Implement the TopDown formulas in 'perf stat'. The topdown basic metrics
reported by the kernel are collected, and the formulas are computed and
output as normal metrics.

See the kernel commit exporting the events for details on the used
metrics.

Committer note:

Output example:

  # perf stat --topdown -a usleep 1

   Performance counter stats for 'system wide':

             retiring     bad speculation   frontend bound   backend bound
  S0-C0    2     23.8%       11.6%            28.3%           36.3%
  S0-C1    2     16.2%       15.7%            36.5%           31.6%

         0.000579956 seconds time elapsed
  #

v2: Always print all metrics, only use thresholds for coloring.
v3: Mark retiring over threshold green, not red.
v4: Only print one decimal digit
    Fix color printing of one metric
v5: Avoid printing -0.0
v6: Remove extra frontend event lookup

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: http://lkml.kernel.org/r/1464119559-17203-2-git-send-email-andi@firstfloor.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-06-06 17:04:16 -03:00

635 lines
21 KiB
C

#include <stdio.h>
#include "evsel.h"
#include "stat.h"
#include "color.h"
#include "pmu.h"
enum {
CTX_BIT_USER = 1 << 0,
CTX_BIT_KERNEL = 1 << 1,
CTX_BIT_HV = 1 << 2,
CTX_BIT_HOST = 1 << 3,
CTX_BIT_IDLE = 1 << 4,
CTX_BIT_MAX = 1 << 5,
};
#define NUM_CTX CTX_BIT_MAX
/*
* AGGR_GLOBAL: Use CPU 0
* AGGR_SOCKET: Use first CPU of socket
* AGGR_CORE: Use first CPU of core
* AGGR_NONE: Use matching CPU
* AGGR_THREAD: Not supported?
*/
static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
static struct stats runtime_cycles_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_front_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_stalled_cycles_back_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_branches_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_cacherefs_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_l1_dcache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_l1_icache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_ll_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_itlb_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_dtlb_cache_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_cycles_in_tx_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_transaction_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_elision_stats[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_total_slots[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_slots_issued[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_slots_retired[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_fetch_bubbles[NUM_CTX][MAX_NR_CPUS];
static struct stats runtime_topdown_recovery_bubbles[NUM_CTX][MAX_NR_CPUS];
static bool have_frontend_stalled;
struct stats walltime_nsecs_stats;
void perf_stat__init_shadow_stats(void)
{
have_frontend_stalled = pmu_have_event("cpu", "stalled-cycles-frontend");
}
static int evsel_context(struct perf_evsel *evsel)
{
int ctx = 0;
if (evsel->attr.exclude_kernel)
ctx |= CTX_BIT_KERNEL;
if (evsel->attr.exclude_user)
ctx |= CTX_BIT_USER;
if (evsel->attr.exclude_hv)
ctx |= CTX_BIT_HV;
if (evsel->attr.exclude_host)
ctx |= CTX_BIT_HOST;
if (evsel->attr.exclude_idle)
ctx |= CTX_BIT_IDLE;
return ctx;
}
void perf_stat__reset_shadow_stats(void)
{
memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats));
memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats));
memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats));
memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats));
memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats));
memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats));
memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats));
memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats));
memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats));
memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats));
memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats));
memset(runtime_cycles_in_tx_stats, 0,
sizeof(runtime_cycles_in_tx_stats));
memset(runtime_transaction_stats, 0,
sizeof(runtime_transaction_stats));
memset(runtime_elision_stats, 0, sizeof(runtime_elision_stats));
memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
memset(runtime_topdown_total_slots, 0, sizeof(runtime_topdown_total_slots));
memset(runtime_topdown_slots_retired, 0, sizeof(runtime_topdown_slots_retired));
memset(runtime_topdown_slots_issued, 0, sizeof(runtime_topdown_slots_issued));
memset(runtime_topdown_fetch_bubbles, 0, sizeof(runtime_topdown_fetch_bubbles));
memset(runtime_topdown_recovery_bubbles, 0, sizeof(runtime_topdown_recovery_bubbles));
}
/*
* Update various tracking values we maintain to print
* more semantic information such as miss/hit ratios,
* instruction rates, etc:
*/
void perf_stat__update_shadow_stats(struct perf_evsel *counter, u64 *count,
int cpu)
{
int ctx = evsel_context(counter);
if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK) ||
perf_evsel__match(counter, SOFTWARE, SW_CPU_CLOCK))
update_stats(&runtime_nsecs_stats[cpu], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
update_stats(&runtime_cycles_stats[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, CYCLES_IN_TX))
update_stats(&runtime_cycles_in_tx_stats[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, TRANSACTION_START))
update_stats(&runtime_transaction_stats[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, ELISION_START))
update_stats(&runtime_elision_stats[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS))
update_stats(&runtime_topdown_total_slots[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED))
update_stats(&runtime_topdown_slots_issued[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED))
update_stats(&runtime_topdown_slots_retired[ctx][cpu], count[0]);
else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES))
update_stats(&runtime_topdown_fetch_bubbles[ctx][cpu],count[0]);
else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES))
update_stats(&runtime_topdown_recovery_bubbles[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
update_stats(&runtime_stalled_cycles_front_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
update_stats(&runtime_stalled_cycles_back_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
update_stats(&runtime_branches_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
update_stats(&runtime_cacherefs_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
update_stats(&runtime_l1_dcache_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
update_stats(&runtime_ll_cache_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
update_stats(&runtime_dtlb_cache_stats[ctx][cpu], count[0]);
else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
update_stats(&runtime_itlb_cache_stats[ctx][cpu], count[0]);
}
/* used for get_ratio_color() */
enum grc_type {
GRC_STALLED_CYCLES_FE,
GRC_STALLED_CYCLES_BE,
GRC_CACHE_MISSES,
GRC_MAX_NR
};
static const char *get_ratio_color(enum grc_type type, double ratio)
{
static const double grc_table[GRC_MAX_NR][3] = {
[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
[GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 },
};
const char *color = PERF_COLOR_NORMAL;
if (ratio > grc_table[type][0])
color = PERF_COLOR_RED;
else if (ratio > grc_table[type][1])
color = PERF_COLOR_MAGENTA;
else if (ratio > grc_table[type][2])
color = PERF_COLOR_YELLOW;
return color;
}
static void print_stalled_cycles_frontend(int cpu,
struct perf_evsel *evsel, double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
if (ratio)
out->print_metric(out->ctx, color, "%7.2f%%", "frontend cycles idle",
ratio);
else
out->print_metric(out->ctx, NULL, NULL, "frontend cycles idle", 0);
}
static void print_stalled_cycles_backend(int cpu,
struct perf_evsel *evsel, double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "backend cycles idle", ratio);
}
static void print_branch_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_branches_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all branches", ratio);
}
static void print_l1_dcache_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_l1_dcache_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-dcache hits", ratio);
}
static void print_l1_icache_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_l1_icache_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all L1-icache hits", ratio);
}
static void print_dtlb_cache_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_dtlb_cache_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all dTLB cache hits", ratio);
}
static void print_itlb_cache_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_itlb_cache_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all iTLB cache hits", ratio);
}
static void print_ll_cache_misses(int cpu,
struct perf_evsel *evsel,
double avg,
struct perf_stat_output_ctx *out)
{
double total, ratio = 0.0;
const char *color;
int ctx = evsel_context(evsel);
total = avg_stats(&runtime_ll_cache_stats[ctx][cpu]);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(out->ctx, color, "%7.2f%%", "of all LL-cache hits", ratio);
}
/*
* High level "TopDown" CPU core pipe line bottleneck break down.
*
* Basic concept following
* Yasin, A Top Down Method for Performance analysis and Counter architecture
* ISPASS14
*
* The CPU pipeline is divided into 4 areas that can be bottlenecks:
*
* Frontend -> Backend -> Retiring
* BadSpeculation in addition means out of order execution that is thrown away
* (for example branch mispredictions)
* Frontend is instruction decoding.
* Backend is execution, like computation and accessing data in memory
* Retiring is good execution that is not directly bottlenecked
*
* The formulas are computed in slots.
* A slot is an entry in the pipeline each for the pipeline width
* (for example a 4-wide pipeline has 4 slots for each cycle)
*
* Formulas:
* BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) /
* TotalSlots
* Retiring = SlotsRetired / TotalSlots
* FrontendBound = FetchBubbles / TotalSlots
* BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound
*
* The kernel provides the mapping to the low level CPU events and any scaling
* needed for the CPU pipeline width, for example:
*
* TotalSlots = Cycles * 4
*
* The scaling factor is communicated in the sysfs unit.
*
* In some cases the CPU may not be able to measure all the formulas due to
* missing events. In this case multiple formulas are combined, as possible.
*
* Full TopDown supports more levels to sub-divide each area: for example
* BackendBound into computing bound and memory bound. For now we only
* support Level 1 TopDown.
*/
static double sanitize_val(double x)
{
if (x < 0 && x >= -0.02)
return 0.0;
return x;
}
static double td_total_slots(int ctx, int cpu)
{
return avg_stats(&runtime_topdown_total_slots[ctx][cpu]);
}
static double td_bad_spec(int ctx, int cpu)
{
double bad_spec = 0;
double total_slots;
double total;
total = avg_stats(&runtime_topdown_slots_issued[ctx][cpu]) -
avg_stats(&runtime_topdown_slots_retired[ctx][cpu]) +
avg_stats(&runtime_topdown_recovery_bubbles[ctx][cpu]);
total_slots = td_total_slots(ctx, cpu);
if (total_slots)
bad_spec = total / total_slots;
return sanitize_val(bad_spec);
}
static double td_retiring(int ctx, int cpu)
{
double retiring = 0;
double total_slots = td_total_slots(ctx, cpu);
double ret_slots = avg_stats(&runtime_topdown_slots_retired[ctx][cpu]);
if (total_slots)
retiring = ret_slots / total_slots;
return retiring;
}
static double td_fe_bound(int ctx, int cpu)
{
double fe_bound = 0;
double total_slots = td_total_slots(ctx, cpu);
double fetch_bub = avg_stats(&runtime_topdown_fetch_bubbles[ctx][cpu]);
if (total_slots)
fe_bound = fetch_bub / total_slots;
return fe_bound;
}
static double td_be_bound(int ctx, int cpu)
{
double sum = (td_fe_bound(ctx, cpu) +
td_bad_spec(ctx, cpu) +
td_retiring(ctx, cpu));
if (sum == 0)
return 0;
return sanitize_val(1.0 - sum);
}
void perf_stat__print_shadow_stats(struct perf_evsel *evsel,
double avg, int cpu,
struct perf_stat_output_ctx *out)
{
void *ctxp = out->ctx;
print_metric_t print_metric = out->print_metric;
double total, ratio = 0.0, total2;
const char *color = NULL;
int ctx = evsel_context(evsel);
if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
if (total) {
ratio = avg / total;
print_metric(ctxp, NULL, "%7.2f ",
"insn per cycle", ratio);
} else {
print_metric(ctxp, NULL, NULL, "insn per cycle", 0);
}
total = avg_stats(&runtime_stalled_cycles_front_stats[ctx][cpu]);
total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[ctx][cpu]));
if (total && avg) {
out->new_line(ctxp);
ratio = total / avg;
print_metric(ctxp, NULL, "%7.2f ",
"stalled cycles per insn",
ratio);
} else if (have_frontend_stalled) {
print_metric(ctxp, NULL, NULL,
"stalled cycles per insn", 0);
}
} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) {
if (runtime_branches_stats[ctx][cpu].n != 0)
print_branch_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all branches", 0);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1D |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_l1_dcache_stats[ctx][cpu].n != 0)
print_l1_dcache_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all L1-dcache hits", 0);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_L1I |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_l1_icache_stats[ctx][cpu].n != 0)
print_l1_icache_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all L1-icache hits", 0);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_DTLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_dtlb_cache_stats[ctx][cpu].n != 0)
print_dtlb_cache_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all dTLB cache hits", 0);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_ITLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_itlb_cache_stats[ctx][cpu].n != 0)
print_itlb_cache_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all iTLB cache hits", 0);
} else if (
evsel->attr.type == PERF_TYPE_HW_CACHE &&
evsel->attr.config == ( PERF_COUNT_HW_CACHE_LL |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_ll_cache_stats[ctx][cpu].n != 0)
print_ll_cache_misses(cpu, evsel, avg, out);
else
print_metric(ctxp, NULL, NULL, "of all LL-cache hits", 0);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) {
total = avg_stats(&runtime_cacherefs_stats[ctx][cpu]);
if (total)
ratio = avg * 100 / total;
if (runtime_cacherefs_stats[ctx][cpu].n != 0)
print_metric(ctxp, NULL, "%8.3f %%",
"of all cache refs", ratio);
else
print_metric(ctxp, NULL, NULL, "of all cache refs", 0);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
print_stalled_cycles_frontend(cpu, evsel, avg, out);
} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
print_stalled_cycles_backend(cpu, evsel, avg, out);
} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total) {
ratio = avg / total;
print_metric(ctxp, NULL, "%8.3f", "GHz", ratio);
} else {
print_metric(ctxp, NULL, NULL, "Ghz", 0);
}
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) {
total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
if (total)
print_metric(ctxp, NULL,
"%7.2f%%", "transactional cycles",
100.0 * (avg / total));
else
print_metric(ctxp, NULL, NULL, "transactional cycles",
0);
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) {
total = avg_stats(&runtime_cycles_stats[ctx][cpu]);
total2 = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);
if (total2 < avg)
total2 = avg;
if (total)
print_metric(ctxp, NULL, "%7.2f%%", "aborted cycles",
100.0 * ((total2-avg) / total));
else
print_metric(ctxp, NULL, NULL, "aborted cycles", 0);
} else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) {
total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);
if (avg)
ratio = total / avg;
if (runtime_cycles_in_tx_stats[ctx][cpu].n != 0)
print_metric(ctxp, NULL, "%8.0f",
"cycles / transaction", ratio);
else
print_metric(ctxp, NULL, NULL, "cycles / transaction",
0);
} else if (perf_stat_evsel__is(evsel, ELISION_START)) {
total = avg_stats(&runtime_cycles_in_tx_stats[ctx][cpu]);
if (avg)
ratio = total / avg;
print_metric(ctxp, NULL, "%8.0f", "cycles / elision", ratio);
} else if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK) ||
perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK)) {
if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0)
print_metric(ctxp, NULL, "%8.3f", "CPUs utilized",
avg / ratio);
else
print_metric(ctxp, NULL, NULL, "CPUs utilized", 0);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) {
double fe_bound = td_fe_bound(ctx, cpu);
if (fe_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(ctxp, color, "%8.1f%%", "frontend bound",
fe_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) {
double retiring = td_retiring(ctx, cpu);
if (retiring > 0.7)
color = PERF_COLOR_GREEN;
print_metric(ctxp, color, "%8.1f%%", "retiring",
retiring * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) {
double bad_spec = td_bad_spec(ctx, cpu);
if (bad_spec > 0.1)
color = PERF_COLOR_RED;
print_metric(ctxp, color, "%8.1f%%", "bad speculation",
bad_spec * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) {
double be_bound = td_be_bound(ctx, cpu);
const char *name = "backend bound";
static int have_recovery_bubbles = -1;
/* In case the CPU does not support topdown-recovery-bubbles */
if (have_recovery_bubbles < 0)
have_recovery_bubbles = pmu_have_event("cpu",
"topdown-recovery-bubbles");
if (!have_recovery_bubbles)
name = "backend bound/bad spec";
if (be_bound > 0.2)
color = PERF_COLOR_RED;
if (td_total_slots(ctx, cpu) > 0)
print_metric(ctxp, color, "%8.1f%%", name,
be_bound * 100.);
else
print_metric(ctxp, NULL, NULL, name, 0);
} else if (runtime_nsecs_stats[cpu].n != 0) {
char unit = 'M';
char unit_buf[10];
total = avg_stats(&runtime_nsecs_stats[cpu]);
if (total)
ratio = 1000.0 * avg / total;
if (ratio < 0.001) {
ratio *= 1000;
unit = 'K';
}
snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit);
print_metric(ctxp, NULL, "%8.3f", unit_buf, ratio);
} else {
print_metric(ctxp, NULL, NULL, NULL, 0);
}
}