mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-15 08:44:14 +08:00
57c2e36b6f
It was noted that the vm stat shepherd runs every 2 seconds and that the vmstat update is then scheduled 2 seconds in the future. This yields an interval of double the time interval which is not desired. Change the shepherd so that it does not delay the vmstat update on the other cpu. We stil have to use schedule_delayed_work since we are using a delayed_work_struct but we can set the delay to 0. Signed-off-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1700 lines
41 KiB
C
1700 lines
41 KiB
C
/*
|
|
* linux/mm/vmstat.c
|
|
*
|
|
* Manages VM statistics
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* zoned VM statistics
|
|
* Copyright (C) 2006 Silicon Graphics, Inc.,
|
|
* Christoph Lameter <christoph@lameter.com>
|
|
* Copyright (C) 2008-2014 Christoph Lameter
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/page_owner.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
|
|
EXPORT_PER_CPU_SYMBOL(vm_event_states);
|
|
|
|
static void sum_vm_events(unsigned long *ret)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
|
|
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
|
|
|
|
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
|
|
ret[i] += this->event[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accumulate the vm event counters across all CPUs.
|
|
* The result is unavoidably approximate - it can change
|
|
* during and after execution of this function.
|
|
*/
|
|
void all_vm_events(unsigned long *ret)
|
|
{
|
|
get_online_cpus();
|
|
sum_vm_events(ret);
|
|
put_online_cpus();
|
|
}
|
|
EXPORT_SYMBOL_GPL(all_vm_events);
|
|
|
|
/*
|
|
* Fold the foreign cpu events into our own.
|
|
*
|
|
* This is adding to the events on one processor
|
|
* but keeps the global counts constant.
|
|
*/
|
|
void vm_events_fold_cpu(int cpu)
|
|
{
|
|
struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
|
|
int i;
|
|
|
|
for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
|
|
count_vm_events(i, fold_state->event[i]);
|
|
fold_state->event[i] = 0;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_VM_EVENT_COUNTERS */
|
|
|
|
/*
|
|
* Manage combined zone based / global counters
|
|
*
|
|
* vm_stat contains the global counters
|
|
*/
|
|
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
|
|
EXPORT_SYMBOL(vm_stat);
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int calculate_pressure_threshold(struct zone *zone)
|
|
{
|
|
int threshold;
|
|
int watermark_distance;
|
|
|
|
/*
|
|
* As vmstats are not up to date, there is drift between the estimated
|
|
* and real values. For high thresholds and a high number of CPUs, it
|
|
* is possible for the min watermark to be breached while the estimated
|
|
* value looks fine. The pressure threshold is a reduced value such
|
|
* that even the maximum amount of drift will not accidentally breach
|
|
* the min watermark
|
|
*/
|
|
watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
|
|
threshold = max(1, (int)(watermark_distance / num_online_cpus()));
|
|
|
|
/*
|
|
* Maximum threshold is 125
|
|
*/
|
|
threshold = min(125, threshold);
|
|
|
|
return threshold;
|
|
}
|
|
|
|
int calculate_normal_threshold(struct zone *zone)
|
|
{
|
|
int threshold;
|
|
int mem; /* memory in 128 MB units */
|
|
|
|
/*
|
|
* The threshold scales with the number of processors and the amount
|
|
* of memory per zone. More memory means that we can defer updates for
|
|
* longer, more processors could lead to more contention.
|
|
* fls() is used to have a cheap way of logarithmic scaling.
|
|
*
|
|
* Some sample thresholds:
|
|
*
|
|
* Threshold Processors (fls) Zonesize fls(mem+1)
|
|
* ------------------------------------------------------------------
|
|
* 8 1 1 0.9-1 GB 4
|
|
* 16 2 2 0.9-1 GB 4
|
|
* 20 2 2 1-2 GB 5
|
|
* 24 2 2 2-4 GB 6
|
|
* 28 2 2 4-8 GB 7
|
|
* 32 2 2 8-16 GB 8
|
|
* 4 2 2 <128M 1
|
|
* 30 4 3 2-4 GB 5
|
|
* 48 4 3 8-16 GB 8
|
|
* 32 8 4 1-2 GB 4
|
|
* 32 8 4 0.9-1GB 4
|
|
* 10 16 5 <128M 1
|
|
* 40 16 5 900M 4
|
|
* 70 64 7 2-4 GB 5
|
|
* 84 64 7 4-8 GB 6
|
|
* 108 512 9 4-8 GB 6
|
|
* 125 1024 10 8-16 GB 8
|
|
* 125 1024 10 16-32 GB 9
|
|
*/
|
|
|
|
mem = zone->managed_pages >> (27 - PAGE_SHIFT);
|
|
|
|
threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
|
|
|
|
/*
|
|
* Maximum threshold is 125
|
|
*/
|
|
threshold = min(125, threshold);
|
|
|
|
return threshold;
|
|
}
|
|
|
|
/*
|
|
* Refresh the thresholds for each zone.
|
|
*/
|
|
void refresh_zone_stat_thresholds(void)
|
|
{
|
|
struct zone *zone;
|
|
int cpu;
|
|
int threshold;
|
|
|
|
for_each_populated_zone(zone) {
|
|
unsigned long max_drift, tolerate_drift;
|
|
|
|
threshold = calculate_normal_threshold(zone);
|
|
|
|
for_each_online_cpu(cpu)
|
|
per_cpu_ptr(zone->pageset, cpu)->stat_threshold
|
|
= threshold;
|
|
|
|
/*
|
|
* Only set percpu_drift_mark if there is a danger that
|
|
* NR_FREE_PAGES reports the low watermark is ok when in fact
|
|
* the min watermark could be breached by an allocation
|
|
*/
|
|
tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
|
|
max_drift = num_online_cpus() * threshold;
|
|
if (max_drift > tolerate_drift)
|
|
zone->percpu_drift_mark = high_wmark_pages(zone) +
|
|
max_drift;
|
|
}
|
|
}
|
|
|
|
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
|
|
int (*calculate_pressure)(struct zone *))
|
|
{
|
|
struct zone *zone;
|
|
int cpu;
|
|
int threshold;
|
|
int i;
|
|
|
|
for (i = 0; i < pgdat->nr_zones; i++) {
|
|
zone = &pgdat->node_zones[i];
|
|
if (!zone->percpu_drift_mark)
|
|
continue;
|
|
|
|
threshold = (*calculate_pressure)(zone);
|
|
for_each_online_cpu(cpu)
|
|
per_cpu_ptr(zone->pageset, cpu)->stat_threshold
|
|
= threshold;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For use when we know that interrupts are disabled,
|
|
* or when we know that preemption is disabled and that
|
|
* particular counter cannot be updated from interrupt context.
|
|
*/
|
|
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
int delta)
|
|
{
|
|
struct per_cpu_pageset __percpu *pcp = zone->pageset;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
long x;
|
|
long t;
|
|
|
|
x = delta + __this_cpu_read(*p);
|
|
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
|
|
if (unlikely(x > t || x < -t)) {
|
|
zone_page_state_add(x, zone, item);
|
|
x = 0;
|
|
}
|
|
__this_cpu_write(*p, x);
|
|
}
|
|
EXPORT_SYMBOL(__mod_zone_page_state);
|
|
|
|
/*
|
|
* Optimized increment and decrement functions.
|
|
*
|
|
* These are only for a single page and therefore can take a struct page *
|
|
* argument instead of struct zone *. This allows the inclusion of the code
|
|
* generated for page_zone(page) into the optimized functions.
|
|
*
|
|
* No overflow check is necessary and therefore the differential can be
|
|
* incremented or decremented in place which may allow the compilers to
|
|
* generate better code.
|
|
* The increment or decrement is known and therefore one boundary check can
|
|
* be omitted.
|
|
*
|
|
* NOTE: These functions are very performance sensitive. Change only
|
|
* with care.
|
|
*
|
|
* Some processors have inc/dec instructions that are atomic vs an interrupt.
|
|
* However, the code must first determine the differential location in a zone
|
|
* based on the processor number and then inc/dec the counter. There is no
|
|
* guarantee without disabling preemption that the processor will not change
|
|
* in between and therefore the atomicity vs. interrupt cannot be exploited
|
|
* in a useful way here.
|
|
*/
|
|
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
struct per_cpu_pageset __percpu *pcp = zone->pageset;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
v = __this_cpu_inc_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v > t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
zone_page_state_add(v + overstep, zone, item);
|
|
__this_cpu_write(*p, -overstep);
|
|
}
|
|
}
|
|
|
|
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
__inc_zone_state(page_zone(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__inc_zone_page_state);
|
|
|
|
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
struct per_cpu_pageset __percpu *pcp = zone->pageset;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
v = __this_cpu_dec_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v < - t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
zone_page_state_add(v - overstep, zone, item);
|
|
__this_cpu_write(*p, overstep);
|
|
}
|
|
}
|
|
|
|
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
__dec_zone_state(page_zone(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__dec_zone_page_state);
|
|
|
|
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
|
|
/*
|
|
* If we have cmpxchg_local support then we do not need to incur the overhead
|
|
* that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
|
|
*
|
|
* mod_state() modifies the zone counter state through atomic per cpu
|
|
* operations.
|
|
*
|
|
* Overstep mode specifies how overstep should handled:
|
|
* 0 No overstepping
|
|
* 1 Overstepping half of threshold
|
|
* -1 Overstepping minus half of threshold
|
|
*/
|
|
static inline void mod_state(struct zone *zone,
|
|
enum zone_stat_item item, int delta, int overstep_mode)
|
|
{
|
|
struct per_cpu_pageset __percpu *pcp = zone->pageset;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
long o, n, t, z;
|
|
|
|
do {
|
|
z = 0; /* overflow to zone counters */
|
|
|
|
/*
|
|
* The fetching of the stat_threshold is racy. We may apply
|
|
* a counter threshold to the wrong the cpu if we get
|
|
* rescheduled while executing here. However, the next
|
|
* counter update will apply the threshold again and
|
|
* therefore bring the counter under the threshold again.
|
|
*
|
|
* Most of the time the thresholds are the same anyways
|
|
* for all cpus in a zone.
|
|
*/
|
|
t = this_cpu_read(pcp->stat_threshold);
|
|
|
|
o = this_cpu_read(*p);
|
|
n = delta + o;
|
|
|
|
if (n > t || n < -t) {
|
|
int os = overstep_mode * (t >> 1) ;
|
|
|
|
/* Overflow must be added to zone counters */
|
|
z = n + os;
|
|
n = -os;
|
|
}
|
|
} while (this_cpu_cmpxchg(*p, o, n) != o);
|
|
|
|
if (z)
|
|
zone_page_state_add(z, zone, item);
|
|
}
|
|
|
|
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
int delta)
|
|
{
|
|
mod_state(zone, item, delta, 0);
|
|
}
|
|
EXPORT_SYMBOL(mod_zone_page_state);
|
|
|
|
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
mod_state(zone, item, 1, 1);
|
|
}
|
|
|
|
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
mod_state(page_zone(page), item, 1, 1);
|
|
}
|
|
EXPORT_SYMBOL(inc_zone_page_state);
|
|
|
|
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
mod_state(page_zone(page), item, -1, -1);
|
|
}
|
|
EXPORT_SYMBOL(dec_zone_page_state);
|
|
#else
|
|
/*
|
|
* Use interrupt disable to serialize counter updates
|
|
*/
|
|
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
int delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__mod_zone_page_state(zone, item, delta);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(mod_zone_page_state);
|
|
|
|
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__inc_zone_state(zone, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
struct zone *zone;
|
|
|
|
zone = page_zone(page);
|
|
local_irq_save(flags);
|
|
__inc_zone_state(zone, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(inc_zone_page_state);
|
|
|
|
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__dec_zone_page_state(page, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(dec_zone_page_state);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Fold a differential into the global counters.
|
|
* Returns the number of counters updated.
|
|
*/
|
|
static int fold_diff(int *diff)
|
|
{
|
|
int i;
|
|
int changes = 0;
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
if (diff[i]) {
|
|
atomic_long_add(diff[i], &vm_stat[i]);
|
|
changes++;
|
|
}
|
|
return changes;
|
|
}
|
|
|
|
/*
|
|
* Update the zone counters for the current cpu.
|
|
*
|
|
* Note that refresh_cpu_vm_stats strives to only access
|
|
* node local memory. The per cpu pagesets on remote zones are placed
|
|
* in the memory local to the processor using that pageset. So the
|
|
* loop over all zones will access a series of cachelines local to
|
|
* the processor.
|
|
*
|
|
* The call to zone_page_state_add updates the cachelines with the
|
|
* statistics in the remote zone struct as well as the global cachelines
|
|
* with the global counters. These could cause remote node cache line
|
|
* bouncing and will have to be only done when necessary.
|
|
*
|
|
* The function returns the number of global counters updated.
|
|
*/
|
|
static int refresh_cpu_vm_stats(void)
|
|
{
|
|
struct zone *zone;
|
|
int i;
|
|
int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
|
|
int changes = 0;
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_pageset __percpu *p = zone->pageset;
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
|
|
int v;
|
|
|
|
v = this_cpu_xchg(p->vm_stat_diff[i], 0);
|
|
if (v) {
|
|
|
|
atomic_long_add(v, &zone->vm_stat[i]);
|
|
global_diff[i] += v;
|
|
#ifdef CONFIG_NUMA
|
|
/* 3 seconds idle till flush */
|
|
__this_cpu_write(p->expire, 3);
|
|
#endif
|
|
}
|
|
}
|
|
cond_resched();
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Deal with draining the remote pageset of this
|
|
* processor
|
|
*
|
|
* Check if there are pages remaining in this pageset
|
|
* if not then there is nothing to expire.
|
|
*/
|
|
if (!__this_cpu_read(p->expire) ||
|
|
!__this_cpu_read(p->pcp.count))
|
|
continue;
|
|
|
|
/*
|
|
* We never drain zones local to this processor.
|
|
*/
|
|
if (zone_to_nid(zone) == numa_node_id()) {
|
|
__this_cpu_write(p->expire, 0);
|
|
continue;
|
|
}
|
|
|
|
if (__this_cpu_dec_return(p->expire))
|
|
continue;
|
|
|
|
if (__this_cpu_read(p->pcp.count)) {
|
|
drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
|
|
changes++;
|
|
}
|
|
#endif
|
|
}
|
|
changes += fold_diff(global_diff);
|
|
return changes;
|
|
}
|
|
|
|
/*
|
|
* Fold the data for an offline cpu into the global array.
|
|
* There cannot be any access by the offline cpu and therefore
|
|
* synchronization is simplified.
|
|
*/
|
|
void cpu_vm_stats_fold(int cpu)
|
|
{
|
|
struct zone *zone;
|
|
int i;
|
|
int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_pageset *p;
|
|
|
|
p = per_cpu_ptr(zone->pageset, cpu);
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
if (p->vm_stat_diff[i]) {
|
|
int v;
|
|
|
|
v = p->vm_stat_diff[i];
|
|
p->vm_stat_diff[i] = 0;
|
|
atomic_long_add(v, &zone->vm_stat[i]);
|
|
global_diff[i] += v;
|
|
}
|
|
}
|
|
|
|
fold_diff(global_diff);
|
|
}
|
|
|
|
/*
|
|
* this is only called if !populated_zone(zone), which implies no other users of
|
|
* pset->vm_stat_diff[] exsist.
|
|
*/
|
|
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
if (pset->vm_stat_diff[i]) {
|
|
int v = pset->vm_stat_diff[i];
|
|
pset->vm_stat_diff[i] = 0;
|
|
atomic_long_add(v, &zone->vm_stat[i]);
|
|
atomic_long_add(v, &vm_stat[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* zonelist = the list of zones passed to the allocator
|
|
* z = the zone from which the allocation occurred.
|
|
*
|
|
* Must be called with interrupts disabled.
|
|
*
|
|
* When __GFP_OTHER_NODE is set assume the node of the preferred
|
|
* zone is the local node. This is useful for daemons who allocate
|
|
* memory on behalf of other processes.
|
|
*/
|
|
void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
|
|
{
|
|
if (z->zone_pgdat == preferred_zone->zone_pgdat) {
|
|
__inc_zone_state(z, NUMA_HIT);
|
|
} else {
|
|
__inc_zone_state(z, NUMA_MISS);
|
|
__inc_zone_state(preferred_zone, NUMA_FOREIGN);
|
|
}
|
|
if (z->node == ((flags & __GFP_OTHER_NODE) ?
|
|
preferred_zone->node : numa_node_id()))
|
|
__inc_zone_state(z, NUMA_LOCAL);
|
|
else
|
|
__inc_zone_state(z, NUMA_OTHER);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
struct contig_page_info {
|
|
unsigned long free_pages;
|
|
unsigned long free_blocks_total;
|
|
unsigned long free_blocks_suitable;
|
|
};
|
|
|
|
/*
|
|
* Calculate the number of free pages in a zone, how many contiguous
|
|
* pages are free and how many are large enough to satisfy an allocation of
|
|
* the target size. Note that this function makes no attempt to estimate
|
|
* how many suitable free blocks there *might* be if MOVABLE pages were
|
|
* migrated. Calculating that is possible, but expensive and can be
|
|
* figured out from userspace
|
|
*/
|
|
static void fill_contig_page_info(struct zone *zone,
|
|
unsigned int suitable_order,
|
|
struct contig_page_info *info)
|
|
{
|
|
unsigned int order;
|
|
|
|
info->free_pages = 0;
|
|
info->free_blocks_total = 0;
|
|
info->free_blocks_suitable = 0;
|
|
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
unsigned long blocks;
|
|
|
|
/* Count number of free blocks */
|
|
blocks = zone->free_area[order].nr_free;
|
|
info->free_blocks_total += blocks;
|
|
|
|
/* Count free base pages */
|
|
info->free_pages += blocks << order;
|
|
|
|
/* Count the suitable free blocks */
|
|
if (order >= suitable_order)
|
|
info->free_blocks_suitable += blocks <<
|
|
(order - suitable_order);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A fragmentation index only makes sense if an allocation of a requested
|
|
* size would fail. If that is true, the fragmentation index indicates
|
|
* whether external fragmentation or a lack of memory was the problem.
|
|
* The value can be used to determine if page reclaim or compaction
|
|
* should be used
|
|
*/
|
|
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
|
|
{
|
|
unsigned long requested = 1UL << order;
|
|
|
|
if (!info->free_blocks_total)
|
|
return 0;
|
|
|
|
/* Fragmentation index only makes sense when a request would fail */
|
|
if (info->free_blocks_suitable)
|
|
return -1000;
|
|
|
|
/*
|
|
* Index is between 0 and 1 so return within 3 decimal places
|
|
*
|
|
* 0 => allocation would fail due to lack of memory
|
|
* 1 => allocation would fail due to fragmentation
|
|
*/
|
|
return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
|
|
}
|
|
|
|
/* Same as __fragmentation index but allocs contig_page_info on stack */
|
|
int fragmentation_index(struct zone *zone, unsigned int order)
|
|
{
|
|
struct contig_page_info info;
|
|
|
|
fill_contig_page_info(zone, order, &info);
|
|
return __fragmentation_index(order, &info);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define TEXT_FOR_DMA(xx) xx "_dma",
|
|
#else
|
|
#define TEXT_FOR_DMA(xx)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define TEXT_FOR_DMA32(xx) xx "_dma32",
|
|
#else
|
|
#define TEXT_FOR_DMA32(xx)
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
|
|
#else
|
|
#define TEXT_FOR_HIGHMEM(xx)
|
|
#endif
|
|
|
|
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
|
|
TEXT_FOR_HIGHMEM(xx) xx "_movable",
|
|
|
|
const char * const vmstat_text[] = {
|
|
/* enum zone_stat_item countes */
|
|
"nr_free_pages",
|
|
"nr_alloc_batch",
|
|
"nr_inactive_anon",
|
|
"nr_active_anon",
|
|
"nr_inactive_file",
|
|
"nr_active_file",
|
|
"nr_unevictable",
|
|
"nr_mlock",
|
|
"nr_anon_pages",
|
|
"nr_mapped",
|
|
"nr_file_pages",
|
|
"nr_dirty",
|
|
"nr_writeback",
|
|
"nr_slab_reclaimable",
|
|
"nr_slab_unreclaimable",
|
|
"nr_page_table_pages",
|
|
"nr_kernel_stack",
|
|
"nr_unstable",
|
|
"nr_bounce",
|
|
"nr_vmscan_write",
|
|
"nr_vmscan_immediate_reclaim",
|
|
"nr_writeback_temp",
|
|
"nr_isolated_anon",
|
|
"nr_isolated_file",
|
|
"nr_shmem",
|
|
"nr_dirtied",
|
|
"nr_written",
|
|
"nr_pages_scanned",
|
|
|
|
#ifdef CONFIG_NUMA
|
|
"numa_hit",
|
|
"numa_miss",
|
|
"numa_foreign",
|
|
"numa_interleave",
|
|
"numa_local",
|
|
"numa_other",
|
|
#endif
|
|
"workingset_refault",
|
|
"workingset_activate",
|
|
"workingset_nodereclaim",
|
|
"nr_anon_transparent_hugepages",
|
|
"nr_free_cma",
|
|
|
|
/* enum writeback_stat_item counters */
|
|
"nr_dirty_threshold",
|
|
"nr_dirty_background_threshold",
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
/* enum vm_event_item counters */
|
|
"pgpgin",
|
|
"pgpgout",
|
|
"pswpin",
|
|
"pswpout",
|
|
|
|
TEXTS_FOR_ZONES("pgalloc")
|
|
|
|
"pgfree",
|
|
"pgactivate",
|
|
"pgdeactivate",
|
|
|
|
"pgfault",
|
|
"pgmajfault",
|
|
|
|
TEXTS_FOR_ZONES("pgrefill")
|
|
TEXTS_FOR_ZONES("pgsteal_kswapd")
|
|
TEXTS_FOR_ZONES("pgsteal_direct")
|
|
TEXTS_FOR_ZONES("pgscan_kswapd")
|
|
TEXTS_FOR_ZONES("pgscan_direct")
|
|
"pgscan_direct_throttle",
|
|
|
|
#ifdef CONFIG_NUMA
|
|
"zone_reclaim_failed",
|
|
#endif
|
|
"pginodesteal",
|
|
"slabs_scanned",
|
|
"kswapd_inodesteal",
|
|
"kswapd_low_wmark_hit_quickly",
|
|
"kswapd_high_wmark_hit_quickly",
|
|
"pageoutrun",
|
|
"allocstall",
|
|
|
|
"pgrotated",
|
|
|
|
"drop_pagecache",
|
|
"drop_slab",
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
"numa_pte_updates",
|
|
"numa_huge_pte_updates",
|
|
"numa_hint_faults",
|
|
"numa_hint_faults_local",
|
|
"numa_pages_migrated",
|
|
#endif
|
|
#ifdef CONFIG_MIGRATION
|
|
"pgmigrate_success",
|
|
"pgmigrate_fail",
|
|
#endif
|
|
#ifdef CONFIG_COMPACTION
|
|
"compact_migrate_scanned",
|
|
"compact_free_scanned",
|
|
"compact_isolated",
|
|
"compact_stall",
|
|
"compact_fail",
|
|
"compact_success",
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
"htlb_buddy_alloc_success",
|
|
"htlb_buddy_alloc_fail",
|
|
#endif
|
|
"unevictable_pgs_culled",
|
|
"unevictable_pgs_scanned",
|
|
"unevictable_pgs_rescued",
|
|
"unevictable_pgs_mlocked",
|
|
"unevictable_pgs_munlocked",
|
|
"unevictable_pgs_cleared",
|
|
"unevictable_pgs_stranded",
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
"thp_fault_alloc",
|
|
"thp_fault_fallback",
|
|
"thp_collapse_alloc",
|
|
"thp_collapse_alloc_failed",
|
|
"thp_split",
|
|
"thp_zero_page_alloc",
|
|
"thp_zero_page_alloc_failed",
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_BALLOON
|
|
"balloon_inflate",
|
|
"balloon_deflate",
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
|
"balloon_migrate",
|
|
#endif
|
|
#endif /* CONFIG_MEMORY_BALLOON */
|
|
#ifdef CONFIG_DEBUG_TLBFLUSH
|
|
#ifdef CONFIG_SMP
|
|
"nr_tlb_remote_flush",
|
|
"nr_tlb_remote_flush_received",
|
|
#endif /* CONFIG_SMP */
|
|
"nr_tlb_local_flush_all",
|
|
"nr_tlb_local_flush_one",
|
|
#endif /* CONFIG_DEBUG_TLBFLUSH */
|
|
|
|
#ifdef CONFIG_DEBUG_VM_VMACACHE
|
|
"vmacache_find_calls",
|
|
"vmacache_find_hits",
|
|
"vmacache_full_flushes",
|
|
#endif
|
|
#endif /* CONFIG_VM_EVENTS_COUNTERS */
|
|
};
|
|
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
|
|
|
|
|
|
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
|
|
defined(CONFIG_PROC_FS)
|
|
static void *frag_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
pg_data_t *pgdat;
|
|
loff_t node = *pos;
|
|
|
|
for (pgdat = first_online_pgdat();
|
|
pgdat && node;
|
|
pgdat = next_online_pgdat(pgdat))
|
|
--node;
|
|
|
|
return pgdat;
|
|
}
|
|
|
|
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
(*pos)++;
|
|
return next_online_pgdat(pgdat);
|
|
}
|
|
|
|
static void frag_stop(struct seq_file *m, void *arg)
|
|
{
|
|
}
|
|
|
|
/* Walk all the zones in a node and print using a callback */
|
|
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
|
|
void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
|
|
{
|
|
struct zone *zone;
|
|
struct zone *node_zones = pgdat->node_zones;
|
|
unsigned long flags;
|
|
|
|
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
print(m, pgdat, zone);
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static char * const migratetype_names[MIGRATE_TYPES] = {
|
|
"Unmovable",
|
|
"Reclaimable",
|
|
"Movable",
|
|
"Reserve",
|
|
#ifdef CONFIG_CMA
|
|
"CMA",
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
"Isolate",
|
|
#endif
|
|
};
|
|
|
|
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
|
|
struct zone *zone)
|
|
{
|
|
int order;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
|
|
for (order = 0; order < MAX_ORDER; ++order)
|
|
seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* This walks the free areas for each zone.
|
|
*/
|
|
static int frag_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
walk_zones_in_node(m, pgdat, frag_show_print);
|
|
return 0;
|
|
}
|
|
|
|
static void pagetypeinfo_showfree_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
int order, mtype;
|
|
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
|
|
seq_printf(m, "Node %4d, zone %8s, type %12s ",
|
|
pgdat->node_id,
|
|
zone->name,
|
|
migratetype_names[mtype]);
|
|
for (order = 0; order < MAX_ORDER; ++order) {
|
|
unsigned long freecount = 0;
|
|
struct free_area *area;
|
|
struct list_head *curr;
|
|
|
|
area = &(zone->free_area[order]);
|
|
|
|
list_for_each(curr, &area->free_list[mtype])
|
|
freecount++;
|
|
seq_printf(m, "%6lu ", freecount);
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
}
|
|
|
|
/* Print out the free pages at each order for each migatetype */
|
|
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
|
|
{
|
|
int order;
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* Print header */
|
|
seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
|
|
for (order = 0; order < MAX_ORDER; ++order)
|
|
seq_printf(m, "%6d ", order);
|
|
seq_putc(m, '\n');
|
|
|
|
walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pagetypeinfo_showblockcount_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
int mtype;
|
|
unsigned long pfn;
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone_end_pfn(zone);
|
|
unsigned long count[MIGRATE_TYPES] = { 0, };
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
|
|
struct page *page;
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
/* Watch for unexpected holes punched in the memmap */
|
|
if (!memmap_valid_within(pfn, page, zone))
|
|
continue;
|
|
|
|
mtype = get_pageblock_migratetype(page);
|
|
|
|
if (mtype < MIGRATE_TYPES)
|
|
count[mtype]++;
|
|
}
|
|
|
|
/* Print counts */
|
|
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12lu ", count[mtype]);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/* Print out the free pages at each order for each migratetype */
|
|
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
|
|
{
|
|
int mtype;
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
seq_printf(m, "\n%-23s", "Number of blocks type ");
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12s ", migratetype_names[mtype]);
|
|
seq_putc(m, '\n');
|
|
walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
|
|
pg_data_t *pgdat,
|
|
struct zone *zone)
|
|
{
|
|
struct page *page;
|
|
struct page_ext *page_ext;
|
|
unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
|
|
unsigned long end_pfn = pfn + zone->spanned_pages;
|
|
unsigned long count[MIGRATE_TYPES] = { 0, };
|
|
int pageblock_mt, page_mt;
|
|
int i;
|
|
|
|
/* Scan block by block. First and last block may be incomplete */
|
|
pfn = zone->zone_start_pfn;
|
|
|
|
/*
|
|
* Walk the zone in pageblock_nr_pages steps. If a page block spans
|
|
* a zone boundary, it will be double counted between zones. This does
|
|
* not matter as the mixed block count will still be correct
|
|
*/
|
|
for (; pfn < end_pfn; ) {
|
|
if (!pfn_valid(pfn)) {
|
|
pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
|
|
continue;
|
|
}
|
|
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
|
|
page = pfn_to_page(pfn);
|
|
pageblock_mt = get_pfnblock_migratetype(page, pfn);
|
|
|
|
for (; pfn < block_end_pfn; pfn++) {
|
|
if (!pfn_valid_within(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (PageBuddy(page)) {
|
|
pfn += (1UL << page_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
if (PageReserved(page))
|
|
continue;
|
|
|
|
page_ext = lookup_page_ext(page);
|
|
|
|
if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
|
|
continue;
|
|
|
|
page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
|
|
if (pageblock_mt != page_mt) {
|
|
if (is_migrate_cma(pageblock_mt))
|
|
count[MIGRATE_MOVABLE]++;
|
|
else
|
|
count[pageblock_mt]++;
|
|
|
|
pfn = block_end_pfn;
|
|
break;
|
|
}
|
|
pfn += (1UL << page_ext->order) - 1;
|
|
}
|
|
}
|
|
|
|
/* Print counts */
|
|
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
|
|
for (i = 0; i < MIGRATE_TYPES; i++)
|
|
seq_printf(m, "%12lu ", count[i]);
|
|
seq_putc(m, '\n');
|
|
}
|
|
#endif /* CONFIG_PAGE_OWNER */
|
|
|
|
/*
|
|
* Print out the number of pageblocks for each migratetype that contain pages
|
|
* of other types. This gives an indication of how well fallbacks are being
|
|
* contained by rmqueue_fallback(). It requires information from PAGE_OWNER
|
|
* to determine what is going on
|
|
*/
|
|
static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
|
|
{
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
int mtype;
|
|
|
|
if (!page_owner_inited)
|
|
return;
|
|
|
|
drain_all_pages(NULL);
|
|
|
|
seq_printf(m, "\n%-23s", "Number of mixed blocks ");
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12s ", migratetype_names[mtype]);
|
|
seq_putc(m, '\n');
|
|
|
|
walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
|
|
#endif /* CONFIG_PAGE_OWNER */
|
|
}
|
|
|
|
/*
|
|
* This prints out statistics in relation to grouping pages by mobility.
|
|
* It is expensive to collect so do not constantly read the file.
|
|
*/
|
|
static int pagetypeinfo_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* check memoryless node */
|
|
if (!node_state(pgdat->node_id, N_MEMORY))
|
|
return 0;
|
|
|
|
seq_printf(m, "Page block order: %d\n", pageblock_order);
|
|
seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
|
|
seq_putc(m, '\n');
|
|
pagetypeinfo_showfree(m, pgdat);
|
|
pagetypeinfo_showblockcount(m, pgdat);
|
|
pagetypeinfo_showmixedcount(m, pgdat);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fragmentation_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = frag_show,
|
|
};
|
|
|
|
static int fragmentation_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &fragmentation_op);
|
|
}
|
|
|
|
static const struct file_operations fragmentation_file_operations = {
|
|
.open = fragmentation_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static const struct seq_operations pagetypeinfo_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = pagetypeinfo_show,
|
|
};
|
|
|
|
static int pagetypeinfo_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &pagetypeinfo_op);
|
|
}
|
|
|
|
static const struct file_operations pagetypeinfo_file_ops = {
|
|
.open = pagetypeinfo_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
|
|
struct zone *zone)
|
|
{
|
|
int i;
|
|
seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
|
|
seq_printf(m,
|
|
"\n pages free %lu"
|
|
"\n min %lu"
|
|
"\n low %lu"
|
|
"\n high %lu"
|
|
"\n scanned %lu"
|
|
"\n spanned %lu"
|
|
"\n present %lu"
|
|
"\n managed %lu",
|
|
zone_page_state(zone, NR_FREE_PAGES),
|
|
min_wmark_pages(zone),
|
|
low_wmark_pages(zone),
|
|
high_wmark_pages(zone),
|
|
zone_page_state(zone, NR_PAGES_SCANNED),
|
|
zone->spanned_pages,
|
|
zone->present_pages,
|
|
zone->managed_pages);
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
seq_printf(m, "\n %-12s %lu", vmstat_text[i],
|
|
zone_page_state(zone, i));
|
|
|
|
seq_printf(m,
|
|
"\n protection: (%ld",
|
|
zone->lowmem_reserve[0]);
|
|
for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
|
|
seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
|
|
seq_printf(m,
|
|
")"
|
|
"\n pagesets");
|
|
for_each_online_cpu(i) {
|
|
struct per_cpu_pageset *pageset;
|
|
|
|
pageset = per_cpu_ptr(zone->pageset, i);
|
|
seq_printf(m,
|
|
"\n cpu: %i"
|
|
"\n count: %i"
|
|
"\n high: %i"
|
|
"\n batch: %i",
|
|
i,
|
|
pageset->pcp.count,
|
|
pageset->pcp.high,
|
|
pageset->pcp.batch);
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(m, "\n vm stats threshold: %d",
|
|
pageset->stat_threshold);
|
|
#endif
|
|
}
|
|
seq_printf(m,
|
|
"\n all_unreclaimable: %u"
|
|
"\n start_pfn: %lu"
|
|
"\n inactive_ratio: %u",
|
|
!zone_reclaimable(zone),
|
|
zone->zone_start_pfn,
|
|
zone->inactive_ratio);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Output information about zones in @pgdat.
|
|
*/
|
|
static int zoneinfo_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
walk_zones_in_node(m, pgdat, zoneinfo_show_print);
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations zoneinfo_op = {
|
|
.start = frag_start, /* iterate over all zones. The same as in
|
|
* fragmentation. */
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = zoneinfo_show,
|
|
};
|
|
|
|
static int zoneinfo_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &zoneinfo_op);
|
|
}
|
|
|
|
static const struct file_operations proc_zoneinfo_file_operations = {
|
|
.open = zoneinfo_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
enum writeback_stat_item {
|
|
NR_DIRTY_THRESHOLD,
|
|
NR_DIRTY_BG_THRESHOLD,
|
|
NR_VM_WRITEBACK_STAT_ITEMS,
|
|
};
|
|
|
|
static void *vmstat_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
unsigned long *v;
|
|
int i, stat_items_size;
|
|
|
|
if (*pos >= ARRAY_SIZE(vmstat_text))
|
|
return NULL;
|
|
stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
|
|
NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
stat_items_size += sizeof(struct vm_event_state);
|
|
#endif
|
|
|
|
v = kmalloc(stat_items_size, GFP_KERNEL);
|
|
m->private = v;
|
|
if (!v)
|
|
return ERR_PTR(-ENOMEM);
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
v[i] = global_page_state(i);
|
|
v += NR_VM_ZONE_STAT_ITEMS;
|
|
|
|
global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
|
|
v + NR_DIRTY_THRESHOLD);
|
|
v += NR_VM_WRITEBACK_STAT_ITEMS;
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
all_vm_events(v);
|
|
v[PGPGIN] /= 2; /* sectors -> kbytes */
|
|
v[PGPGOUT] /= 2;
|
|
#endif
|
|
return (unsigned long *)m->private + *pos;
|
|
}
|
|
|
|
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
|
|
{
|
|
(*pos)++;
|
|
if (*pos >= ARRAY_SIZE(vmstat_text))
|
|
return NULL;
|
|
return (unsigned long *)m->private + *pos;
|
|
}
|
|
|
|
static int vmstat_show(struct seq_file *m, void *arg)
|
|
{
|
|
unsigned long *l = arg;
|
|
unsigned long off = l - (unsigned long *)m->private;
|
|
|
|
seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
|
|
return 0;
|
|
}
|
|
|
|
static void vmstat_stop(struct seq_file *m, void *arg)
|
|
{
|
|
kfree(m->private);
|
|
m->private = NULL;
|
|
}
|
|
|
|
static const struct seq_operations vmstat_op = {
|
|
.start = vmstat_start,
|
|
.next = vmstat_next,
|
|
.stop = vmstat_stop,
|
|
.show = vmstat_show,
|
|
};
|
|
|
|
static int vmstat_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &vmstat_op);
|
|
}
|
|
|
|
static const struct file_operations proc_vmstat_file_operations = {
|
|
.open = vmstat_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
|
|
int sysctl_stat_interval __read_mostly = HZ;
|
|
static cpumask_var_t cpu_stat_off;
|
|
|
|
static void vmstat_update(struct work_struct *w)
|
|
{
|
|
if (refresh_cpu_vm_stats())
|
|
/*
|
|
* Counters were updated so we expect more updates
|
|
* to occur in the future. Keep on running the
|
|
* update worker thread.
|
|
*/
|
|
schedule_delayed_work(this_cpu_ptr(&vmstat_work),
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
else {
|
|
/*
|
|
* We did not update any counters so the app may be in
|
|
* a mode where it does not cause counter updates.
|
|
* We may be uselessly running vmstat_update.
|
|
* Defer the checking for differentials to the
|
|
* shepherd thread on a different processor.
|
|
*/
|
|
int r;
|
|
/*
|
|
* Shepherd work thread does not race since it never
|
|
* changes the bit if its zero but the cpu
|
|
* online / off line code may race if
|
|
* worker threads are still allowed during
|
|
* shutdown / startup.
|
|
*/
|
|
r = cpumask_test_and_set_cpu(smp_processor_id(),
|
|
cpu_stat_off);
|
|
VM_BUG_ON(r);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if the diffs for a certain cpu indicate that
|
|
* an update is needed.
|
|
*/
|
|
static bool need_update(int cpu)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
|
|
|
|
BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
|
|
/*
|
|
* The fast way of checking if there are any vmstat diffs.
|
|
* This works because the diffs are byte sized items.
|
|
*/
|
|
if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
|
|
return true;
|
|
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* Shepherd worker thread that checks the
|
|
* differentials of processors that have their worker
|
|
* threads for vm statistics updates disabled because of
|
|
* inactivity.
|
|
*/
|
|
static void vmstat_shepherd(struct work_struct *w);
|
|
|
|
static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
|
|
|
|
static void vmstat_shepherd(struct work_struct *w)
|
|
{
|
|
int cpu;
|
|
|
|
get_online_cpus();
|
|
/* Check processors whose vmstat worker threads have been disabled */
|
|
for_each_cpu(cpu, cpu_stat_off)
|
|
if (need_update(cpu) &&
|
|
cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
|
|
|
|
schedule_delayed_work_on(cpu,
|
|
&per_cpu(vmstat_work, cpu), 0);
|
|
|
|
put_online_cpus();
|
|
|
|
schedule_delayed_work(&shepherd,
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
|
|
}
|
|
|
|
static void __init start_shepherd_timer(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
|
|
vmstat_update);
|
|
|
|
if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
|
|
BUG();
|
|
cpumask_copy(cpu_stat_off, cpu_online_mask);
|
|
|
|
schedule_delayed_work(&shepherd,
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
}
|
|
|
|
static void vmstat_cpu_dead(int node)
|
|
{
|
|
int cpu;
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu)
|
|
if (cpu_to_node(cpu) == node)
|
|
goto end;
|
|
|
|
node_clear_state(node, N_CPU);
|
|
end:
|
|
put_online_cpus();
|
|
}
|
|
|
|
/*
|
|
* Use the cpu notifier to insure that the thresholds are recalculated
|
|
* when necessary.
|
|
*/
|
|
static int vmstat_cpuup_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
refresh_zone_stat_thresholds();
|
|
node_set_state(cpu_to_node(cpu), N_CPU);
|
|
cpumask_set_cpu(cpu, cpu_stat_off);
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
case CPU_DOWN_PREPARE_FROZEN:
|
|
cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
|
|
cpumask_clear_cpu(cpu, cpu_stat_off);
|
|
break;
|
|
case CPU_DOWN_FAILED:
|
|
case CPU_DOWN_FAILED_FROZEN:
|
|
cpumask_set_cpu(cpu, cpu_stat_off);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
refresh_zone_stat_thresholds();
|
|
vmstat_cpu_dead(cpu_to_node(cpu));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block vmstat_notifier =
|
|
{ &vmstat_cpuup_callback, NULL, 0 };
|
|
#endif
|
|
|
|
static int __init setup_vmstat(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
cpu_notifier_register_begin();
|
|
__register_cpu_notifier(&vmstat_notifier);
|
|
|
|
start_shepherd_timer();
|
|
cpu_notifier_register_done();
|
|
#endif
|
|
#ifdef CONFIG_PROC_FS
|
|
proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
|
|
proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
|
|
proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
|
|
proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
|
|
#endif
|
|
return 0;
|
|
}
|
|
module_init(setup_vmstat)
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
|
|
|
|
/*
|
|
* Return an index indicating how much of the available free memory is
|
|
* unusable for an allocation of the requested size.
|
|
*/
|
|
static int unusable_free_index(unsigned int order,
|
|
struct contig_page_info *info)
|
|
{
|
|
/* No free memory is interpreted as all free memory is unusable */
|
|
if (info->free_pages == 0)
|
|
return 1000;
|
|
|
|
/*
|
|
* Index should be a value between 0 and 1. Return a value to 3
|
|
* decimal places.
|
|
*
|
|
* 0 => no fragmentation
|
|
* 1 => high fragmentation
|
|
*/
|
|
return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
|
|
|
|
}
|
|
|
|
static void unusable_show_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
unsigned int order;
|
|
int index;
|
|
struct contig_page_info info;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ",
|
|
pgdat->node_id,
|
|
zone->name);
|
|
for (order = 0; order < MAX_ORDER; ++order) {
|
|
fill_contig_page_info(zone, order, &info);
|
|
index = unusable_free_index(order, &info);
|
|
seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
|
|
}
|
|
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Display unusable free space index
|
|
*
|
|
* The unusable free space index measures how much of the available free
|
|
* memory cannot be used to satisfy an allocation of a given size and is a
|
|
* value between 0 and 1. The higher the value, the more of free memory is
|
|
* unusable and by implication, the worse the external fragmentation is. This
|
|
* can be expressed as a percentage by multiplying by 100.
|
|
*/
|
|
static int unusable_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* check memoryless node */
|
|
if (!node_state(pgdat->node_id, N_MEMORY))
|
|
return 0;
|
|
|
|
walk_zones_in_node(m, pgdat, unusable_show_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations unusable_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = unusable_show,
|
|
};
|
|
|
|
static int unusable_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &unusable_op);
|
|
}
|
|
|
|
static const struct file_operations unusable_file_ops = {
|
|
.open = unusable_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static void extfrag_show_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
unsigned int order;
|
|
int index;
|
|
|
|
/* Alloc on stack as interrupts are disabled for zone walk */
|
|
struct contig_page_info info;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ",
|
|
pgdat->node_id,
|
|
zone->name);
|
|
for (order = 0; order < MAX_ORDER; ++order) {
|
|
fill_contig_page_info(zone, order, &info);
|
|
index = __fragmentation_index(order, &info);
|
|
seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
|
|
}
|
|
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Display fragmentation index for orders that allocations would fail for
|
|
*/
|
|
static int extfrag_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
walk_zones_in_node(m, pgdat, extfrag_show_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations extfrag_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = extfrag_show,
|
|
};
|
|
|
|
static int extfrag_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &extfrag_op);
|
|
}
|
|
|
|
static const struct file_operations extfrag_file_ops = {
|
|
.open = extfrag_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init extfrag_debug_init(void)
|
|
{
|
|
struct dentry *extfrag_debug_root;
|
|
|
|
extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
|
|
if (!extfrag_debug_root)
|
|
return -ENOMEM;
|
|
|
|
if (!debugfs_create_file("unusable_index", 0444,
|
|
extfrag_debug_root, NULL, &unusable_file_ops))
|
|
goto fail;
|
|
|
|
if (!debugfs_create_file("extfrag_index", 0444,
|
|
extfrag_debug_root, NULL, &extfrag_file_ops))
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
debugfs_remove_recursive(extfrag_debug_root);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
module_init(extfrag_debug_init);
|
|
#endif
|