mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-08 05:34:29 +08:00
76b6f9b7ed
The condition checking for THP straddling end of invalidated range is wrong - it checks 'index' against 'end' but 'index' has been already advanced to point to the end of THP and thus the condition can never be true. As a result THP straddling 'end' has been fully invalidated. Given the nature of invalidate_mapping_pages(), this could be only performance issue. In fact, we are lucky the condition is wrong because if it was ever true, we'd leave locked page behind. Fix the condition checking for THP straddling 'end' and also properly unlock the page. Also update the comment before the condition to explain why we decide not to invalidate the page as it was not clear to me and I had to ask Kirill. Link: http://lkml.kernel.org/r/20170619124723.21656-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
874 lines
25 KiB
C
874 lines
25 KiB
C
/*
|
|
* mm/truncate.c - code for taking down pages from address_spaces
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds
|
|
*
|
|
* 10Sep2002 Andrew Morton
|
|
* Initial version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/buffer_head.h> /* grr. try_to_release_page,
|
|
do_invalidatepage */
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/cleancache.h>
|
|
#include <linux/rmap.h>
|
|
#include "internal.h"
|
|
|
|
static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
|
|
void *entry)
|
|
{
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
/*
|
|
* Regular page slots are stabilized by the page lock even
|
|
* without the tree itself locked. These unlocked entries
|
|
* need verification under the tree lock.
|
|
*/
|
|
if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
|
|
goto unlock;
|
|
if (*slot != entry)
|
|
goto unlock;
|
|
__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
|
|
workingset_update_node, mapping);
|
|
mapping->nrexceptional--;
|
|
unlock:
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
}
|
|
|
|
/*
|
|
* Unconditionally remove exceptional entry. Usually called from truncate path.
|
|
*/
|
|
static void truncate_exceptional_entry(struct address_space *mapping,
|
|
pgoff_t index, void *entry)
|
|
{
|
|
/* Handled by shmem itself */
|
|
if (shmem_mapping(mapping))
|
|
return;
|
|
|
|
if (dax_mapping(mapping)) {
|
|
dax_delete_mapping_entry(mapping, index);
|
|
return;
|
|
}
|
|
clear_shadow_entry(mapping, index, entry);
|
|
}
|
|
|
|
/*
|
|
* Invalidate exceptional entry if easily possible. This handles exceptional
|
|
* entries for invalidate_inode_pages().
|
|
*/
|
|
static int invalidate_exceptional_entry(struct address_space *mapping,
|
|
pgoff_t index, void *entry)
|
|
{
|
|
/* Handled by shmem itself, or for DAX we do nothing. */
|
|
if (shmem_mapping(mapping) || dax_mapping(mapping))
|
|
return 1;
|
|
clear_shadow_entry(mapping, index, entry);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Invalidate exceptional entry if clean. This handles exceptional entries for
|
|
* invalidate_inode_pages2() so for DAX it evicts only clean entries.
|
|
*/
|
|
static int invalidate_exceptional_entry2(struct address_space *mapping,
|
|
pgoff_t index, void *entry)
|
|
{
|
|
/* Handled by shmem itself */
|
|
if (shmem_mapping(mapping))
|
|
return 1;
|
|
if (dax_mapping(mapping))
|
|
return dax_invalidate_mapping_entry_sync(mapping, index);
|
|
clear_shadow_entry(mapping, index, entry);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* do_invalidatepage - invalidate part or all of a page
|
|
* @page: the page which is affected
|
|
* @offset: start of the range to invalidate
|
|
* @length: length of the range to invalidate
|
|
*
|
|
* do_invalidatepage() is called when all or part of the page has become
|
|
* invalidated by a truncate operation.
|
|
*
|
|
* do_invalidatepage() does not have to release all buffers, but it must
|
|
* ensure that no dirty buffer is left outside @offset and that no I/O
|
|
* is underway against any of the blocks which are outside the truncation
|
|
* point. Because the caller is about to free (and possibly reuse) those
|
|
* blocks on-disk.
|
|
*/
|
|
void do_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
void (*invalidatepage)(struct page *, unsigned int, unsigned int);
|
|
|
|
invalidatepage = page->mapping->a_ops->invalidatepage;
|
|
#ifdef CONFIG_BLOCK
|
|
if (!invalidatepage)
|
|
invalidatepage = block_invalidatepage;
|
|
#endif
|
|
if (invalidatepage)
|
|
(*invalidatepage)(page, offset, length);
|
|
}
|
|
|
|
/*
|
|
* If truncate cannot remove the fs-private metadata from the page, the page
|
|
* becomes orphaned. It will be left on the LRU and may even be mapped into
|
|
* user pagetables if we're racing with filemap_fault().
|
|
*
|
|
* We need to bale out if page->mapping is no longer equal to the original
|
|
* mapping. This happens a) when the VM reclaimed the page while we waited on
|
|
* its lock, b) when a concurrent invalidate_mapping_pages got there first and
|
|
* c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
|
|
*/
|
|
static int
|
|
truncate_complete_page(struct address_space *mapping, struct page *page)
|
|
{
|
|
if (page->mapping != mapping)
|
|
return -EIO;
|
|
|
|
if (page_has_private(page))
|
|
do_invalidatepage(page, 0, PAGE_SIZE);
|
|
|
|
/*
|
|
* Some filesystems seem to re-dirty the page even after
|
|
* the VM has canceled the dirty bit (eg ext3 journaling).
|
|
* Hence dirty accounting check is placed after invalidation.
|
|
*/
|
|
cancel_dirty_page(page);
|
|
ClearPageMappedToDisk(page);
|
|
delete_from_page_cache(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is for invalidate_mapping_pages(). That function can be called at
|
|
* any time, and is not supposed to throw away dirty pages. But pages can
|
|
* be marked dirty at any time too, so use remove_mapping which safely
|
|
* discards clean, unused pages.
|
|
*
|
|
* Returns non-zero if the page was successfully invalidated.
|
|
*/
|
|
static int
|
|
invalidate_complete_page(struct address_space *mapping, struct page *page)
|
|
{
|
|
int ret;
|
|
|
|
if (page->mapping != mapping)
|
|
return 0;
|
|
|
|
if (page_has_private(page) && !try_to_release_page(page, 0))
|
|
return 0;
|
|
|
|
ret = remove_mapping(mapping, page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int truncate_inode_page(struct address_space *mapping, struct page *page)
|
|
{
|
|
loff_t holelen;
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
|
|
holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
|
|
if (page_mapped(page)) {
|
|
unmap_mapping_range(mapping,
|
|
(loff_t)page->index << PAGE_SHIFT,
|
|
holelen, 0);
|
|
}
|
|
return truncate_complete_page(mapping, page);
|
|
}
|
|
|
|
/*
|
|
* Used to get rid of pages on hardware memory corruption.
|
|
*/
|
|
int generic_error_remove_page(struct address_space *mapping, struct page *page)
|
|
{
|
|
if (!mapping)
|
|
return -EINVAL;
|
|
/*
|
|
* Only punch for normal data pages for now.
|
|
* Handling other types like directories would need more auditing.
|
|
*/
|
|
if (!S_ISREG(mapping->host->i_mode))
|
|
return -EIO;
|
|
return truncate_inode_page(mapping, page);
|
|
}
|
|
EXPORT_SYMBOL(generic_error_remove_page);
|
|
|
|
/*
|
|
* Safely invalidate one page from its pagecache mapping.
|
|
* It only drops clean, unused pages. The page must be locked.
|
|
*
|
|
* Returns 1 if the page is successfully invalidated, otherwise 0.
|
|
*/
|
|
int invalidate_inode_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping(page);
|
|
if (!mapping)
|
|
return 0;
|
|
if (PageDirty(page) || PageWriteback(page))
|
|
return 0;
|
|
if (page_mapped(page))
|
|
return 0;
|
|
return invalidate_complete_page(mapping, page);
|
|
}
|
|
|
|
/**
|
|
* truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
|
|
* @mapping: mapping to truncate
|
|
* @lstart: offset from which to truncate
|
|
* @lend: offset to which to truncate (inclusive)
|
|
*
|
|
* Truncate the page cache, removing the pages that are between
|
|
* specified offsets (and zeroing out partial pages
|
|
* if lstart or lend + 1 is not page aligned).
|
|
*
|
|
* Truncate takes two passes - the first pass is nonblocking. It will not
|
|
* block on page locks and it will not block on writeback. The second pass
|
|
* will wait. This is to prevent as much IO as possible in the affected region.
|
|
* The first pass will remove most pages, so the search cost of the second pass
|
|
* is low.
|
|
*
|
|
* We pass down the cache-hot hint to the page freeing code. Even if the
|
|
* mapping is large, it is probably the case that the final pages are the most
|
|
* recently touched, and freeing happens in ascending file offset order.
|
|
*
|
|
* Note that since ->invalidatepage() accepts range to invalidate
|
|
* truncate_inode_pages_range is able to handle cases where lend + 1 is not
|
|
* page aligned properly.
|
|
*/
|
|
void truncate_inode_pages_range(struct address_space *mapping,
|
|
loff_t lstart, loff_t lend)
|
|
{
|
|
pgoff_t start; /* inclusive */
|
|
pgoff_t end; /* exclusive */
|
|
unsigned int partial_start; /* inclusive */
|
|
unsigned int partial_end; /* exclusive */
|
|
struct pagevec pvec;
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
pgoff_t index;
|
|
int i;
|
|
|
|
if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
|
|
goto out;
|
|
|
|
/* Offsets within partial pages */
|
|
partial_start = lstart & (PAGE_SIZE - 1);
|
|
partial_end = (lend + 1) & (PAGE_SIZE - 1);
|
|
|
|
/*
|
|
* 'start' and 'end' always covers the range of pages to be fully
|
|
* truncated. Partial pages are covered with 'partial_start' at the
|
|
* start of the range and 'partial_end' at the end of the range.
|
|
* Note that 'end' is exclusive while 'lend' is inclusive.
|
|
*/
|
|
start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (lend == -1)
|
|
/*
|
|
* lend == -1 indicates end-of-file so we have to set 'end'
|
|
* to the highest possible pgoff_t and since the type is
|
|
* unsigned we're using -1.
|
|
*/
|
|
end = -1;
|
|
else
|
|
end = (lend + 1) >> PAGE_SHIFT;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
index = start;
|
|
while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE),
|
|
indices)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/* We rely upon deletion not changing page->index */
|
|
index = indices[i];
|
|
if (index >= end)
|
|
break;
|
|
|
|
if (radix_tree_exceptional_entry(page)) {
|
|
truncate_exceptional_entry(mapping, index,
|
|
page);
|
|
continue;
|
|
}
|
|
|
|
if (!trylock_page(page))
|
|
continue;
|
|
WARN_ON(page_to_index(page) != index);
|
|
if (PageWriteback(page)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
truncate_inode_page(mapping, page);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
index++;
|
|
}
|
|
|
|
if (partial_start) {
|
|
struct page *page = find_lock_page(mapping, start - 1);
|
|
if (page) {
|
|
unsigned int top = PAGE_SIZE;
|
|
if (start > end) {
|
|
/* Truncation within a single page */
|
|
top = partial_end;
|
|
partial_end = 0;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
zero_user_segment(page, partial_start, top);
|
|
cleancache_invalidate_page(mapping, page);
|
|
if (page_has_private(page))
|
|
do_invalidatepage(page, partial_start,
|
|
top - partial_start);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
}
|
|
if (partial_end) {
|
|
struct page *page = find_lock_page(mapping, end);
|
|
if (page) {
|
|
wait_on_page_writeback(page);
|
|
zero_user_segment(page, 0, partial_end);
|
|
cleancache_invalidate_page(mapping, page);
|
|
if (page_has_private(page))
|
|
do_invalidatepage(page, 0,
|
|
partial_end);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
}
|
|
/*
|
|
* If the truncation happened within a single page no pages
|
|
* will be released, just zeroed, so we can bail out now.
|
|
*/
|
|
if (start >= end)
|
|
goto out;
|
|
|
|
index = start;
|
|
for ( ; ; ) {
|
|
cond_resched();
|
|
if (!pagevec_lookup_entries(&pvec, mapping, index,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
|
|
/* If all gone from start onwards, we're done */
|
|
if (index == start)
|
|
break;
|
|
/* Otherwise restart to make sure all gone */
|
|
index = start;
|
|
continue;
|
|
}
|
|
if (index == start && indices[0] >= end) {
|
|
/* All gone out of hole to be punched, we're done */
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
break;
|
|
}
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/* We rely upon deletion not changing page->index */
|
|
index = indices[i];
|
|
if (index >= end) {
|
|
/* Restart punch to make sure all gone */
|
|
index = start - 1;
|
|
break;
|
|
}
|
|
|
|
if (radix_tree_exceptional_entry(page)) {
|
|
truncate_exceptional_entry(mapping, index,
|
|
page);
|
|
continue;
|
|
}
|
|
|
|
lock_page(page);
|
|
WARN_ON(page_to_index(page) != index);
|
|
wait_on_page_writeback(page);
|
|
truncate_inode_page(mapping, page);
|
|
unlock_page(page);
|
|
}
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
index++;
|
|
}
|
|
|
|
out:
|
|
cleancache_invalidate_inode(mapping);
|
|
}
|
|
EXPORT_SYMBOL(truncate_inode_pages_range);
|
|
|
|
/**
|
|
* truncate_inode_pages - truncate *all* the pages from an offset
|
|
* @mapping: mapping to truncate
|
|
* @lstart: offset from which to truncate
|
|
*
|
|
* Called under (and serialised by) inode->i_mutex.
|
|
*
|
|
* Note: When this function returns, there can be a page in the process of
|
|
* deletion (inside __delete_from_page_cache()) in the specified range. Thus
|
|
* mapping->nrpages can be non-zero when this function returns even after
|
|
* truncation of the whole mapping.
|
|
*/
|
|
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
|
|
{
|
|
truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
|
|
}
|
|
EXPORT_SYMBOL(truncate_inode_pages);
|
|
|
|
/**
|
|
* truncate_inode_pages_final - truncate *all* pages before inode dies
|
|
* @mapping: mapping to truncate
|
|
*
|
|
* Called under (and serialized by) inode->i_mutex.
|
|
*
|
|
* Filesystems have to use this in the .evict_inode path to inform the
|
|
* VM that this is the final truncate and the inode is going away.
|
|
*/
|
|
void truncate_inode_pages_final(struct address_space *mapping)
|
|
{
|
|
unsigned long nrexceptional;
|
|
unsigned long nrpages;
|
|
|
|
/*
|
|
* Page reclaim can not participate in regular inode lifetime
|
|
* management (can't call iput()) and thus can race with the
|
|
* inode teardown. Tell it when the address space is exiting,
|
|
* so that it does not install eviction information after the
|
|
* final truncate has begun.
|
|
*/
|
|
mapping_set_exiting(mapping);
|
|
|
|
/*
|
|
* When reclaim installs eviction entries, it increases
|
|
* nrexceptional first, then decreases nrpages. Make sure we see
|
|
* this in the right order or we might miss an entry.
|
|
*/
|
|
nrpages = mapping->nrpages;
|
|
smp_rmb();
|
|
nrexceptional = mapping->nrexceptional;
|
|
|
|
if (nrpages || nrexceptional) {
|
|
/*
|
|
* As truncation uses a lockless tree lookup, cycle
|
|
* the tree lock to make sure any ongoing tree
|
|
* modification that does not see AS_EXITING is
|
|
* completed before starting the final truncate.
|
|
*/
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
truncate_inode_pages(mapping, 0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(truncate_inode_pages_final);
|
|
|
|
/**
|
|
* invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
|
|
* @mapping: the address_space which holds the pages to invalidate
|
|
* @start: the offset 'from' which to invalidate
|
|
* @end: the offset 'to' which to invalidate (inclusive)
|
|
*
|
|
* This function only removes the unlocked pages, if you want to
|
|
* remove all the pages of one inode, you must call truncate_inode_pages.
|
|
*
|
|
* invalidate_mapping_pages() will not block on IO activity. It will not
|
|
* invalidate pages which are dirty, locked, under writeback or mapped into
|
|
* pagetables.
|
|
*/
|
|
unsigned long invalidate_mapping_pages(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end)
|
|
{
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
struct pagevec pvec;
|
|
pgoff_t index = start;
|
|
unsigned long ret;
|
|
unsigned long count = 0;
|
|
int i;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
|
|
indices)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/* We rely upon deletion not changing page->index */
|
|
index = indices[i];
|
|
if (index > end)
|
|
break;
|
|
|
|
if (radix_tree_exceptional_entry(page)) {
|
|
invalidate_exceptional_entry(mapping, index,
|
|
page);
|
|
continue;
|
|
}
|
|
|
|
if (!trylock_page(page))
|
|
continue;
|
|
|
|
WARN_ON(page_to_index(page) != index);
|
|
|
|
/* Middle of THP: skip */
|
|
if (PageTransTail(page)) {
|
|
unlock_page(page);
|
|
continue;
|
|
} else if (PageTransHuge(page)) {
|
|
index += HPAGE_PMD_NR - 1;
|
|
i += HPAGE_PMD_NR - 1;
|
|
/*
|
|
* 'end' is in the middle of THP. Don't
|
|
* invalidate the page as the part outside of
|
|
* 'end' could be still useful.
|
|
*/
|
|
if (index > end) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ret = invalidate_inode_page(page);
|
|
unlock_page(page);
|
|
/*
|
|
* Invalidation is a hint that the page is no longer
|
|
* of interest and try to speed up its reclaim.
|
|
*/
|
|
if (!ret)
|
|
deactivate_file_page(page);
|
|
count += ret;
|
|
}
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
index++;
|
|
}
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL(invalidate_mapping_pages);
|
|
|
|
/*
|
|
* This is like invalidate_complete_page(), except it ignores the page's
|
|
* refcount. We do this because invalidate_inode_pages2() needs stronger
|
|
* invalidation guarantees, and cannot afford to leave pages behind because
|
|
* shrink_page_list() has a temp ref on them, or because they're transiently
|
|
* sitting in the lru_cache_add() pagevecs.
|
|
*/
|
|
static int
|
|
invalidate_complete_page2(struct address_space *mapping, struct page *page)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (page->mapping != mapping)
|
|
return 0;
|
|
|
|
if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
if (PageDirty(page))
|
|
goto failed;
|
|
|
|
BUG_ON(page_has_private(page));
|
|
__delete_from_page_cache(page, NULL);
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
|
|
if (mapping->a_ops->freepage)
|
|
mapping->a_ops->freepage(page);
|
|
|
|
put_page(page); /* pagecache ref */
|
|
return 1;
|
|
failed:
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int do_launder_page(struct address_space *mapping, struct page *page)
|
|
{
|
|
if (!PageDirty(page))
|
|
return 0;
|
|
if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
|
|
return 0;
|
|
return mapping->a_ops->launder_page(page);
|
|
}
|
|
|
|
/**
|
|
* invalidate_inode_pages2_range - remove range of pages from an address_space
|
|
* @mapping: the address_space
|
|
* @start: the page offset 'from' which to invalidate
|
|
* @end: the page offset 'to' which to invalidate (inclusive)
|
|
*
|
|
* Any pages which are found to be mapped into pagetables are unmapped prior to
|
|
* invalidation.
|
|
*
|
|
* Returns -EBUSY if any pages could not be invalidated.
|
|
*/
|
|
int invalidate_inode_pages2_range(struct address_space *mapping,
|
|
pgoff_t start, pgoff_t end)
|
|
{
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
struct pagevec pvec;
|
|
pgoff_t index;
|
|
int i;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
int did_range_unmap = 0;
|
|
|
|
if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
|
|
goto out;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
index = start;
|
|
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
|
|
indices)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/* We rely upon deletion not changing page->index */
|
|
index = indices[i];
|
|
if (index > end)
|
|
break;
|
|
|
|
if (radix_tree_exceptional_entry(page)) {
|
|
if (!invalidate_exceptional_entry2(mapping,
|
|
index, page))
|
|
ret = -EBUSY;
|
|
continue;
|
|
}
|
|
|
|
lock_page(page);
|
|
WARN_ON(page_to_index(page) != index);
|
|
if (page->mapping != mapping) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
if (page_mapped(page)) {
|
|
if (!did_range_unmap) {
|
|
/*
|
|
* Zap the rest of the file in one hit.
|
|
*/
|
|
unmap_mapping_range(mapping,
|
|
(loff_t)index << PAGE_SHIFT,
|
|
(loff_t)(1 + end - index)
|
|
<< PAGE_SHIFT,
|
|
0);
|
|
did_range_unmap = 1;
|
|
} else {
|
|
/*
|
|
* Just zap this page
|
|
*/
|
|
unmap_mapping_range(mapping,
|
|
(loff_t)index << PAGE_SHIFT,
|
|
PAGE_SIZE, 0);
|
|
}
|
|
}
|
|
BUG_ON(page_mapped(page));
|
|
ret2 = do_launder_page(mapping, page);
|
|
if (ret2 == 0) {
|
|
if (!invalidate_complete_page2(mapping, page))
|
|
ret2 = -EBUSY;
|
|
}
|
|
if (ret2 < 0)
|
|
ret = ret2;
|
|
unlock_page(page);
|
|
}
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
index++;
|
|
}
|
|
/*
|
|
* For DAX we invalidate page tables after invalidating radix tree. We
|
|
* could invalidate page tables while invalidating each entry however
|
|
* that would be expensive. And doing range unmapping before doesn't
|
|
* work as we have no cheap way to find whether radix tree entry didn't
|
|
* get remapped later.
|
|
*/
|
|
if (dax_mapping(mapping)) {
|
|
unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
|
|
(loff_t)(end - start + 1) << PAGE_SHIFT, 0);
|
|
}
|
|
out:
|
|
cleancache_invalidate_inode(mapping);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
|
|
|
|
/**
|
|
* invalidate_inode_pages2 - remove all pages from an address_space
|
|
* @mapping: the address_space
|
|
*
|
|
* Any pages which are found to be mapped into pagetables are unmapped prior to
|
|
* invalidation.
|
|
*
|
|
* Returns -EBUSY if any pages could not be invalidated.
|
|
*/
|
|
int invalidate_inode_pages2(struct address_space *mapping)
|
|
{
|
|
return invalidate_inode_pages2_range(mapping, 0, -1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
|
|
|
|
/**
|
|
* truncate_pagecache - unmap and remove pagecache that has been truncated
|
|
* @inode: inode
|
|
* @newsize: new file size
|
|
*
|
|
* inode's new i_size must already be written before truncate_pagecache
|
|
* is called.
|
|
*
|
|
* This function should typically be called before the filesystem
|
|
* releases resources associated with the freed range (eg. deallocates
|
|
* blocks). This way, pagecache will always stay logically coherent
|
|
* with on-disk format, and the filesystem would not have to deal with
|
|
* situations such as writepage being called for a page that has already
|
|
* had its underlying blocks deallocated.
|
|
*/
|
|
void truncate_pagecache(struct inode *inode, loff_t newsize)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
loff_t holebegin = round_up(newsize, PAGE_SIZE);
|
|
|
|
/*
|
|
* unmap_mapping_range is called twice, first simply for
|
|
* efficiency so that truncate_inode_pages does fewer
|
|
* single-page unmaps. However after this first call, and
|
|
* before truncate_inode_pages finishes, it is possible for
|
|
* private pages to be COWed, which remain after
|
|
* truncate_inode_pages finishes, hence the second
|
|
* unmap_mapping_range call must be made for correctness.
|
|
*/
|
|
unmap_mapping_range(mapping, holebegin, 0, 1);
|
|
truncate_inode_pages(mapping, newsize);
|
|
unmap_mapping_range(mapping, holebegin, 0, 1);
|
|
}
|
|
EXPORT_SYMBOL(truncate_pagecache);
|
|
|
|
/**
|
|
* truncate_setsize - update inode and pagecache for a new file size
|
|
* @inode: inode
|
|
* @newsize: new file size
|
|
*
|
|
* truncate_setsize updates i_size and performs pagecache truncation (if
|
|
* necessary) to @newsize. It will be typically be called from the filesystem's
|
|
* setattr function when ATTR_SIZE is passed in.
|
|
*
|
|
* Must be called with a lock serializing truncates and writes (generally
|
|
* i_mutex but e.g. xfs uses a different lock) and before all filesystem
|
|
* specific block truncation has been performed.
|
|
*/
|
|
void truncate_setsize(struct inode *inode, loff_t newsize)
|
|
{
|
|
loff_t oldsize = inode->i_size;
|
|
|
|
i_size_write(inode, newsize);
|
|
if (newsize > oldsize)
|
|
pagecache_isize_extended(inode, oldsize, newsize);
|
|
truncate_pagecache(inode, newsize);
|
|
}
|
|
EXPORT_SYMBOL(truncate_setsize);
|
|
|
|
/**
|
|
* pagecache_isize_extended - update pagecache after extension of i_size
|
|
* @inode: inode for which i_size was extended
|
|
* @from: original inode size
|
|
* @to: new inode size
|
|
*
|
|
* Handle extension of inode size either caused by extending truncate or by
|
|
* write starting after current i_size. We mark the page straddling current
|
|
* i_size RO so that page_mkwrite() is called on the nearest write access to
|
|
* the page. This way filesystem can be sure that page_mkwrite() is called on
|
|
* the page before user writes to the page via mmap after the i_size has been
|
|
* changed.
|
|
*
|
|
* The function must be called after i_size is updated so that page fault
|
|
* coming after we unlock the page will already see the new i_size.
|
|
* The function must be called while we still hold i_mutex - this not only
|
|
* makes sure i_size is stable but also that userspace cannot observe new
|
|
* i_size value before we are prepared to store mmap writes at new inode size.
|
|
*/
|
|
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
|
|
{
|
|
int bsize = i_blocksize(inode);
|
|
loff_t rounded_from;
|
|
struct page *page;
|
|
pgoff_t index;
|
|
|
|
WARN_ON(to > inode->i_size);
|
|
|
|
if (from >= to || bsize == PAGE_SIZE)
|
|
return;
|
|
/* Page straddling @from will not have any hole block created? */
|
|
rounded_from = round_up(from, bsize);
|
|
if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
|
|
return;
|
|
|
|
index = from >> PAGE_SHIFT;
|
|
page = find_lock_page(inode->i_mapping, index);
|
|
/* Page not cached? Nothing to do */
|
|
if (!page)
|
|
return;
|
|
/*
|
|
* See clear_page_dirty_for_io() for details why set_page_dirty()
|
|
* is needed.
|
|
*/
|
|
if (page_mkclean(page))
|
|
set_page_dirty(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
EXPORT_SYMBOL(pagecache_isize_extended);
|
|
|
|
/**
|
|
* truncate_pagecache_range - unmap and remove pagecache that is hole-punched
|
|
* @inode: inode
|
|
* @lstart: offset of beginning of hole
|
|
* @lend: offset of last byte of hole
|
|
*
|
|
* This function should typically be called before the filesystem
|
|
* releases resources associated with the freed range (eg. deallocates
|
|
* blocks). This way, pagecache will always stay logically coherent
|
|
* with on-disk format, and the filesystem would not have to deal with
|
|
* situations such as writepage being called for a page that has already
|
|
* had its underlying blocks deallocated.
|
|
*/
|
|
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
loff_t unmap_start = round_up(lstart, PAGE_SIZE);
|
|
loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
|
|
/*
|
|
* This rounding is currently just for example: unmap_mapping_range
|
|
* expands its hole outwards, whereas we want it to contract the hole
|
|
* inwards. However, existing callers of truncate_pagecache_range are
|
|
* doing their own page rounding first. Note that unmap_mapping_range
|
|
* allows holelen 0 for all, and we allow lend -1 for end of file.
|
|
*/
|
|
|
|
/*
|
|
* Unlike in truncate_pagecache, unmap_mapping_range is called only
|
|
* once (before truncating pagecache), and without "even_cows" flag:
|
|
* hole-punching should not remove private COWed pages from the hole.
|
|
*/
|
|
if ((u64)unmap_end > (u64)unmap_start)
|
|
unmap_mapping_range(mapping, unmap_start,
|
|
1 + unmap_end - unmap_start, 0);
|
|
truncate_inode_pages_range(mapping, lstart, lend);
|
|
}
|
|
EXPORT_SYMBOL(truncate_pagecache_range);
|