mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
2040fce83f
Previous mkfs.f2fs allows small partition inappropriately, so f2fs should detect that as well. Refer this in f2fs-tools. mkfs.f2fs: detect small partition by overprovision ratio and # of segments Reported-and-Tested-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
740 lines
22 KiB
C
740 lines
22 KiB
C
/*
|
|
* fs/f2fs/segment.h
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
|
|
/* constant macro */
|
|
#define NULL_SEGNO ((unsigned int)(~0))
|
|
#define NULL_SECNO ((unsigned int)(~0))
|
|
|
|
#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
|
|
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
|
|
|
|
#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
|
|
|
|
/* L: Logical segment # in volume, R: Relative segment # in main area */
|
|
#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
|
|
#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
|
|
|
|
#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
|
|
#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
|
|
|
|
#define IS_CURSEG(sbi, seg) \
|
|
((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
|
|
(seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
|
|
(seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
|
|
(seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
|
|
(seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
|
|
(seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
|
|
|
|
#define IS_CURSEC(sbi, secno) \
|
|
((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
|
|
sbi->segs_per_sec) || \
|
|
(secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
|
|
sbi->segs_per_sec) || \
|
|
(secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
|
|
sbi->segs_per_sec) || \
|
|
(secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
|
|
sbi->segs_per_sec) || \
|
|
(secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
|
|
sbi->segs_per_sec) || \
|
|
(secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
|
|
sbi->segs_per_sec)) \
|
|
|
|
#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
|
|
#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
|
|
|
|
#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
|
|
#define MAIN_SECS(sbi) (sbi->total_sections)
|
|
|
|
#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
|
|
#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
|
|
|
|
#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
|
|
#define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
|
|
sbi->log_blocks_per_seg))
|
|
|
|
#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
|
|
(GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
|
|
|
|
#define NEXT_FREE_BLKADDR(sbi, curseg) \
|
|
(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
|
|
|
|
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
|
|
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
|
|
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
|
|
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
|
|
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
|
|
|
|
#define GET_SEGNO(sbi, blk_addr) \
|
|
(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
|
|
NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
|
|
GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
|
|
#define GET_SECNO(sbi, segno) \
|
|
((segno) / sbi->segs_per_sec)
|
|
#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
|
|
((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
|
|
|
|
#define GET_SUM_BLOCK(sbi, segno) \
|
|
((sbi->sm_info->ssa_blkaddr) + segno)
|
|
|
|
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
|
|
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
|
|
|
|
#define SIT_ENTRY_OFFSET(sit_i, segno) \
|
|
(segno % sit_i->sents_per_block)
|
|
#define SIT_BLOCK_OFFSET(segno) \
|
|
(segno / SIT_ENTRY_PER_BLOCK)
|
|
#define START_SEGNO(segno) \
|
|
(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
|
|
#define SIT_BLK_CNT(sbi) \
|
|
((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
|
|
#define f2fs_bitmap_size(nr) \
|
|
(BITS_TO_LONGS(nr) * sizeof(unsigned long))
|
|
|
|
#define SECTOR_FROM_BLOCK(blk_addr) \
|
|
(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
|
|
#define SECTOR_TO_BLOCK(sectors) \
|
|
(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
|
|
|
|
/*
|
|
* indicate a block allocation direction: RIGHT and LEFT.
|
|
* RIGHT means allocating new sections towards the end of volume.
|
|
* LEFT means the opposite direction.
|
|
*/
|
|
enum {
|
|
ALLOC_RIGHT = 0,
|
|
ALLOC_LEFT
|
|
};
|
|
|
|
/*
|
|
* In the victim_sel_policy->alloc_mode, there are two block allocation modes.
|
|
* LFS writes data sequentially with cleaning operations.
|
|
* SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
|
|
*/
|
|
enum {
|
|
LFS = 0,
|
|
SSR
|
|
};
|
|
|
|
/*
|
|
* In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
|
|
* GC_CB is based on cost-benefit algorithm.
|
|
* GC_GREEDY is based on greedy algorithm.
|
|
*/
|
|
enum {
|
|
GC_CB = 0,
|
|
GC_GREEDY
|
|
};
|
|
|
|
/*
|
|
* BG_GC means the background cleaning job.
|
|
* FG_GC means the on-demand cleaning job.
|
|
* FORCE_FG_GC means on-demand cleaning job in background.
|
|
*/
|
|
enum {
|
|
BG_GC = 0,
|
|
FG_GC,
|
|
FORCE_FG_GC,
|
|
};
|
|
|
|
/* for a function parameter to select a victim segment */
|
|
struct victim_sel_policy {
|
|
int alloc_mode; /* LFS or SSR */
|
|
int gc_mode; /* GC_CB or GC_GREEDY */
|
|
unsigned long *dirty_segmap; /* dirty segment bitmap */
|
|
unsigned int max_search; /* maximum # of segments to search */
|
|
unsigned int offset; /* last scanned bitmap offset */
|
|
unsigned int ofs_unit; /* bitmap search unit */
|
|
unsigned int min_cost; /* minimum cost */
|
|
unsigned int min_segno; /* segment # having min. cost */
|
|
};
|
|
|
|
struct seg_entry {
|
|
unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
|
|
unsigned int valid_blocks:10; /* # of valid blocks */
|
|
unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
|
|
unsigned int padding:6; /* padding */
|
|
unsigned char *cur_valid_map; /* validity bitmap of blocks */
|
|
/*
|
|
* # of valid blocks and the validity bitmap stored in the the last
|
|
* checkpoint pack. This information is used by the SSR mode.
|
|
*/
|
|
unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
|
|
unsigned char *discard_map;
|
|
unsigned long long mtime; /* modification time of the segment */
|
|
};
|
|
|
|
struct sec_entry {
|
|
unsigned int valid_blocks; /* # of valid blocks in a section */
|
|
};
|
|
|
|
struct segment_allocation {
|
|
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
|
|
};
|
|
|
|
/*
|
|
* this value is set in page as a private data which indicate that
|
|
* the page is atomically written, and it is in inmem_pages list.
|
|
*/
|
|
#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
|
|
|
|
#define IS_ATOMIC_WRITTEN_PAGE(page) \
|
|
(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
|
|
|
|
struct inmem_pages {
|
|
struct list_head list;
|
|
struct page *page;
|
|
block_t old_addr; /* for revoking when fail to commit */
|
|
};
|
|
|
|
struct sit_info {
|
|
const struct segment_allocation *s_ops;
|
|
|
|
block_t sit_base_addr; /* start block address of SIT area */
|
|
block_t sit_blocks; /* # of blocks used by SIT area */
|
|
block_t written_valid_blocks; /* # of valid blocks in main area */
|
|
char *sit_bitmap; /* SIT bitmap pointer */
|
|
unsigned int bitmap_size; /* SIT bitmap size */
|
|
|
|
unsigned long *tmp_map; /* bitmap for temporal use */
|
|
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
|
|
unsigned int dirty_sentries; /* # of dirty sentries */
|
|
unsigned int sents_per_block; /* # of SIT entries per block */
|
|
struct mutex sentry_lock; /* to protect SIT cache */
|
|
struct seg_entry *sentries; /* SIT segment-level cache */
|
|
struct sec_entry *sec_entries; /* SIT section-level cache */
|
|
|
|
/* for cost-benefit algorithm in cleaning procedure */
|
|
unsigned long long elapsed_time; /* elapsed time after mount */
|
|
unsigned long long mounted_time; /* mount time */
|
|
unsigned long long min_mtime; /* min. modification time */
|
|
unsigned long long max_mtime; /* max. modification time */
|
|
};
|
|
|
|
struct free_segmap_info {
|
|
unsigned int start_segno; /* start segment number logically */
|
|
unsigned int free_segments; /* # of free segments */
|
|
unsigned int free_sections; /* # of free sections */
|
|
spinlock_t segmap_lock; /* free segmap lock */
|
|
unsigned long *free_segmap; /* free segment bitmap */
|
|
unsigned long *free_secmap; /* free section bitmap */
|
|
};
|
|
|
|
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
|
|
enum dirty_type {
|
|
DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
|
|
DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
|
|
DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
|
|
DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
|
|
DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
|
|
DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
|
|
DIRTY, /* to count # of dirty segments */
|
|
PRE, /* to count # of entirely obsolete segments */
|
|
NR_DIRTY_TYPE
|
|
};
|
|
|
|
struct dirty_seglist_info {
|
|
const struct victim_selection *v_ops; /* victim selction operation */
|
|
unsigned long *dirty_segmap[NR_DIRTY_TYPE];
|
|
struct mutex seglist_lock; /* lock for segment bitmaps */
|
|
int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
|
|
unsigned long *victim_secmap; /* background GC victims */
|
|
};
|
|
|
|
/* victim selection function for cleaning and SSR */
|
|
struct victim_selection {
|
|
int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
|
|
int, int, char);
|
|
};
|
|
|
|
/* for active log information */
|
|
struct curseg_info {
|
|
struct mutex curseg_mutex; /* lock for consistency */
|
|
struct f2fs_summary_block *sum_blk; /* cached summary block */
|
|
struct rw_semaphore journal_rwsem; /* protect journal area */
|
|
struct f2fs_journal *journal; /* cached journal info */
|
|
unsigned char alloc_type; /* current allocation type */
|
|
unsigned int segno; /* current segment number */
|
|
unsigned short next_blkoff; /* next block offset to write */
|
|
unsigned int zone; /* current zone number */
|
|
unsigned int next_segno; /* preallocated segment */
|
|
};
|
|
|
|
struct sit_entry_set {
|
|
struct list_head set_list; /* link with all sit sets */
|
|
unsigned int start_segno; /* start segno of sits in set */
|
|
unsigned int entry_cnt; /* the # of sit entries in set */
|
|
};
|
|
|
|
/*
|
|
* inline functions
|
|
*/
|
|
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
|
|
}
|
|
|
|
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
return &sit_i->sentries[segno];
|
|
}
|
|
|
|
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
|
|
}
|
|
|
|
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, int section)
|
|
{
|
|
/*
|
|
* In order to get # of valid blocks in a section instantly from many
|
|
* segments, f2fs manages two counting structures separately.
|
|
*/
|
|
if (section > 1)
|
|
return get_sec_entry(sbi, segno)->valid_blocks;
|
|
else
|
|
return get_seg_entry(sbi, segno)->valid_blocks;
|
|
}
|
|
|
|
static inline void seg_info_from_raw_sit(struct seg_entry *se,
|
|
struct f2fs_sit_entry *rs)
|
|
{
|
|
se->valid_blocks = GET_SIT_VBLOCKS(rs);
|
|
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
|
|
memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
se->type = GET_SIT_TYPE(rs);
|
|
se->mtime = le64_to_cpu(rs->mtime);
|
|
}
|
|
|
|
static inline void seg_info_to_raw_sit(struct seg_entry *se,
|
|
struct f2fs_sit_entry *rs)
|
|
{
|
|
unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
|
|
se->valid_blocks;
|
|
rs->vblocks = cpu_to_le16(raw_vblocks);
|
|
memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
se->ckpt_valid_blocks = se->valid_blocks;
|
|
rs->mtime = cpu_to_le64(se->mtime);
|
|
}
|
|
|
|
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
|
|
unsigned int max, unsigned int segno)
|
|
{
|
|
unsigned int ret;
|
|
spin_lock(&free_i->segmap_lock);
|
|
ret = find_next_bit(free_i->free_segmap, max, segno);
|
|
spin_unlock(&free_i->segmap_lock);
|
|
return ret;
|
|
}
|
|
|
|
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = segno / sbi->segs_per_sec;
|
|
unsigned int start_segno = secno * sbi->segs_per_sec;
|
|
unsigned int next;
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
clear_bit(segno, free_i->free_segmap);
|
|
free_i->free_segments++;
|
|
|
|
next = find_next_bit(free_i->free_segmap,
|
|
start_segno + sbi->segs_per_sec, start_segno);
|
|
if (next >= start_segno + sbi->segs_per_sec) {
|
|
clear_bit(secno, free_i->free_secmap);
|
|
free_i->free_sections++;
|
|
}
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void __set_inuse(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = segno / sbi->segs_per_sec;
|
|
set_bit(segno, free_i->free_segmap);
|
|
free_i->free_segments--;
|
|
if (!test_and_set_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections--;
|
|
}
|
|
|
|
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = segno / sbi->segs_per_sec;
|
|
unsigned int start_segno = secno * sbi->segs_per_sec;
|
|
unsigned int next;
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
if (test_and_clear_bit(segno, free_i->free_segmap)) {
|
|
free_i->free_segments++;
|
|
|
|
next = find_next_bit(free_i->free_segmap,
|
|
start_segno + sbi->segs_per_sec, start_segno);
|
|
if (next >= start_segno + sbi->segs_per_sec) {
|
|
if (test_and_clear_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections++;
|
|
}
|
|
}
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = segno / sbi->segs_per_sec;
|
|
spin_lock(&free_i->segmap_lock);
|
|
if (!test_and_set_bit(segno, free_i->free_segmap)) {
|
|
free_i->free_segments--;
|
|
if (!test_and_set_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections--;
|
|
}
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
|
|
void *dst_addr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
|
|
}
|
|
|
|
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SIT_I(sbi)->written_valid_blocks;
|
|
}
|
|
|
|
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return FREE_I(sbi)->free_segments;
|
|
}
|
|
|
|
static inline int reserved_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SM_I(sbi)->reserved_segments;
|
|
}
|
|
|
|
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
|
|
{
|
|
return FREE_I(sbi)->free_sections;
|
|
}
|
|
|
|
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return DIRTY_I(sbi)->nr_dirty[PRE];
|
|
}
|
|
|
|
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
|
|
}
|
|
|
|
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SM_I(sbi)->ovp_segments;
|
|
}
|
|
|
|
static inline int overprovision_sections(struct f2fs_sb_info *sbi)
|
|
{
|
|
return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
|
|
}
|
|
|
|
static inline int reserved_sections(struct f2fs_sb_info *sbi)
|
|
{
|
|
return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
|
|
}
|
|
|
|
static inline bool need_SSR(struct f2fs_sb_info *sbi)
|
|
{
|
|
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
|
|
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
|
|
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
if (test_opt(sbi, LFS))
|
|
return false;
|
|
|
|
return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
|
|
reserved_sections(sbi) + 1);
|
|
}
|
|
|
|
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
|
|
int freed, int needed)
|
|
{
|
|
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
|
|
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
|
|
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
return false;
|
|
|
|
return (free_sections(sbi) + freed) <=
|
|
(node_secs + 2 * dent_secs + imeta_secs +
|
|
reserved_sections(sbi) + needed);
|
|
}
|
|
|
|
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
|
|
{
|
|
return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
|
|
}
|
|
|
|
static inline int utilization(struct f2fs_sb_info *sbi)
|
|
{
|
|
return div_u64((u64)valid_user_blocks(sbi) * 100,
|
|
sbi->user_block_count);
|
|
}
|
|
|
|
/*
|
|
* Sometimes f2fs may be better to drop out-of-place update policy.
|
|
* And, users can control the policy through sysfs entries.
|
|
* There are five policies with triggering conditions as follows.
|
|
* F2FS_IPU_FORCE - all the time,
|
|
* F2FS_IPU_SSR - if SSR mode is activated,
|
|
* F2FS_IPU_UTIL - if FS utilization is over threashold,
|
|
* F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
|
|
* threashold,
|
|
* F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
|
|
* storages. IPU will be triggered only if the # of dirty
|
|
* pages over min_fsync_blocks.
|
|
* F2FS_IPUT_DISABLE - disable IPU. (=default option)
|
|
*/
|
|
#define DEF_MIN_IPU_UTIL 70
|
|
#define DEF_MIN_FSYNC_BLOCKS 8
|
|
|
|
enum {
|
|
F2FS_IPU_FORCE,
|
|
F2FS_IPU_SSR,
|
|
F2FS_IPU_UTIL,
|
|
F2FS_IPU_SSR_UTIL,
|
|
F2FS_IPU_FSYNC,
|
|
};
|
|
|
|
static inline bool need_inplace_update(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int policy = SM_I(sbi)->ipu_policy;
|
|
|
|
/* IPU can be done only for the user data */
|
|
if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
|
|
return false;
|
|
|
|
if (test_opt(sbi, LFS))
|
|
return false;
|
|
|
|
if (policy & (0x1 << F2FS_IPU_FORCE))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_UTIL) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
|
|
utilization(sbi) > SM_I(sbi)->min_ipu_util)
|
|
return true;
|
|
|
|
/* this is only set during fdatasync */
|
|
if (policy & (0x1 << F2FS_IPU_FSYNC) &&
|
|
is_inode_flag_set(inode, FI_NEED_IPU))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
|
|
int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->segno;
|
|
}
|
|
|
|
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
|
|
int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->alloc_type;
|
|
}
|
|
|
|
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->next_blkoff;
|
|
}
|
|
|
|
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
|
|
}
|
|
|
|
static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
|
|
{
|
|
BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
|
|
|| blk_addr >= MAX_BLKADDR(sbi));
|
|
}
|
|
|
|
/*
|
|
* Summary block is always treated as an invalid block
|
|
*/
|
|
static inline void check_block_count(struct f2fs_sb_info *sbi,
|
|
int segno, struct f2fs_sit_entry *raw_sit)
|
|
{
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
|
|
int valid_blocks = 0;
|
|
int cur_pos = 0, next_pos;
|
|
|
|
/* check bitmap with valid block count */
|
|
do {
|
|
if (is_valid) {
|
|
next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
|
|
sbi->blocks_per_seg,
|
|
cur_pos);
|
|
valid_blocks += next_pos - cur_pos;
|
|
} else
|
|
next_pos = find_next_bit_le(&raw_sit->valid_map,
|
|
sbi->blocks_per_seg,
|
|
cur_pos);
|
|
cur_pos = next_pos;
|
|
is_valid = !is_valid;
|
|
} while (cur_pos < sbi->blocks_per_seg);
|
|
BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
|
|
#endif
|
|
/* check segment usage, and check boundary of a given segment number */
|
|
f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
|
|
|| segno > TOTAL_SEGS(sbi) - 1);
|
|
}
|
|
|
|
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
|
|
unsigned int start)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int offset = SIT_BLOCK_OFFSET(start);
|
|
block_t blk_addr = sit_i->sit_base_addr + offset;
|
|
|
|
check_seg_range(sbi, start);
|
|
|
|
/* calculate sit block address */
|
|
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
|
|
blk_addr += sit_i->sit_blocks;
|
|
|
|
return blk_addr;
|
|
}
|
|
|
|
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
|
|
pgoff_t block_addr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
block_addr -= sit_i->sit_base_addr;
|
|
if (block_addr < sit_i->sit_blocks)
|
|
block_addr += sit_i->sit_blocks;
|
|
else
|
|
block_addr -= sit_i->sit_blocks;
|
|
|
|
return block_addr + sit_i->sit_base_addr;
|
|
}
|
|
|
|
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
|
|
{
|
|
unsigned int block_off = SIT_BLOCK_OFFSET(start);
|
|
|
|
f2fs_change_bit(block_off, sit_i->sit_bitmap);
|
|
}
|
|
|
|
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
|
|
sit_i->mounted_time;
|
|
}
|
|
|
|
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
|
|
unsigned int ofs_in_node, unsigned char version)
|
|
{
|
|
sum->nid = cpu_to_le32(nid);
|
|
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
|
|
sum->version = version;
|
|
}
|
|
|
|
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
|
|
{
|
|
return __start_cp_addr(sbi) +
|
|
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
|
|
}
|
|
|
|
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
|
|
{
|
|
return __start_cp_addr(sbi) +
|
|
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
|
|
- (base + 1) + type;
|
|
}
|
|
|
|
static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
|
|
{
|
|
if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* It is very important to gather dirty pages and write at once, so that we can
|
|
* submit a big bio without interfering other data writes.
|
|
* By default, 512 pages for directory data,
|
|
* 512 pages (2MB) * 3 for three types of nodes, and
|
|
* max_bio_blocks for meta are set.
|
|
*/
|
|
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
if (sbi->sb->s_bdi->wb.dirty_exceeded)
|
|
return 0;
|
|
|
|
if (type == DATA)
|
|
return sbi->blocks_per_seg;
|
|
else if (type == NODE)
|
|
return 8 * sbi->blocks_per_seg;
|
|
else if (type == META)
|
|
return 8 * BIO_MAX_PAGES;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When writing pages, it'd better align nr_to_write for segment size.
|
|
*/
|
|
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
|
|
struct writeback_control *wbc)
|
|
{
|
|
long nr_to_write, desired;
|
|
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
nr_to_write = wbc->nr_to_write;
|
|
desired = BIO_MAX_PAGES;
|
|
if (type == NODE)
|
|
desired <<= 1;
|
|
|
|
wbc->nr_to_write = desired;
|
|
return desired - nr_to_write;
|
|
}
|