2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
linux-next/kernel/smp.c
Josh Poimboeuf b284909aba cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
With the following commit:

  73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")

... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled.  However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.

The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case.  So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.

Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:

  1) /sys/devices/system/cpu/smt/control showed "on" instead of
     "notsupported"; and

  2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.

I'd propose that we instead consider #1 above to not actually be a
problem.  Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later.  So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).

The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.

So fix it by:

  a) reverting the original "fix" and its followup fix:

     73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
     bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")

     and

  b) changing vmx_vm_init() to query the actual current SMT state --
     instead of the sysfs control value -- to determine whether the L1TF
     warning is needed.  This also requires the 'sched_smt_present'
     variable to exported, instead of 'cpu_smt_control'.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
2019-01-30 19:27:00 +01:00

807 lines
22 KiB
C

/*
* Generic helpers for smp ipi calls
*
* (C) Jens Axboe <jens.axboe@oracle.com> 2008
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/irq_work.h>
#include <linux/rcupdate.h>
#include <linux/rculist.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sched/idle.h>
#include <linux/hypervisor.h>
#include "smpboot.h"
enum {
CSD_FLAG_LOCK = 0x01,
CSD_FLAG_SYNCHRONOUS = 0x02,
};
struct call_function_data {
call_single_data_t __percpu *csd;
cpumask_var_t cpumask;
cpumask_var_t cpumask_ipi;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
static void flush_smp_call_function_queue(bool warn_cpu_offline);
int smpcfd_prepare_cpu(unsigned int cpu)
{
struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
cpu_to_node(cpu)))
return -ENOMEM;
if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
cpu_to_node(cpu))) {
free_cpumask_var(cfd->cpumask);
return -ENOMEM;
}
cfd->csd = alloc_percpu(call_single_data_t);
if (!cfd->csd) {
free_cpumask_var(cfd->cpumask);
free_cpumask_var(cfd->cpumask_ipi);
return -ENOMEM;
}
return 0;
}
int smpcfd_dead_cpu(unsigned int cpu)
{
struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
free_cpumask_var(cfd->cpumask);
free_cpumask_var(cfd->cpumask_ipi);
free_percpu(cfd->csd);
return 0;
}
int smpcfd_dying_cpu(unsigned int cpu)
{
/*
* The IPIs for the smp-call-function callbacks queued by other
* CPUs might arrive late, either due to hardware latencies or
* because this CPU disabled interrupts (inside stop-machine)
* before the IPIs were sent. So flush out any pending callbacks
* explicitly (without waiting for the IPIs to arrive), to
* ensure that the outgoing CPU doesn't go offline with work
* still pending.
*/
flush_smp_call_function_queue(false);
return 0;
}
void __init call_function_init(void)
{
int i;
for_each_possible_cpu(i)
init_llist_head(&per_cpu(call_single_queue, i));
smpcfd_prepare_cpu(smp_processor_id());
}
/*
* csd_lock/csd_unlock used to serialize access to per-cpu csd resources
*
* For non-synchronous ipi calls the csd can still be in use by the
* previous function call. For multi-cpu calls its even more interesting
* as we'll have to ensure no other cpu is observing our csd.
*/
static __always_inline void csd_lock_wait(call_single_data_t *csd)
{
smp_cond_load_acquire(&csd->flags, !(VAL & CSD_FLAG_LOCK));
}
static __always_inline void csd_lock(call_single_data_t *csd)
{
csd_lock_wait(csd);
csd->flags |= CSD_FLAG_LOCK;
/*
* prevent CPU from reordering the above assignment
* to ->flags with any subsequent assignments to other
* fields of the specified call_single_data_t structure:
*/
smp_wmb();
}
static __always_inline void csd_unlock(call_single_data_t *csd)
{
WARN_ON(!(csd->flags & CSD_FLAG_LOCK));
/*
* ensure we're all done before releasing data:
*/
smp_store_release(&csd->flags, 0);
}
static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
/*
* Insert a previously allocated call_single_data_t element
* for execution on the given CPU. data must already have
* ->func, ->info, and ->flags set.
*/
static int generic_exec_single(int cpu, call_single_data_t *csd,
smp_call_func_t func, void *info)
{
if (cpu == smp_processor_id()) {
unsigned long flags;
/*
* We can unlock early even for the synchronous on-stack case,
* since we're doing this from the same CPU..
*/
csd_unlock(csd);
local_irq_save(flags);
func(info);
local_irq_restore(flags);
return 0;
}
if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
csd_unlock(csd);
return -ENXIO;
}
csd->func = func;
csd->info = info;
/*
* The list addition should be visible before sending the IPI
* handler locks the list to pull the entry off it because of
* normal cache coherency rules implied by spinlocks.
*
* If IPIs can go out of order to the cache coherency protocol
* in an architecture, sufficient synchronisation should be added
* to arch code to make it appear to obey cache coherency WRT
* locking and barrier primitives. Generic code isn't really
* equipped to do the right thing...
*/
if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
arch_send_call_function_single_ipi(cpu);
return 0;
}
/**
* generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
*
* Invoked by arch to handle an IPI for call function single.
* Must be called with interrupts disabled.
*/
void generic_smp_call_function_single_interrupt(void)
{
flush_smp_call_function_queue(true);
}
/**
* flush_smp_call_function_queue - Flush pending smp-call-function callbacks
*
* @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
* offline CPU. Skip this check if set to 'false'.
*
* Flush any pending smp-call-function callbacks queued on this CPU. This is
* invoked by the generic IPI handler, as well as by a CPU about to go offline,
* to ensure that all pending IPI callbacks are run before it goes completely
* offline.
*
* Loop through the call_single_queue and run all the queued callbacks.
* Must be called with interrupts disabled.
*/
static void flush_smp_call_function_queue(bool warn_cpu_offline)
{
struct llist_head *head;
struct llist_node *entry;
call_single_data_t *csd, *csd_next;
static bool warned;
lockdep_assert_irqs_disabled();
head = this_cpu_ptr(&call_single_queue);
entry = llist_del_all(head);
entry = llist_reverse_order(entry);
/* There shouldn't be any pending callbacks on an offline CPU. */
if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
!warned && !llist_empty(head))) {
warned = true;
WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
/*
* We don't have to use the _safe() variant here
* because we are not invoking the IPI handlers yet.
*/
llist_for_each_entry(csd, entry, llist)
pr_warn("IPI callback %pS sent to offline CPU\n",
csd->func);
}
llist_for_each_entry_safe(csd, csd_next, entry, llist) {
smp_call_func_t func = csd->func;
void *info = csd->info;
/* Do we wait until *after* callback? */
if (csd->flags & CSD_FLAG_SYNCHRONOUS) {
func(info);
csd_unlock(csd);
} else {
csd_unlock(csd);
func(info);
}
}
/*
* Handle irq works queued remotely by irq_work_queue_on().
* Smp functions above are typically synchronous so they
* better run first since some other CPUs may be busy waiting
* for them.
*/
irq_work_run();
}
/*
* smp_call_function_single - Run a function on a specific CPU
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait until function has completed on other CPUs.
*
* Returns 0 on success, else a negative status code.
*/
int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
int wait)
{
call_single_data_t *csd;
call_single_data_t csd_stack = {
.flags = CSD_FLAG_LOCK | CSD_FLAG_SYNCHRONOUS,
};
int this_cpu;
int err;
/*
* prevent preemption and reschedule on another processor,
* as well as CPU removal
*/
this_cpu = get_cpu();
/*
* Can deadlock when called with interrupts disabled.
* We allow cpu's that are not yet online though, as no one else can
* send smp call function interrupt to this cpu and as such deadlocks
* can't happen.
*/
WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
&& !oops_in_progress);
csd = &csd_stack;
if (!wait) {
csd = this_cpu_ptr(&csd_data);
csd_lock(csd);
}
err = generic_exec_single(cpu, csd, func, info);
if (wait)
csd_lock_wait(csd);
put_cpu();
return err;
}
EXPORT_SYMBOL(smp_call_function_single);
/**
* smp_call_function_single_async(): Run an asynchronous function on a
* specific CPU.
* @cpu: The CPU to run on.
* @csd: Pre-allocated and setup data structure
*
* Like smp_call_function_single(), but the call is asynchonous and
* can thus be done from contexts with disabled interrupts.
*
* The caller passes his own pre-allocated data structure
* (ie: embedded in an object) and is responsible for synchronizing it
* such that the IPIs performed on the @csd are strictly serialized.
*
* NOTE: Be careful, there is unfortunately no current debugging facility to
* validate the correctness of this serialization.
*/
int smp_call_function_single_async(int cpu, call_single_data_t *csd)
{
int err = 0;
preempt_disable();
/* We could deadlock if we have to wait here with interrupts disabled! */
if (WARN_ON_ONCE(csd->flags & CSD_FLAG_LOCK))
csd_lock_wait(csd);
csd->flags = CSD_FLAG_LOCK;
smp_wmb();
err = generic_exec_single(cpu, csd, csd->func, csd->info);
preempt_enable();
return err;
}
EXPORT_SYMBOL_GPL(smp_call_function_single_async);
/*
* smp_call_function_any - Run a function on any of the given cpus
* @mask: The mask of cpus it can run on.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait until function has completed.
*
* Returns 0 on success, else a negative status code (if no cpus were online).
*
* Selection preference:
* 1) current cpu if in @mask
* 2) any cpu of current node if in @mask
* 3) any other online cpu in @mask
*/
int smp_call_function_any(const struct cpumask *mask,
smp_call_func_t func, void *info, int wait)
{
unsigned int cpu;
const struct cpumask *nodemask;
int ret;
/* Try for same CPU (cheapest) */
cpu = get_cpu();
if (cpumask_test_cpu(cpu, mask))
goto call;
/* Try for same node. */
nodemask = cpumask_of_node(cpu_to_node(cpu));
for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
cpu = cpumask_next_and(cpu, nodemask, mask)) {
if (cpu_online(cpu))
goto call;
}
/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
cpu = cpumask_any_and(mask, cpu_online_mask);
call:
ret = smp_call_function_single(cpu, func, info, wait);
put_cpu();
return ret;
}
EXPORT_SYMBOL_GPL(smp_call_function_any);
/**
* smp_call_function_many(): Run a function on a set of other CPUs.
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* If @wait is true, then returns once @func has returned.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler. Preemption
* must be disabled when calling this function.
*/
void smp_call_function_many(const struct cpumask *mask,
smp_call_func_t func, void *info, bool wait)
{
struct call_function_data *cfd;
int cpu, next_cpu, this_cpu = smp_processor_id();
/*
* Can deadlock when called with interrupts disabled.
* We allow cpu's that are not yet online though, as no one else can
* send smp call function interrupt to this cpu and as such deadlocks
* can't happen.
*/
WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
&& !oops_in_progress && !early_boot_irqs_disabled);
/* Try to fastpath. So, what's a CPU they want? Ignoring this one. */
cpu = cpumask_first_and(mask, cpu_online_mask);
if (cpu == this_cpu)
cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
/* No online cpus? We're done. */
if (cpu >= nr_cpu_ids)
return;
/* Do we have another CPU which isn't us? */
next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
if (next_cpu == this_cpu)
next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask);
/* Fastpath: do that cpu by itself. */
if (next_cpu >= nr_cpu_ids) {
smp_call_function_single(cpu, func, info, wait);
return;
}
cfd = this_cpu_ptr(&cfd_data);
cpumask_and(cfd->cpumask, mask, cpu_online_mask);
__cpumask_clear_cpu(this_cpu, cfd->cpumask);
/* Some callers race with other cpus changing the passed mask */
if (unlikely(!cpumask_weight(cfd->cpumask)))
return;
cpumask_clear(cfd->cpumask_ipi);
for_each_cpu(cpu, cfd->cpumask) {
call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
csd_lock(csd);
if (wait)
csd->flags |= CSD_FLAG_SYNCHRONOUS;
csd->func = func;
csd->info = info;
if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
}
/* Send a message to all CPUs in the map */
arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
if (wait) {
for_each_cpu(cpu, cfd->cpumask) {
call_single_data_t *csd;
csd = per_cpu_ptr(cfd->csd, cpu);
csd_lock_wait(csd);
}
}
}
EXPORT_SYMBOL(smp_call_function_many);
/**
* smp_call_function(): Run a function on all other CPUs.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* Returns 0.
*
* If @wait is true, then returns once @func has returned; otherwise
* it returns just before the target cpu calls @func.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
*/
int smp_call_function(smp_call_func_t func, void *info, int wait)
{
preempt_disable();
smp_call_function_many(cpu_online_mask, func, info, wait);
preempt_enable();
return 0;
}
EXPORT_SYMBOL(smp_call_function);
/* Setup configured maximum number of CPUs to activate */
unsigned int setup_max_cpus = NR_CPUS;
EXPORT_SYMBOL(setup_max_cpus);
/*
* Setup routine for controlling SMP activation
*
* Command-line option of "nosmp" or "maxcpus=0" will disable SMP
* activation entirely (the MPS table probe still happens, though).
*
* Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
* greater than 0, limits the maximum number of CPUs activated in
* SMP mode to <NUM>.
*/
void __weak arch_disable_smp_support(void) { }
static int __init nosmp(char *str)
{
setup_max_cpus = 0;
arch_disable_smp_support();
return 0;
}
early_param("nosmp", nosmp);
/* this is hard limit */
static int __init nrcpus(char *str)
{
int nr_cpus;
get_option(&str, &nr_cpus);
if (nr_cpus > 0 && nr_cpus < nr_cpu_ids)
nr_cpu_ids = nr_cpus;
return 0;
}
early_param("nr_cpus", nrcpus);
static int __init maxcpus(char *str)
{
get_option(&str, &setup_max_cpus);
if (setup_max_cpus == 0)
arch_disable_smp_support();
return 0;
}
early_param("maxcpus", maxcpus);
/* Setup number of possible processor ids */
unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);
/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
void __init setup_nr_cpu_ids(void)
{
nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
}
/* Called by boot processor to activate the rest. */
void __init smp_init(void)
{
int num_nodes, num_cpus;
unsigned int cpu;
idle_threads_init();
cpuhp_threads_init();
pr_info("Bringing up secondary CPUs ...\n");
/* FIXME: This should be done in userspace --RR */
for_each_present_cpu(cpu) {
if (num_online_cpus() >= setup_max_cpus)
break;
if (!cpu_online(cpu))
cpu_up(cpu);
}
num_nodes = num_online_nodes();
num_cpus = num_online_cpus();
pr_info("Brought up %d node%s, %d CPU%s\n",
num_nodes, (num_nodes > 1 ? "s" : ""),
num_cpus, (num_cpus > 1 ? "s" : ""));
/* Any cleanup work */
smp_cpus_done(setup_max_cpus);
}
/*
* Call a function on all processors. May be used during early boot while
* early_boot_irqs_disabled is set. Use local_irq_save/restore() instead
* of local_irq_disable/enable().
*/
int on_each_cpu(void (*func) (void *info), void *info, int wait)
{
unsigned long flags;
int ret = 0;
preempt_disable();
ret = smp_call_function(func, info, wait);
local_irq_save(flags);
func(info);
local_irq_restore(flags);
preempt_enable();
return ret;
}
EXPORT_SYMBOL(on_each_cpu);
/**
* on_each_cpu_mask(): Run a function on processors specified by
* cpumask, which may include the local processor.
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* If @wait is true, then returns once @func has returned.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler. The
* exception is that it may be used during early boot while
* early_boot_irqs_disabled is set.
*/
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
void *info, bool wait)
{
int cpu = get_cpu();
smp_call_function_many(mask, func, info, wait);
if (cpumask_test_cpu(cpu, mask)) {
unsigned long flags;
local_irq_save(flags);
func(info);
local_irq_restore(flags);
}
put_cpu();
}
EXPORT_SYMBOL(on_each_cpu_mask);
/*
* on_each_cpu_cond(): Call a function on each processor for which
* the supplied function cond_func returns true, optionally waiting
* for all the required CPUs to finish. This may include the local
* processor.
* @cond_func: A callback function that is passed a cpu id and
* the the info parameter. The function is called
* with preemption disabled. The function should
* return a blooean value indicating whether to IPI
* the specified CPU.
* @func: The function to run on all applicable CPUs.
* This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to both functions.
* @wait: If true, wait (atomically) until function has
* completed on other CPUs.
* @gfp_flags: GFP flags to use when allocating the cpumask
* used internally by the function.
*
* The function might sleep if the GFP flags indicates a non
* atomic allocation is allowed.
*
* Preemption is disabled to protect against CPUs going offline but not online.
* CPUs going online during the call will not be seen or sent an IPI.
*
* You must not call this function with disabled interrupts or
* from a hardware interrupt handler or from a bottom half handler.
*/
void on_each_cpu_cond_mask(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags, const struct cpumask *mask)
{
cpumask_var_t cpus;
int cpu, ret;
might_sleep_if(gfpflags_allow_blocking(gfp_flags));
if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
preempt_disable();
for_each_cpu(cpu, mask)
if (cond_func(cpu, info))
__cpumask_set_cpu(cpu, cpus);
on_each_cpu_mask(cpus, func, info, wait);
preempt_enable();
free_cpumask_var(cpus);
} else {
/*
* No free cpumask, bother. No matter, we'll
* just have to IPI them one by one.
*/
preempt_disable();
for_each_cpu(cpu, mask)
if (cond_func(cpu, info)) {
ret = smp_call_function_single(cpu, func,
info, wait);
WARN_ON_ONCE(ret);
}
preempt_enable();
}
}
EXPORT_SYMBOL(on_each_cpu_cond_mask);
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags)
{
on_each_cpu_cond_mask(cond_func, func, info, wait, gfp_flags,
cpu_online_mask);
}
EXPORT_SYMBOL(on_each_cpu_cond);
static void do_nothing(void *unused)
{
}
/**
* kick_all_cpus_sync - Force all cpus out of idle
*
* Used to synchronize the update of pm_idle function pointer. It's
* called after the pointer is updated and returns after the dummy
* callback function has been executed on all cpus. The execution of
* the function can only happen on the remote cpus after they have
* left the idle function which had been called via pm_idle function
* pointer. So it's guaranteed that nothing uses the previous pointer
* anymore.
*/
void kick_all_cpus_sync(void)
{
/* Make sure the change is visible before we kick the cpus */
smp_mb();
smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
/**
* wake_up_all_idle_cpus - break all cpus out of idle
* wake_up_all_idle_cpus try to break all cpus which is in idle state even
* including idle polling cpus, for non-idle cpus, we will do nothing
* for them.
*/
void wake_up_all_idle_cpus(void)
{
int cpu;
preempt_disable();
for_each_online_cpu(cpu) {
if (cpu == smp_processor_id())
continue;
wake_up_if_idle(cpu);
}
preempt_enable();
}
EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
/**
* smp_call_on_cpu - Call a function on a specific cpu
*
* Used to call a function on a specific cpu and wait for it to return.
* Optionally make sure the call is done on a specified physical cpu via vcpu
* pinning in order to support virtualized environments.
*/
struct smp_call_on_cpu_struct {
struct work_struct work;
struct completion done;
int (*func)(void *);
void *data;
int ret;
int cpu;
};
static void smp_call_on_cpu_callback(struct work_struct *work)
{
struct smp_call_on_cpu_struct *sscs;
sscs = container_of(work, struct smp_call_on_cpu_struct, work);
if (sscs->cpu >= 0)
hypervisor_pin_vcpu(sscs->cpu);
sscs->ret = sscs->func(sscs->data);
if (sscs->cpu >= 0)
hypervisor_pin_vcpu(-1);
complete(&sscs->done);
}
int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
{
struct smp_call_on_cpu_struct sscs = {
.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
.func = func,
.data = par,
.cpu = phys ? cpu : -1,
};
INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
return -ENXIO;
queue_work_on(cpu, system_wq, &sscs.work);
wait_for_completion(&sscs.done);
return sscs.ret;
}
EXPORT_SYMBOL_GPL(smp_call_on_cpu);