2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/arch/x86/kernel/cpu/perf_event.c
Wei Huang cc6cd47e73 perf/x86: Tone down kernel messages when the PMU check fails in a virtual environment
PMU checking can fail due to various reasons. On native machine, this
is mostly caused by faulty hardware and it is reasonable to use
KERN_ERR in reporting. However, when kernel is running on virtualized
environment, this checking can fail if virtual PMU is not supported
(e.g. KVM on AMD host). It is annoying to see an error message on
splash screen, even though we know such failure is benign on
virtualized environment.

This patch checks if the kernel is running in a virtualized environment.
If so, it will use KERN_INFO in reporting, which reduces the syslog
priority of them. This patch was tested successfully on KVM.

Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1411617314-24659-1-git-send-email-wei@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-03 06:04:41 +02:00

2181 lines
49 KiB
C

/*
* Performance events x86 architecture code
*
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
* Copyright (C) 2009 Jaswinder Singh Rajput
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
* Copyright (C) 2009 Google, Inc., Stephane Eranian
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_event.h>
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <asm/apic.h>
#include <asm/stacktrace.h>
#include <asm/nmi.h>
#include <asm/smp.h>
#include <asm/alternative.h>
#include <asm/timer.h>
#include <asm/desc.h>
#include <asm/ldt.h>
#include "perf_event.h"
struct x86_pmu x86_pmu __read_mostly;
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.enabled = 1,
};
u64 __read_mostly hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
u64 __read_mostly hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
/*
* Propagate event elapsed time into the generic event.
* Can only be executed on the CPU where the event is active.
* Returns the delta events processed.
*/
u64 x86_perf_event_update(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int shift = 64 - x86_pmu.cntval_bits;
u64 prev_raw_count, new_raw_count;
int idx = hwc->idx;
s64 delta;
if (idx == INTEL_PMC_IDX_FIXED_BTS)
return 0;
/*
* Careful: an NMI might modify the previous event value.
*
* Our tactic to handle this is to first atomically read and
* exchange a new raw count - then add that new-prev delta
* count to the generic event atomically:
*/
again:
prev_raw_count = local64_read(&hwc->prev_count);
rdpmcl(hwc->event_base_rdpmc, new_raw_count);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
/*
* Now we have the new raw value and have updated the prev
* timestamp already. We can now calculate the elapsed delta
* (event-)time and add that to the generic event.
*
* Careful, not all hw sign-extends above the physical width
* of the count.
*/
delta = (new_raw_count << shift) - (prev_raw_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return new_raw_count;
}
/*
* Find and validate any extra registers to set up.
*/
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
{
struct hw_perf_event_extra *reg;
struct extra_reg *er;
reg = &event->hw.extra_reg;
if (!x86_pmu.extra_regs)
return 0;
for (er = x86_pmu.extra_regs; er->msr; er++) {
if (er->event != (config & er->config_mask))
continue;
if (event->attr.config1 & ~er->valid_mask)
return -EINVAL;
/* Check if the extra msrs can be safely accessed*/
if (!er->extra_msr_access)
return -ENXIO;
reg->idx = er->idx;
reg->config = event->attr.config1;
reg->reg = er->msr;
break;
}
return 0;
}
static atomic_t active_events;
static DEFINE_MUTEX(pmc_reserve_mutex);
#ifdef CONFIG_X86_LOCAL_APIC
static bool reserve_pmc_hardware(void)
{
int i;
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
goto perfctr_fail;
}
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
goto eventsel_fail;
}
return true;
eventsel_fail:
for (i--; i >= 0; i--)
release_evntsel_nmi(x86_pmu_config_addr(i));
i = x86_pmu.num_counters;
perfctr_fail:
for (i--; i >= 0; i--)
release_perfctr_nmi(x86_pmu_event_addr(i));
return false;
}
static void release_pmc_hardware(void)
{
int i;
for (i = 0; i < x86_pmu.num_counters; i++) {
release_perfctr_nmi(x86_pmu_event_addr(i));
release_evntsel_nmi(x86_pmu_config_addr(i));
}
}
#else
static bool reserve_pmc_hardware(void) { return true; }
static void release_pmc_hardware(void) {}
#endif
static bool check_hw_exists(void)
{
u64 val, val_fail, val_new= ~0;
int i, reg, reg_fail, ret = 0;
int bios_fail = 0;
/*
* Check to see if the BIOS enabled any of the counters, if so
* complain and bail.
*/
for (i = 0; i < x86_pmu.num_counters; i++) {
reg = x86_pmu_config_addr(i);
ret = rdmsrl_safe(reg, &val);
if (ret)
goto msr_fail;
if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
bios_fail = 1;
val_fail = val;
reg_fail = reg;
}
}
if (x86_pmu.num_counters_fixed) {
reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
ret = rdmsrl_safe(reg, &val);
if (ret)
goto msr_fail;
for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
if (val & (0x03 << i*4)) {
bios_fail = 1;
val_fail = val;
reg_fail = reg;
}
}
}
/*
* Read the current value, change it and read it back to see if it
* matches, this is needed to detect certain hardware emulators
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
*/
reg = x86_pmu_event_addr(0);
if (rdmsrl_safe(reg, &val))
goto msr_fail;
val ^= 0xffffUL;
ret = wrmsrl_safe(reg, val);
ret |= rdmsrl_safe(reg, &val_new);
if (ret || val != val_new)
goto msr_fail;
/*
* We still allow the PMU driver to operate:
*/
if (bios_fail) {
printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
}
return true;
msr_fail:
printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
printk(boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR
"Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
return false;
}
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
release_pmc_hardware();
release_ds_buffers();
mutex_unlock(&pmc_reserve_mutex);
}
}
static inline int x86_pmu_initialized(void)
{
return x86_pmu.handle_irq != NULL;
}
static inline int
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
unsigned int cache_type, cache_op, cache_result;
u64 config, val;
config = attr->config;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
val = hw_cache_event_ids[cache_type][cache_op][cache_result];
if (val == 0)
return -ENOENT;
if (val == -1)
return -EINVAL;
hwc->config |= val;
attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
return x86_pmu_extra_regs(val, event);
}
int x86_setup_perfctr(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
u64 config;
if (!is_sampling_event(event)) {
hwc->sample_period = x86_pmu.max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
if (attr->type == PERF_TYPE_RAW)
return x86_pmu_extra_regs(event->attr.config, event);
if (attr->type == PERF_TYPE_HW_CACHE)
return set_ext_hw_attr(hwc, event);
if (attr->config >= x86_pmu.max_events)
return -EINVAL;
/*
* The generic map:
*/
config = x86_pmu.event_map(attr->config);
if (config == 0)
return -ENOENT;
if (config == -1LL)
return -EINVAL;
/*
* Branch tracing:
*/
if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
!attr->freq && hwc->sample_period == 1) {
/* BTS is not supported by this architecture. */
if (!x86_pmu.bts_active)
return -EOPNOTSUPP;
/* BTS is currently only allowed for user-mode. */
if (!attr->exclude_kernel)
return -EOPNOTSUPP;
}
hwc->config |= config;
return 0;
}
/*
* check that branch_sample_type is compatible with
* settings needed for precise_ip > 1 which implies
* using the LBR to capture ALL taken branches at the
* priv levels of the measurement
*/
static inline int precise_br_compat(struct perf_event *event)
{
u64 m = event->attr.branch_sample_type;
u64 b = 0;
/* must capture all branches */
if (!(m & PERF_SAMPLE_BRANCH_ANY))
return 0;
m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
if (!event->attr.exclude_user)
b |= PERF_SAMPLE_BRANCH_USER;
if (!event->attr.exclude_kernel)
b |= PERF_SAMPLE_BRANCH_KERNEL;
/*
* ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
*/
return m == b;
}
int x86_pmu_hw_config(struct perf_event *event)
{
if (event->attr.precise_ip) {
int precise = 0;
/* Support for constant skid */
if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
precise++;
/* Support for IP fixup */
if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
precise++;
}
if (event->attr.precise_ip > precise)
return -EOPNOTSUPP;
/*
* check that PEBS LBR correction does not conflict with
* whatever the user is asking with attr->branch_sample_type
*/
if (event->attr.precise_ip > 1 &&
x86_pmu.intel_cap.pebs_format < 2) {
u64 *br_type = &event->attr.branch_sample_type;
if (has_branch_stack(event)) {
if (!precise_br_compat(event))
return -EOPNOTSUPP;
/* branch_sample_type is compatible */
} else {
/*
* user did not specify branch_sample_type
*
* For PEBS fixups, we capture all
* the branches at the priv level of the
* event.
*/
*br_type = PERF_SAMPLE_BRANCH_ANY;
if (!event->attr.exclude_user)
*br_type |= PERF_SAMPLE_BRANCH_USER;
if (!event->attr.exclude_kernel)
*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
}
}
}
/*
* Generate PMC IRQs:
* (keep 'enabled' bit clear for now)
*/
event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
/*
* Count user and OS events unless requested not to
*/
if (!event->attr.exclude_user)
event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
if (!event->attr.exclude_kernel)
event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
if (event->attr.type == PERF_TYPE_RAW)
event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
if (event->attr.sample_period && x86_pmu.limit_period) {
if (x86_pmu.limit_period(event, event->attr.sample_period) >
event->attr.sample_period)
return -EINVAL;
}
return x86_setup_perfctr(event);
}
/*
* Setup the hardware configuration for a given attr_type
*/
static int __x86_pmu_event_init(struct perf_event *event)
{
int err;
if (!x86_pmu_initialized())
return -ENODEV;
err = 0;
if (!atomic_inc_not_zero(&active_events)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&active_events) == 0) {
if (!reserve_pmc_hardware())
err = -EBUSY;
else
reserve_ds_buffers();
}
if (!err)
atomic_inc(&active_events);
mutex_unlock(&pmc_reserve_mutex);
}
if (err)
return err;
event->destroy = hw_perf_event_destroy;
event->hw.idx = -1;
event->hw.last_cpu = -1;
event->hw.last_tag = ~0ULL;
/* mark unused */
event->hw.extra_reg.idx = EXTRA_REG_NONE;
event->hw.branch_reg.idx = EXTRA_REG_NONE;
return x86_pmu.hw_config(event);
}
void x86_pmu_disable_all(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
u64 val;
if (!test_bit(idx, cpuc->active_mask))
continue;
rdmsrl(x86_pmu_config_addr(idx), val);
if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
continue;
val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
wrmsrl(x86_pmu_config_addr(idx), val);
}
}
static void x86_pmu_disable(struct pmu *pmu)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
if (!x86_pmu_initialized())
return;
if (!cpuc->enabled)
return;
cpuc->n_added = 0;
cpuc->enabled = 0;
barrier();
x86_pmu.disable_all();
}
void x86_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
if (!test_bit(idx, cpuc->active_mask))
continue;
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
}
static struct pmu pmu;
static inline int is_x86_event(struct perf_event *event)
{
return event->pmu == &pmu;
}
/*
* Event scheduler state:
*
* Assign events iterating over all events and counters, beginning
* with events with least weights first. Keep the current iterator
* state in struct sched_state.
*/
struct sched_state {
int weight;
int event; /* event index */
int counter; /* counter index */
int unassigned; /* number of events to be assigned left */
unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
};
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
#define SCHED_STATES_MAX 2
struct perf_sched {
int max_weight;
int max_events;
struct perf_event **events;
struct sched_state state;
int saved_states;
struct sched_state saved[SCHED_STATES_MAX];
};
/*
* Initialize interator that runs through all events and counters.
*/
static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
int num, int wmin, int wmax)
{
int idx;
memset(sched, 0, sizeof(*sched));
sched->max_events = num;
sched->max_weight = wmax;
sched->events = events;
for (idx = 0; idx < num; idx++) {
if (events[idx]->hw.constraint->weight == wmin)
break;
}
sched->state.event = idx; /* start with min weight */
sched->state.weight = wmin;
sched->state.unassigned = num;
}
static void perf_sched_save_state(struct perf_sched *sched)
{
if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
return;
sched->saved[sched->saved_states] = sched->state;
sched->saved_states++;
}
static bool perf_sched_restore_state(struct perf_sched *sched)
{
if (!sched->saved_states)
return false;
sched->saved_states--;
sched->state = sched->saved[sched->saved_states];
/* continue with next counter: */
clear_bit(sched->state.counter++, sched->state.used);
return true;
}
/*
* Select a counter for the current event to schedule. Return true on
* success.
*/
static bool __perf_sched_find_counter(struct perf_sched *sched)
{
struct event_constraint *c;
int idx;
if (!sched->state.unassigned)
return false;
if (sched->state.event >= sched->max_events)
return false;
c = sched->events[sched->state.event]->hw.constraint;
/* Prefer fixed purpose counters */
if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
idx = INTEL_PMC_IDX_FIXED;
for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
if (!__test_and_set_bit(idx, sched->state.used))
goto done;
}
}
/* Grab the first unused counter starting with idx */
idx = sched->state.counter;
for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
if (!__test_and_set_bit(idx, sched->state.used))
goto done;
}
return false;
done:
sched->state.counter = idx;
if (c->overlap)
perf_sched_save_state(sched);
return true;
}
static bool perf_sched_find_counter(struct perf_sched *sched)
{
while (!__perf_sched_find_counter(sched)) {
if (!perf_sched_restore_state(sched))
return false;
}
return true;
}
/*
* Go through all unassigned events and find the next one to schedule.
* Take events with the least weight first. Return true on success.
*/
static bool perf_sched_next_event(struct perf_sched *sched)
{
struct event_constraint *c;
if (!sched->state.unassigned || !--sched->state.unassigned)
return false;
do {
/* next event */
sched->state.event++;
if (sched->state.event >= sched->max_events) {
/* next weight */
sched->state.event = 0;
sched->state.weight++;
if (sched->state.weight > sched->max_weight)
return false;
}
c = sched->events[sched->state.event]->hw.constraint;
} while (c->weight != sched->state.weight);
sched->state.counter = 0; /* start with first counter */
return true;
}
/*
* Assign a counter for each event.
*/
int perf_assign_events(struct perf_event **events, int n,
int wmin, int wmax, int *assign)
{
struct perf_sched sched;
perf_sched_init(&sched, events, n, wmin, wmax);
do {
if (!perf_sched_find_counter(&sched))
break; /* failed */
if (assign)
assign[sched.state.event] = sched.state.counter;
} while (perf_sched_next_event(&sched));
return sched.state.unassigned;
}
EXPORT_SYMBOL_GPL(perf_assign_events);
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
{
struct event_constraint *c;
unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
struct perf_event *e;
int i, wmin, wmax, num = 0;
struct hw_perf_event *hwc;
bitmap_zero(used_mask, X86_PMC_IDX_MAX);
for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
hwc = &cpuc->event_list[i]->hw;
c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
hwc->constraint = c;
wmin = min(wmin, c->weight);
wmax = max(wmax, c->weight);
}
/*
* fastpath, try to reuse previous register
*/
for (i = 0; i < n; i++) {
hwc = &cpuc->event_list[i]->hw;
c = hwc->constraint;
/* never assigned */
if (hwc->idx == -1)
break;
/* constraint still honored */
if (!test_bit(hwc->idx, c->idxmsk))
break;
/* not already used */
if (test_bit(hwc->idx, used_mask))
break;
__set_bit(hwc->idx, used_mask);
if (assign)
assign[i] = hwc->idx;
}
/* slow path */
if (i != n)
num = perf_assign_events(cpuc->event_list, n, wmin,
wmax, assign);
/*
* Mark the event as committed, so we do not put_constraint()
* in case new events are added and fail scheduling.
*/
if (!num && assign) {
for (i = 0; i < n; i++) {
e = cpuc->event_list[i];
e->hw.flags |= PERF_X86_EVENT_COMMITTED;
}
}
/*
* scheduling failed or is just a simulation,
* free resources if necessary
*/
if (!assign || num) {
for (i = 0; i < n; i++) {
e = cpuc->event_list[i];
/*
* do not put_constraint() on comitted events,
* because they are good to go
*/
if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
continue;
if (x86_pmu.put_event_constraints)
x86_pmu.put_event_constraints(cpuc, e);
}
}
return num ? -EINVAL : 0;
}
/*
* dogrp: true if must collect siblings events (group)
* returns total number of events and error code
*/
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
struct perf_event *event;
int n, max_count;
max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
/* current number of events already accepted */
n = cpuc->n_events;
if (is_x86_event(leader)) {
if (n >= max_count)
return -EINVAL;
cpuc->event_list[n] = leader;
n++;
}
if (!dogrp)
return n;
list_for_each_entry(event, &leader->sibling_list, group_entry) {
if (!is_x86_event(event) ||
event->state <= PERF_EVENT_STATE_OFF)
continue;
if (n >= max_count)
return -EINVAL;
cpuc->event_list[n] = event;
n++;
}
return n;
}
static inline void x86_assign_hw_event(struct perf_event *event,
struct cpu_hw_events *cpuc, int i)
{
struct hw_perf_event *hwc = &event->hw;
hwc->idx = cpuc->assign[i];
hwc->last_cpu = smp_processor_id();
hwc->last_tag = ++cpuc->tags[i];
if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
hwc->config_base = 0;
hwc->event_base = 0;
} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
} else {
hwc->config_base = x86_pmu_config_addr(hwc->idx);
hwc->event_base = x86_pmu_event_addr(hwc->idx);
hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
}
}
static inline int match_prev_assignment(struct hw_perf_event *hwc,
struct cpu_hw_events *cpuc,
int i)
{
return hwc->idx == cpuc->assign[i] &&
hwc->last_cpu == smp_processor_id() &&
hwc->last_tag == cpuc->tags[i];
}
static void x86_pmu_start(struct perf_event *event, int flags);
static void x86_pmu_enable(struct pmu *pmu)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct perf_event *event;
struct hw_perf_event *hwc;
int i, added = cpuc->n_added;
if (!x86_pmu_initialized())
return;
if (cpuc->enabled)
return;
if (cpuc->n_added) {
int n_running = cpuc->n_events - cpuc->n_added;
/*
* apply assignment obtained either from
* hw_perf_group_sched_in() or x86_pmu_enable()
*
* step1: save events moving to new counters
*/
for (i = 0; i < n_running; i++) {
event = cpuc->event_list[i];
hwc = &event->hw;
/*
* we can avoid reprogramming counter if:
* - assigned same counter as last time
* - running on same CPU as last time
* - no other event has used the counter since
*/
if (hwc->idx == -1 ||
match_prev_assignment(hwc, cpuc, i))
continue;
/*
* Ensure we don't accidentally enable a stopped
* counter simply because we rescheduled.
*/
if (hwc->state & PERF_HES_STOPPED)
hwc->state |= PERF_HES_ARCH;
x86_pmu_stop(event, PERF_EF_UPDATE);
}
/*
* step2: reprogram moved events into new counters
*/
for (i = 0; i < cpuc->n_events; i++) {
event = cpuc->event_list[i];
hwc = &event->hw;
if (!match_prev_assignment(hwc, cpuc, i))
x86_assign_hw_event(event, cpuc, i);
else if (i < n_running)
continue;
if (hwc->state & PERF_HES_ARCH)
continue;
x86_pmu_start(event, PERF_EF_RELOAD);
}
cpuc->n_added = 0;
perf_events_lapic_init();
}
cpuc->enabled = 1;
barrier();
x86_pmu.enable_all(added);
}
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
/*
* Set the next IRQ period, based on the hwc->period_left value.
* To be called with the event disabled in hw:
*/
int x86_perf_event_set_period(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0, idx = hwc->idx;
if (idx == INTEL_PMC_IDX_FIXED_BTS)
return 0;
/*
* If we are way outside a reasonable range then just skip forward:
*/
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
/*
* Quirk: certain CPUs dont like it if just 1 hw_event is left:
*/
if (unlikely(left < 2))
left = 2;
if (left > x86_pmu.max_period)
left = x86_pmu.max_period;
if (x86_pmu.limit_period)
left = x86_pmu.limit_period(event, left);
per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
/*
* The hw event starts counting from this event offset,
* mark it to be able to extra future deltas:
*/
local64_set(&hwc->prev_count, (u64)-left);
wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
/*
* Due to erratum on certan cpu we need
* a second write to be sure the register
* is updated properly
*/
if (x86_pmu.perfctr_second_write) {
wrmsrl(hwc->event_base,
(u64)(-left) & x86_pmu.cntval_mask);
}
perf_event_update_userpage(event);
return ret;
}
void x86_pmu_enable_event(struct perf_event *event)
{
if (__this_cpu_read(cpu_hw_events.enabled))
__x86_pmu_enable_event(&event->hw,
ARCH_PERFMON_EVENTSEL_ENABLE);
}
/*
* Add a single event to the PMU.
*
* The event is added to the group of enabled events
* but only if it can be scehduled with existing events.
*/
static int x86_pmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc;
int assign[X86_PMC_IDX_MAX];
int n, n0, ret;
hwc = &event->hw;
perf_pmu_disable(event->pmu);
n0 = cpuc->n_events;
ret = n = collect_events(cpuc, event, false);
if (ret < 0)
goto out;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (!(flags & PERF_EF_START))
hwc->state |= PERF_HES_ARCH;
/*
* If group events scheduling transaction was started,
* skip the schedulability test here, it will be performed
* at commit time (->commit_txn) as a whole.
*/
if (cpuc->group_flag & PERF_EVENT_TXN)
goto done_collect;
ret = x86_pmu.schedule_events(cpuc, n, assign);
if (ret)
goto out;
/*
* copy new assignment, now we know it is possible
* will be used by hw_perf_enable()
*/
memcpy(cpuc->assign, assign, n*sizeof(int));
done_collect:
/*
* Commit the collect_events() state. See x86_pmu_del() and
* x86_pmu_*_txn().
*/
cpuc->n_events = n;
cpuc->n_added += n - n0;
cpuc->n_txn += n - n0;
ret = 0;
out:
perf_pmu_enable(event->pmu);
return ret;
}
static void x86_pmu_start(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int idx = event->hw.idx;
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
if (WARN_ON_ONCE(idx == -1))
return;
if (flags & PERF_EF_RELOAD) {
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
x86_perf_event_set_period(event);
}
event->hw.state = 0;
cpuc->events[idx] = event;
__set_bit(idx, cpuc->active_mask);
__set_bit(idx, cpuc->running);
x86_pmu.enable(event);
perf_event_update_userpage(event);
}
void perf_event_print_debug(void)
{
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
u64 pebs;
struct cpu_hw_events *cpuc;
unsigned long flags;
int cpu, idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_events, cpu);
if (x86_pmu.version >= 2) {
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
pr_info("\n");
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
pr_info("CPU#%d: status: %016llx\n", cpu, status);
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
}
pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
rdmsrl(x86_pmu_event_addr(idx), pmc_count);
prev_left = per_cpu(pmc_prev_left[idx], cpu);
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
cpu, idx, pmc_ctrl);
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
cpu, idx, prev_left);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
}
local_irq_restore(flags);
}
void x86_pmu_stop(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
x86_pmu.disable(event);
cpuc->events[hwc->idx] = NULL;
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
hwc->state |= PERF_HES_STOPPED;
}
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
/*
* Drain the remaining delta count out of a event
* that we are disabling:
*/
x86_perf_event_update(event);
hwc->state |= PERF_HES_UPTODATE;
}
}
static void x86_pmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int i;
/*
* event is descheduled
*/
event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
/*
* If we're called during a txn, we don't need to do anything.
* The events never got scheduled and ->cancel_txn will truncate
* the event_list.
*
* XXX assumes any ->del() called during a TXN will only be on
* an event added during that same TXN.
*/
if (cpuc->group_flag & PERF_EVENT_TXN)
return;
/*
* Not a TXN, therefore cleanup properly.
*/
x86_pmu_stop(event, PERF_EF_UPDATE);
for (i = 0; i < cpuc->n_events; i++) {
if (event == cpuc->event_list[i])
break;
}
if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
return;
/* If we have a newly added event; make sure to decrease n_added. */
if (i >= cpuc->n_events - cpuc->n_added)
--cpuc->n_added;
if (x86_pmu.put_event_constraints)
x86_pmu.put_event_constraints(cpuc, event);
/* Delete the array entry. */
while (++i < cpuc->n_events)
cpuc->event_list[i-1] = cpuc->event_list[i];
--cpuc->n_events;
perf_event_update_userpage(event);
}
int x86_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct perf_event *event;
int idx, handled = 0;
u64 val;
cpuc = &__get_cpu_var(cpu_hw_events);
/*
* Some chipsets need to unmask the LVTPC in a particular spot
* inside the nmi handler. As a result, the unmasking was pushed
* into all the nmi handlers.
*
* This generic handler doesn't seem to have any issues where the
* unmasking occurs so it was left at the top.
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
if (!test_bit(idx, cpuc->active_mask)) {
/*
* Though we deactivated the counter some cpus
* might still deliver spurious interrupts still
* in flight. Catch them:
*/
if (__test_and_clear_bit(idx, cpuc->running))
handled++;
continue;
}
event = cpuc->events[idx];
val = x86_perf_event_update(event);
if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
continue;
/*
* event overflow
*/
handled++;
perf_sample_data_init(&data, 0, event->hw.last_period);
if (!x86_perf_event_set_period(event))
continue;
if (perf_event_overflow(event, &data, regs))
x86_pmu_stop(event, 0);
}
if (handled)
inc_irq_stat(apic_perf_irqs);
return handled;
}
void perf_events_lapic_init(void)
{
if (!x86_pmu.apic || !x86_pmu_initialized())
return;
/*
* Always use NMI for PMU
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
}
static int
perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
{
u64 start_clock;
u64 finish_clock;
int ret;
if (!atomic_read(&active_events))
return NMI_DONE;
start_clock = sched_clock();
ret = x86_pmu.handle_irq(regs);
finish_clock = sched_clock();
perf_sample_event_took(finish_clock - start_clock);
return ret;
}
NOKPROBE_SYMBOL(perf_event_nmi_handler);
struct event_constraint emptyconstraint;
struct event_constraint unconstrained;
static int
x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
{
unsigned int cpu = (long)hcpu;
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
int ret = NOTIFY_OK;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
cpuc->kfree_on_online = NULL;
if (x86_pmu.cpu_prepare)
ret = x86_pmu.cpu_prepare(cpu);
break;
case CPU_STARTING:
if (x86_pmu.attr_rdpmc)
set_in_cr4(X86_CR4_PCE);
if (x86_pmu.cpu_starting)
x86_pmu.cpu_starting(cpu);
break;
case CPU_ONLINE:
kfree(cpuc->kfree_on_online);
break;
case CPU_DYING:
if (x86_pmu.cpu_dying)
x86_pmu.cpu_dying(cpu);
break;
case CPU_UP_CANCELED:
case CPU_DEAD:
if (x86_pmu.cpu_dead)
x86_pmu.cpu_dead(cpu);
break;
default:
break;
}
return ret;
}
static void __init pmu_check_apic(void)
{
if (cpu_has_apic)
return;
x86_pmu.apic = 0;
pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
pr_info("no hardware sampling interrupt available.\n");
/*
* If we have a PMU initialized but no APIC
* interrupts, we cannot sample hardware
* events (user-space has to fall back and
* sample via a hrtimer based software event):
*/
pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
}
static struct attribute_group x86_pmu_format_group = {
.name = "format",
.attrs = NULL,
};
/*
* Remove all undefined events (x86_pmu.event_map(id) == 0)
* out of events_attr attributes.
*/
static void __init filter_events(struct attribute **attrs)
{
struct device_attribute *d;
struct perf_pmu_events_attr *pmu_attr;
int i, j;
for (i = 0; attrs[i]; i++) {
d = (struct device_attribute *)attrs[i];
pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
/* str trumps id */
if (pmu_attr->event_str)
continue;
if (x86_pmu.event_map(i))
continue;
for (j = i; attrs[j]; j++)
attrs[j] = attrs[j + 1];
/* Check the shifted attr. */
i--;
}
}
/* Merge two pointer arrays */
static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
{
struct attribute **new;
int j, i;
for (j = 0; a[j]; j++)
;
for (i = 0; b[i]; i++)
j++;
j++;
new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
if (!new)
return NULL;
j = 0;
for (i = 0; a[i]; i++)
new[j++] = a[i];
for (i = 0; b[i]; i++)
new[j++] = b[i];
new[j] = NULL;
return new;
}
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct perf_pmu_events_attr *pmu_attr = \
container_of(attr, struct perf_pmu_events_attr, attr);
u64 config = x86_pmu.event_map(pmu_attr->id);
/* string trumps id */
if (pmu_attr->event_str)
return sprintf(page, "%s", pmu_attr->event_str);
return x86_pmu.events_sysfs_show(page, config);
}
EVENT_ATTR(cpu-cycles, CPU_CYCLES );
EVENT_ATTR(instructions, INSTRUCTIONS );
EVENT_ATTR(cache-references, CACHE_REFERENCES );
EVENT_ATTR(cache-misses, CACHE_MISSES );
EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
EVENT_ATTR(branch-misses, BRANCH_MISSES );
EVENT_ATTR(bus-cycles, BUS_CYCLES );
EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
static struct attribute *empty_attrs;
static struct attribute *events_attr[] = {
EVENT_PTR(CPU_CYCLES),
EVENT_PTR(INSTRUCTIONS),
EVENT_PTR(CACHE_REFERENCES),
EVENT_PTR(CACHE_MISSES),
EVENT_PTR(BRANCH_INSTRUCTIONS),
EVENT_PTR(BRANCH_MISSES),
EVENT_PTR(BUS_CYCLES),
EVENT_PTR(STALLED_CYCLES_FRONTEND),
EVENT_PTR(STALLED_CYCLES_BACKEND),
EVENT_PTR(REF_CPU_CYCLES),
NULL,
};
static struct attribute_group x86_pmu_events_group = {
.name = "events",
.attrs = events_attr,
};
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
{
u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
ssize_t ret;
/*
* We have whole page size to spend and just little data
* to write, so we can safely use sprintf.
*/
ret = sprintf(page, "event=0x%02llx", event);
if (umask)
ret += sprintf(page + ret, ",umask=0x%02llx", umask);
if (edge)
ret += sprintf(page + ret, ",edge");
if (pc)
ret += sprintf(page + ret, ",pc");
if (any)
ret += sprintf(page + ret, ",any");
if (inv)
ret += sprintf(page + ret, ",inv");
if (cmask)
ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
ret += sprintf(page + ret, "\n");
return ret;
}
static int __init init_hw_perf_events(void)
{
struct x86_pmu_quirk *quirk;
int err;
pr_info("Performance Events: ");
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_INTEL:
err = intel_pmu_init();
break;
case X86_VENDOR_AMD:
err = amd_pmu_init();
break;
default:
err = -ENOTSUPP;
}
if (err != 0) {
pr_cont("no PMU driver, software events only.\n");
return 0;
}
pmu_check_apic();
/* sanity check that the hardware exists or is emulated */
if (!check_hw_exists())
return 0;
pr_cont("%s PMU driver.\n", x86_pmu.name);
x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
quirk->func();
if (!x86_pmu.intel_ctrl)
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
perf_events_lapic_init();
register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
unconstrained = (struct event_constraint)
__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
0, x86_pmu.num_counters, 0, 0);
x86_pmu_format_group.attrs = x86_pmu.format_attrs;
if (x86_pmu.event_attrs)
x86_pmu_events_group.attrs = x86_pmu.event_attrs;
if (!x86_pmu.events_sysfs_show)
x86_pmu_events_group.attrs = &empty_attrs;
else
filter_events(x86_pmu_events_group.attrs);
if (x86_pmu.cpu_events) {
struct attribute **tmp;
tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
if (!WARN_ON(!tmp))
x86_pmu_events_group.attrs = tmp;
}
pr_info("... version: %d\n", x86_pmu.version);
pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
pr_info("... generic registers: %d\n", x86_pmu.num_counters);
pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
pr_info("... max period: %016Lx\n", x86_pmu.max_period);
pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
perf_cpu_notifier(x86_pmu_notifier);
return 0;
}
early_initcall(init_hw_perf_events);
static inline void x86_pmu_read(struct perf_event *event)
{
x86_perf_event_update(event);
}
/*
* Start group events scheduling transaction
* Set the flag to make pmu::enable() not perform the
* schedulability test, it will be performed at commit time
*/
static void x86_pmu_start_txn(struct pmu *pmu)
{
perf_pmu_disable(pmu);
__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
__this_cpu_write(cpu_hw_events.n_txn, 0);
}
/*
* Stop group events scheduling transaction
* Clear the flag and pmu::enable() will perform the
* schedulability test.
*/
static void x86_pmu_cancel_txn(struct pmu *pmu)
{
__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
/*
* Truncate collected array by the number of events added in this
* transaction. See x86_pmu_add() and x86_pmu_*_txn().
*/
__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
perf_pmu_enable(pmu);
}
/*
* Commit group events scheduling transaction
* Perform the group schedulability test as a whole
* Return 0 if success
*
* Does not cancel the transaction on failure; expects the caller to do this.
*/
static int x86_pmu_commit_txn(struct pmu *pmu)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
int assign[X86_PMC_IDX_MAX];
int n, ret;
n = cpuc->n_events;
if (!x86_pmu_initialized())
return -EAGAIN;
ret = x86_pmu.schedule_events(cpuc, n, assign);
if (ret)
return ret;
/*
* copy new assignment, now we know it is possible
* will be used by hw_perf_enable()
*/
memcpy(cpuc->assign, assign, n*sizeof(int));
cpuc->group_flag &= ~PERF_EVENT_TXN;
perf_pmu_enable(pmu);
return 0;
}
/*
* a fake_cpuc is used to validate event groups. Due to
* the extra reg logic, we need to also allocate a fake
* per_core and per_cpu structure. Otherwise, group events
* using extra reg may conflict without the kernel being
* able to catch this when the last event gets added to
* the group.
*/
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
{
kfree(cpuc->shared_regs);
kfree(cpuc);
}
static struct cpu_hw_events *allocate_fake_cpuc(void)
{
struct cpu_hw_events *cpuc;
int cpu = raw_smp_processor_id();
cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
if (!cpuc)
return ERR_PTR(-ENOMEM);
/* only needed, if we have extra_regs */
if (x86_pmu.extra_regs) {
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
goto error;
}
cpuc->is_fake = 1;
return cpuc;
error:
free_fake_cpuc(cpuc);
return ERR_PTR(-ENOMEM);
}
/*
* validate that we can schedule this event
*/
static int validate_event(struct perf_event *event)
{
struct cpu_hw_events *fake_cpuc;
struct event_constraint *c;
int ret = 0;
fake_cpuc = allocate_fake_cpuc();
if (IS_ERR(fake_cpuc))
return PTR_ERR(fake_cpuc);
c = x86_pmu.get_event_constraints(fake_cpuc, event);
if (!c || !c->weight)
ret = -EINVAL;
if (x86_pmu.put_event_constraints)
x86_pmu.put_event_constraints(fake_cpuc, event);
free_fake_cpuc(fake_cpuc);
return ret;
}
/*
* validate a single event group
*
* validation include:
* - check events are compatible which each other
* - events do not compete for the same counter
* - number of events <= number of counters
*
* validation ensures the group can be loaded onto the
* PMU if it was the only group available.
*/
static int validate_group(struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
struct cpu_hw_events *fake_cpuc;
int ret = -EINVAL, n;
fake_cpuc = allocate_fake_cpuc();
if (IS_ERR(fake_cpuc))
return PTR_ERR(fake_cpuc);
/*
* the event is not yet connected with its
* siblings therefore we must first collect
* existing siblings, then add the new event
* before we can simulate the scheduling
*/
n = collect_events(fake_cpuc, leader, true);
if (n < 0)
goto out;
fake_cpuc->n_events = n;
n = collect_events(fake_cpuc, event, false);
if (n < 0)
goto out;
fake_cpuc->n_events = n;
ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
out:
free_fake_cpuc(fake_cpuc);
return ret;
}
static int x86_pmu_event_init(struct perf_event *event)
{
struct pmu *tmp;
int err;
switch (event->attr.type) {
case PERF_TYPE_RAW:
case PERF_TYPE_HARDWARE:
case PERF_TYPE_HW_CACHE:
break;
default:
return -ENOENT;
}
err = __x86_pmu_event_init(event);
if (!err) {
/*
* we temporarily connect event to its pmu
* such that validate_group() can classify
* it as an x86 event using is_x86_event()
*/
tmp = event->pmu;
event->pmu = &pmu;
if (event->group_leader != event)
err = validate_group(event);
else
err = validate_event(event);
event->pmu = tmp;
}
if (err) {
if (event->destroy)
event->destroy(event);
}
return err;
}
static int x86_pmu_event_idx(struct perf_event *event)
{
int idx = event->hw.idx;
if (!x86_pmu.attr_rdpmc)
return 0;
if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
idx -= INTEL_PMC_IDX_FIXED;
idx |= 1 << 30;
}
return idx + 1;
}
static ssize_t get_attr_rdpmc(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
}
static void change_rdpmc(void *info)
{
bool enable = !!(unsigned long)info;
if (enable)
set_in_cr4(X86_CR4_PCE);
else
clear_in_cr4(X86_CR4_PCE);
}
static ssize_t set_attr_rdpmc(struct device *cdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
if (x86_pmu.attr_rdpmc_broken)
return -ENOTSUPP;
if (!!val != !!x86_pmu.attr_rdpmc) {
x86_pmu.attr_rdpmc = !!val;
on_each_cpu(change_rdpmc, (void *)val, 1);
}
return count;
}
static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
static struct attribute *x86_pmu_attrs[] = {
&dev_attr_rdpmc.attr,
NULL,
};
static struct attribute_group x86_pmu_attr_group = {
.attrs = x86_pmu_attrs,
};
static const struct attribute_group *x86_pmu_attr_groups[] = {
&x86_pmu_attr_group,
&x86_pmu_format_group,
&x86_pmu_events_group,
NULL,
};
static void x86_pmu_flush_branch_stack(void)
{
if (x86_pmu.flush_branch_stack)
x86_pmu.flush_branch_stack();
}
void perf_check_microcode(void)
{
if (x86_pmu.check_microcode)
x86_pmu.check_microcode();
}
EXPORT_SYMBOL_GPL(perf_check_microcode);
static struct pmu pmu = {
.pmu_enable = x86_pmu_enable,
.pmu_disable = x86_pmu_disable,
.attr_groups = x86_pmu_attr_groups,
.event_init = x86_pmu_event_init,
.add = x86_pmu_add,
.del = x86_pmu_del,
.start = x86_pmu_start,
.stop = x86_pmu_stop,
.read = x86_pmu_read,
.start_txn = x86_pmu_start_txn,
.cancel_txn = x86_pmu_cancel_txn,
.commit_txn = x86_pmu_commit_txn,
.event_idx = x86_pmu_event_idx,
.flush_branch_stack = x86_pmu_flush_branch_stack,
};
void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
{
struct cyc2ns_data *data;
userpg->cap_user_time = 0;
userpg->cap_user_time_zero = 0;
userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
userpg->pmc_width = x86_pmu.cntval_bits;
if (!sched_clock_stable())
return;
data = cyc2ns_read_begin();
userpg->cap_user_time = 1;
userpg->time_mult = data->cyc2ns_mul;
userpg->time_shift = data->cyc2ns_shift;
userpg->time_offset = data->cyc2ns_offset - now;
userpg->cap_user_time_zero = 1;
userpg->time_zero = data->cyc2ns_offset;
cyc2ns_read_end(data);
}
/*
* callchain support
*/
static int backtrace_stack(void *data, char *name)
{
return 0;
}
static void backtrace_address(void *data, unsigned long addr, int reliable)
{
struct perf_callchain_entry *entry = data;
perf_callchain_store(entry, addr);
}
static const struct stacktrace_ops backtrace_ops = {
.stack = backtrace_stack,
.address = backtrace_address,
.walk_stack = print_context_stack_bp,
};
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* TODO: We don't support guest os callchain now */
return;
}
perf_callchain_store(entry, regs->ip);
dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
}
static inline int
valid_user_frame(const void __user *fp, unsigned long size)
{
return (__range_not_ok(fp, size, TASK_SIZE) == 0);
}
static unsigned long get_segment_base(unsigned int segment)
{
struct desc_struct *desc;
int idx = segment >> 3;
if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
if (idx > LDT_ENTRIES)
return 0;
if (idx > current->active_mm->context.size)
return 0;
desc = current->active_mm->context.ldt;
} else {
if (idx > GDT_ENTRIES)
return 0;
desc = __this_cpu_ptr(&gdt_page.gdt[0]);
}
return get_desc_base(desc + idx);
}
#ifdef CONFIG_COMPAT
#include <asm/compat.h>
static inline int
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
/* 32-bit process in 64-bit kernel. */
unsigned long ss_base, cs_base;
struct stack_frame_ia32 frame;
const void __user *fp;
if (!test_thread_flag(TIF_IA32))
return 0;
cs_base = get_segment_base(regs->cs);
ss_base = get_segment_base(regs->ss);
fp = compat_ptr(ss_base + regs->bp);
while (entry->nr < PERF_MAX_STACK_DEPTH) {
unsigned long bytes;
frame.next_frame = 0;
frame.return_address = 0;
bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
if (bytes != 0)
break;
if (!valid_user_frame(fp, sizeof(frame)))
break;
perf_callchain_store(entry, cs_base + frame.return_address);
fp = compat_ptr(ss_base + frame.next_frame);
}
return 1;
}
#else
static inline int
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
return 0;
}
#endif
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct stack_frame frame;
const void __user *fp;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* TODO: We don't support guest os callchain now */
return;
}
/*
* We don't know what to do with VM86 stacks.. ignore them for now.
*/
if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
return;
fp = (void __user *)regs->bp;
perf_callchain_store(entry, regs->ip);
if (!current->mm)
return;
if (perf_callchain_user32(regs, entry))
return;
while (entry->nr < PERF_MAX_STACK_DEPTH) {
unsigned long bytes;
frame.next_frame = NULL;
frame.return_address = 0;
bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
if (bytes != 0)
break;
if (!valid_user_frame(fp, sizeof(frame)))
break;
perf_callchain_store(entry, frame.return_address);
fp = frame.next_frame;
}
}
/*
* Deal with code segment offsets for the various execution modes:
*
* VM86 - the good olde 16 bit days, where the linear address is
* 20 bits and we use regs->ip + 0x10 * regs->cs.
*
* IA32 - Where we need to look at GDT/LDT segment descriptor tables
* to figure out what the 32bit base address is.
*
* X32 - has TIF_X32 set, but is running in x86_64
*
* X86_64 - CS,DS,SS,ES are all zero based.
*/
static unsigned long code_segment_base(struct pt_regs *regs)
{
/*
* If we are in VM86 mode, add the segment offset to convert to a
* linear address.
*/
if (regs->flags & X86_VM_MASK)
return 0x10 * regs->cs;
/*
* For IA32 we look at the GDT/LDT segment base to convert the
* effective IP to a linear address.
*/
#ifdef CONFIG_X86_32
if (user_mode(regs) && regs->cs != __USER_CS)
return get_segment_base(regs->cs);
#else
if (test_thread_flag(TIF_IA32)) {
if (user_mode(regs) && regs->cs != __USER32_CS)
return get_segment_base(regs->cs);
}
#endif
return 0;
}
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
return perf_guest_cbs->get_guest_ip();
return regs->ip + code_segment_base(regs);
}
unsigned long perf_misc_flags(struct pt_regs *regs)
{
int misc = 0;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
if (perf_guest_cbs->is_user_mode())
misc |= PERF_RECORD_MISC_GUEST_USER;
else
misc |= PERF_RECORD_MISC_GUEST_KERNEL;
} else {
if (user_mode(regs))
misc |= PERF_RECORD_MISC_USER;
else
misc |= PERF_RECORD_MISC_KERNEL;
}
if (regs->flags & PERF_EFLAGS_EXACT)
misc |= PERF_RECORD_MISC_EXACT_IP;
return misc;
}
void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
{
cap->version = x86_pmu.version;
cap->num_counters_gp = x86_pmu.num_counters;
cap->num_counters_fixed = x86_pmu.num_counters_fixed;
cap->bit_width_gp = x86_pmu.cntval_bits;
cap->bit_width_fixed = x86_pmu.cntval_bits;
cap->events_mask = (unsigned int)x86_pmu.events_maskl;
cap->events_mask_len = x86_pmu.events_mask_len;
}
EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);