2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/arch/x86/kernel/time_32.c
Ingo Molnar 8e6dafd6c7 x86: refactor x86_quirks support
Impact: cleanup

Make x86_quirks support more transparent. The highlevel
methods are now named:

  extern void x86_quirk_pre_intr_init(void);
  extern void x86_quirk_intr_init(void);

  extern void x86_quirk_trap_init(void);

  extern void x86_quirk_pre_time_init(void);
  extern void x86_quirk_time_init(void);

This makes it clear that if some platform extension has to
do something here that it is considered ... weird, and is
discouraged.

Also remove arch_hooks.h and move it into setup.h (and other
header files where appropriate).

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-23 00:08:11 +01:00

138 lines
4.1 KiB
C

/*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
*
* This file contains the PC-specific time handling details:
* reading the RTC at bootup, etc..
* 1994-07-02 Alan Modra
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
* 1995-03-26 Markus Kuhn
* fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
* precision CMOS clock update
* 1996-05-03 Ingo Molnar
* fixed time warps in do_[slow|fast]_gettimeoffset()
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1998-09-05 (Various)
* More robust do_fast_gettimeoffset() algorithm implemented
* (works with APM, Cyrix 6x86MX and Centaur C6),
* monotonic gettimeofday() with fast_get_timeoffset(),
* drift-proof precision TSC calibration on boot
* (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
* Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
* ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
* 1998-12-16 Andrea Arcangeli
* Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
* because was not accounting lost_ticks.
* 1998-12-24 Copyright (C) 1998 Andrea Arcangeli
* Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
* serialize accesses to xtime/lost_ticks).
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/mca.h>
#include <asm/setup.h>
#include <asm/hpet.h>
#include <asm/time.h>
#include <asm/timer.h>
#include <asm/do_timer.h>
int timer_ack;
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
#ifdef CONFIG_SMP
if (!user_mode_vm(regs) && in_lock_functions(pc)) {
#ifdef CONFIG_FRAME_POINTER
return *(unsigned long *)(regs->bp + sizeof(long));
#else
unsigned long *sp = (unsigned long *)&regs->sp;
/* Return address is either directly at stack pointer
or above a saved flags. Eflags has bits 22-31 zero,
kernel addresses don't. */
if (sp[0] >> 22)
return sp[0];
if (sp[1] >> 22)
return sp[1];
#endif
}
#endif
return pc;
}
EXPORT_SYMBOL(profile_pc);
/*
* This is the same as the above, except we _also_ save the current
* Time Stamp Counter value at the time of the timer interrupt, so that
* we later on can estimate the time of day more exactly.
*/
irqreturn_t timer_interrupt(int irq, void *dev_id)
{
/* Keep nmi watchdog up to date */
inc_irq_stat(irq0_irqs);
#ifdef CONFIG_X86_IO_APIC
if (timer_ack) {
/*
* Subtle, when I/O APICs are used we have to ack timer IRQ
* manually to deassert NMI lines for the watchdog if run
* on an 82489DX-based system.
*/
spin_lock(&i8259A_lock);
outb(0x0c, PIC_MASTER_OCW3);
/* Ack the IRQ; AEOI will end it automatically. */
inb(PIC_MASTER_POLL);
spin_unlock(&i8259A_lock);
}
#endif
do_timer_interrupt_hook();
#ifdef CONFIG_MCA
if (MCA_bus) {
/* The PS/2 uses level-triggered interrupts. You can't
turn them off, nor would you want to (any attempt to
enable edge-triggered interrupts usually gets intercepted by a
special hardware circuit). Hence we have to acknowledge
the timer interrupt. Through some incredibly stupid
design idea, the reset for IRQ 0 is done by setting the
high bit of the PPI port B (0x61). Note that some PS/2s,
notably the 55SX, work fine if this is removed. */
u8 irq_v = inb_p(0x61); /* read the current state */
outb_p(irq_v | 0x80, 0x61); /* reset the IRQ */
}
#endif
return IRQ_HANDLED;
}
/* Duplicate of time_init() below, with hpet_enable part added */
void __init hpet_time_init(void)
{
if (!hpet_enable())
setup_pit_timer();
x86_quirk_time_init();
}
/*
* This is called directly from init code; we must delay timer setup in the
* HPET case as we can't make the decision to turn on HPET this early in the
* boot process.
*
* The chosen time_init function will usually be hpet_time_init, above, but
* in the case of virtual hardware, an alternative function may be substituted.
*/
void __init time_init(void)
{
x86_quirk_pre_time_init();
tsc_init();
late_time_init = choose_time_init();
}