2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 16:14:26 +08:00
linux-next/drivers/dma/mv_xor_v2.c
Thomas Gleixner fd9871f70c treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 24
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or any
  later version this program is distributed in the hope that it will
  be useful but without any warranty without even the implied warranty
  of merchantability or fitness for a particular purpose see the gnu
  general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 50 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154042.917228456@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 11:52:39 +02:00

926 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2015-2016 Marvell International Ltd.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include "dmaengine.h"
/* DMA Engine Registers */
#define MV_XOR_V2_DMA_DESQ_BALR_OFF 0x000
#define MV_XOR_V2_DMA_DESQ_BAHR_OFF 0x004
#define MV_XOR_V2_DMA_DESQ_SIZE_OFF 0x008
#define MV_XOR_V2_DMA_DESQ_DONE_OFF 0x00C
#define MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK 0x7FFF
#define MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT 0
#define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK 0x1FFF
#define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT 16
#define MV_XOR_V2_DMA_DESQ_ARATTR_OFF 0x010
#define MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK 0x3F3F
#define MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE 0x202
#define MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE 0x3C3C
#define MV_XOR_V2_DMA_IMSG_CDAT_OFF 0x014
#define MV_XOR_V2_DMA_IMSG_THRD_OFF 0x018
#define MV_XOR_V2_DMA_IMSG_THRD_MASK 0x7FFF
#define MV_XOR_V2_DMA_IMSG_THRD_SHIFT 0x0
#define MV_XOR_V2_DMA_IMSG_TIMER_EN BIT(18)
#define MV_XOR_V2_DMA_DESQ_AWATTR_OFF 0x01C
/* Same flags as MV_XOR_V2_DMA_DESQ_ARATTR_OFF */
#define MV_XOR_V2_DMA_DESQ_ALLOC_OFF 0x04C
#define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_MASK 0xFFFF
#define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_SHIFT 16
#define MV_XOR_V2_DMA_IMSG_BALR_OFF 0x050
#define MV_XOR_V2_DMA_IMSG_BAHR_OFF 0x054
#define MV_XOR_V2_DMA_DESQ_CTRL_OFF 0x100
#define MV_XOR_V2_DMA_DESQ_CTRL_32B 1
#define MV_XOR_V2_DMA_DESQ_CTRL_128B 7
#define MV_XOR_V2_DMA_DESQ_STOP_OFF 0x800
#define MV_XOR_V2_DMA_DESQ_DEALLOC_OFF 0x804
#define MV_XOR_V2_DMA_DESQ_ADD_OFF 0x808
#define MV_XOR_V2_DMA_IMSG_TMOT 0x810
#define MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK 0x1FFF
#define MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT 0
/* XOR Global registers */
#define MV_XOR_V2_GLOB_BW_CTRL 0x4
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT 0
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL 64
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT 8
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL 8
#define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT 12
#define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL 4
#define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT 16
#define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL 4
#define MV_XOR_V2_GLOB_PAUSE 0x014
#define MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL 0x8
#define MV_XOR_V2_GLOB_SYS_INT_CAUSE 0x200
#define MV_XOR_V2_GLOB_SYS_INT_MASK 0x204
#define MV_XOR_V2_GLOB_MEM_INT_CAUSE 0x220
#define MV_XOR_V2_GLOB_MEM_INT_MASK 0x224
#define MV_XOR_V2_MIN_DESC_SIZE 32
#define MV_XOR_V2_EXT_DESC_SIZE 128
#define MV_XOR_V2_DESC_RESERVED_SIZE 12
#define MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE 12
#define MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF 8
/*
* Descriptors queue size. With 32 bytes descriptors, up to 2^14
* descriptors are allowed, with 128 bytes descriptors, up to 2^12
* descriptors are allowed. This driver uses 128 bytes descriptors,
* but experimentation has shown that a set of 1024 descriptors is
* sufficient to reach a good level of performance.
*/
#define MV_XOR_V2_DESC_NUM 1024
/*
* Threshold values for descriptors and timeout, determined by
* experimentation as giving a good level of performance.
*/
#define MV_XOR_V2_DONE_IMSG_THRD 0x14
#define MV_XOR_V2_TIMER_THRD 0xB0
/**
* struct mv_xor_v2_descriptor - DMA HW descriptor
* @desc_id: used by S/W and is not affected by H/W.
* @flags: error and status flags
* @crc32_result: CRC32 calculation result
* @desc_ctrl: operation mode and control flags
* @buff_size: amount of bytes to be processed
* @fill_pattern_src_addr: Fill-Pattern or Source-Address and
* AW-Attributes
* @data_buff_addr: Source (and might be RAID6 destination)
* addresses of data buffers in RAID5 and RAID6
* @reserved: reserved
*/
struct mv_xor_v2_descriptor {
u16 desc_id;
u16 flags;
u32 crc32_result;
u32 desc_ctrl;
/* Definitions for desc_ctrl */
#define DESC_NUM_ACTIVE_D_BUF_SHIFT 22
#define DESC_OP_MODE_SHIFT 28
#define DESC_OP_MODE_NOP 0 /* Idle operation */
#define DESC_OP_MODE_MEMCPY 1 /* Pure-DMA operation */
#define DESC_OP_MODE_MEMSET 2 /* Mem-Fill operation */
#define DESC_OP_MODE_MEMINIT 3 /* Mem-Init operation */
#define DESC_OP_MODE_MEM_COMPARE 4 /* Mem-Compare operation */
#define DESC_OP_MODE_CRC32 5 /* CRC32 calculation */
#define DESC_OP_MODE_XOR 6 /* RAID5 (XOR) operation */
#define DESC_OP_MODE_RAID6 7 /* RAID6 P&Q-generation */
#define DESC_OP_MODE_RAID6_REC 8 /* RAID6 Recovery */
#define DESC_Q_BUFFER_ENABLE BIT(16)
#define DESC_P_BUFFER_ENABLE BIT(17)
#define DESC_IOD BIT(27)
u32 buff_size;
u32 fill_pattern_src_addr[4];
u32 data_buff_addr[MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE];
u32 reserved[MV_XOR_V2_DESC_RESERVED_SIZE];
};
/**
* struct mv_xor_v2_device - implements a xor device
* @lock: lock for the engine
* @dma_base: memory mapped DMA register base
* @glob_base: memory mapped global register base
* @irq_tasklet:
* @free_sw_desc: linked list of free SW descriptors
* @dmadev: dma device
* @dmachan: dma channel
* @hw_desq: HW descriptors queue
* @hw_desq_virt: virtual address of DESCQ
* @sw_desq: SW descriptors queue
* @desc_size: HW descriptor size
* @npendings: number of pending descriptors (for which tx_submit has
* been called, but not yet issue_pending)
*/
struct mv_xor_v2_device {
spinlock_t lock;
void __iomem *dma_base;
void __iomem *glob_base;
struct clk *clk;
struct clk *reg_clk;
struct tasklet_struct irq_tasklet;
struct list_head free_sw_desc;
struct dma_device dmadev;
struct dma_chan dmachan;
dma_addr_t hw_desq;
struct mv_xor_v2_descriptor *hw_desq_virt;
struct mv_xor_v2_sw_desc *sw_desq;
int desc_size;
unsigned int npendings;
unsigned int hw_queue_idx;
struct msi_desc *msi_desc;
};
/**
* struct mv_xor_v2_sw_desc - implements a xor SW descriptor
* @idx: descriptor index
* @async_tx: support for the async_tx api
* @hw_desc: assosiated HW descriptor
* @free_list: node of the free SW descriprots list
*/
struct mv_xor_v2_sw_desc {
int idx;
struct dma_async_tx_descriptor async_tx;
struct mv_xor_v2_descriptor hw_desc;
struct list_head free_list;
};
/*
* Fill the data buffers to a HW descriptor
*/
static void mv_xor_v2_set_data_buffers(struct mv_xor_v2_device *xor_dev,
struct mv_xor_v2_descriptor *desc,
dma_addr_t src, int index)
{
int arr_index = ((index >> 1) * 3);
/*
* Fill the buffer's addresses to the descriptor.
*
* The format of the buffers address for 2 sequential buffers
* X and X + 1:
*
* First word: Buffer-DX-Address-Low[31:0]
* Second word: Buffer-DX+1-Address-Low[31:0]
* Third word: DX+1-Buffer-Address-High[47:32] [31:16]
* DX-Buffer-Address-High[47:32] [15:0]
*/
if ((index & 0x1) == 0) {
desc->data_buff_addr[arr_index] = lower_32_bits(src);
desc->data_buff_addr[arr_index + 2] &= ~0xFFFF;
desc->data_buff_addr[arr_index + 2] |=
upper_32_bits(src) & 0xFFFF;
} else {
desc->data_buff_addr[arr_index + 1] =
lower_32_bits(src);
desc->data_buff_addr[arr_index + 2] &= ~0xFFFF0000;
desc->data_buff_addr[arr_index + 2] |=
(upper_32_bits(src) & 0xFFFF) << 16;
}
}
/*
* notify the engine of new descriptors, and update the available index.
*/
static void mv_xor_v2_add_desc_to_desq(struct mv_xor_v2_device *xor_dev,
int num_of_desc)
{
/* write the number of new descriptors in the DESQ. */
writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ADD_OFF);
}
/*
* free HW descriptors
*/
static void mv_xor_v2_free_desc_from_desq(struct mv_xor_v2_device *xor_dev,
int num_of_desc)
{
/* write the number of new descriptors in the DESQ. */
writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DEALLOC_OFF);
}
/*
* Set descriptor size
* Return the HW descriptor size in bytes
*/
static int mv_xor_v2_set_desc_size(struct mv_xor_v2_device *xor_dev)
{
writel(MV_XOR_V2_DMA_DESQ_CTRL_128B,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_CTRL_OFF);
return MV_XOR_V2_EXT_DESC_SIZE;
}
/*
* Set the IMSG threshold
*/
static inline
void mv_xor_v2_enable_imsg_thrd(struct mv_xor_v2_device *xor_dev)
{
u32 reg;
/* Configure threshold of number of descriptors, and enable timer */
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
reg &= (~MV_XOR_V2_DMA_IMSG_THRD_MASK << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
reg |= (MV_XOR_V2_DONE_IMSG_THRD << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
reg |= MV_XOR_V2_DMA_IMSG_TIMER_EN;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
/* Configure Timer Threshold */
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
reg &= (~MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK <<
MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
reg |= (MV_XOR_V2_TIMER_THRD << MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
}
static irqreturn_t mv_xor_v2_interrupt_handler(int irq, void *data)
{
struct mv_xor_v2_device *xor_dev = data;
unsigned int ndescs;
u32 reg;
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
ndescs = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
/* No descriptors to process */
if (!ndescs)
return IRQ_NONE;
/* schedule a tasklet to handle descriptors callbacks */
tasklet_schedule(&xor_dev->irq_tasklet);
return IRQ_HANDLED;
}
/*
* submit a descriptor to the DMA engine
*/
static dma_cookie_t
mv_xor_v2_tx_submit(struct dma_async_tx_descriptor *tx)
{
void *dest_hw_desc;
dma_cookie_t cookie;
struct mv_xor_v2_sw_desc *sw_desc =
container_of(tx, struct mv_xor_v2_sw_desc, async_tx);
struct mv_xor_v2_device *xor_dev =
container_of(tx->chan, struct mv_xor_v2_device, dmachan);
dev_dbg(xor_dev->dmadev.dev,
"%s sw_desc %p: async_tx %p\n",
__func__, sw_desc, &sw_desc->async_tx);
/* assign coookie */
spin_lock_bh(&xor_dev->lock);
cookie = dma_cookie_assign(tx);
/* copy the HW descriptor from the SW descriptor to the DESQ */
dest_hw_desc = xor_dev->hw_desq_virt + xor_dev->hw_queue_idx;
memcpy(dest_hw_desc, &sw_desc->hw_desc, xor_dev->desc_size);
xor_dev->npendings++;
xor_dev->hw_queue_idx++;
if (xor_dev->hw_queue_idx >= MV_XOR_V2_DESC_NUM)
xor_dev->hw_queue_idx = 0;
spin_unlock_bh(&xor_dev->lock);
return cookie;
}
/*
* Prepare a SW descriptor
*/
static struct mv_xor_v2_sw_desc *
mv_xor_v2_prep_sw_desc(struct mv_xor_v2_device *xor_dev)
{
struct mv_xor_v2_sw_desc *sw_desc;
bool found = false;
/* Lock the channel */
spin_lock_bh(&xor_dev->lock);
if (list_empty(&xor_dev->free_sw_desc)) {
spin_unlock_bh(&xor_dev->lock);
/* schedule tasklet to free some descriptors */
tasklet_schedule(&xor_dev->irq_tasklet);
return NULL;
}
list_for_each_entry(sw_desc, &xor_dev->free_sw_desc, free_list) {
if (async_tx_test_ack(&sw_desc->async_tx)) {
found = true;
break;
}
}
if (!found) {
spin_unlock_bh(&xor_dev->lock);
return NULL;
}
list_del(&sw_desc->free_list);
/* Release the channel */
spin_unlock_bh(&xor_dev->lock);
return sw_desc;
}
/*
* Prepare a HW descriptor for a memcpy operation
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev;
xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan);
dev_dbg(xor_dev->dmadev.dev,
"%s len: %zu src %pad dest %pad flags: %ld\n",
__func__, len, &src, &dest, flags);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
sw_desc->async_tx.flags = flags;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the MEMCPY control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_MEMCPY << DESC_OP_MODE_SHIFT;
if (flags & DMA_PREP_INTERRUPT)
hw_descriptor->desc_ctrl |= DESC_IOD;
/* Set source address */
hw_descriptor->fill_pattern_src_addr[0] = lower_32_bits(src);
hw_descriptor->fill_pattern_src_addr[1] =
upper_32_bits(src) & 0xFFFF;
/* Set Destination address */
hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
hw_descriptor->fill_pattern_src_addr[3] =
upper_32_bits(dest) & 0xFFFF;
/* Set buffers size */
hw_descriptor->buff_size = len;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* Prepare a HW descriptor for a XOR operation
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
int i;
if (src_cnt > MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF || src_cnt < 1)
return NULL;
dev_dbg(xor_dev->dmadev.dev,
"%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
__func__, src_cnt, len, &dest, flags);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
sw_desc->async_tx.flags = flags;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the XOR control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_XOR << DESC_OP_MODE_SHIFT;
hw_descriptor->desc_ctrl |= DESC_P_BUFFER_ENABLE;
if (flags & DMA_PREP_INTERRUPT)
hw_descriptor->desc_ctrl |= DESC_IOD;
/* Set the data buffers */
for (i = 0; i < src_cnt; i++)
mv_xor_v2_set_data_buffers(xor_dev, hw_descriptor, src[i], i);
hw_descriptor->desc_ctrl |=
src_cnt << DESC_NUM_ACTIVE_D_BUF_SHIFT;
/* Set Destination address */
hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
hw_descriptor->fill_pattern_src_addr[3] =
upper_32_bits(dest) & 0xFFFF;
/* Set buffers size */
hw_descriptor->buff_size = len;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* Prepare a HW descriptor for interrupt operation.
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the INTERRUPT control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_NOP << DESC_OP_MODE_SHIFT;
hw_descriptor->desc_ctrl |= DESC_IOD;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* push pending transactions to hardware
*/
static void mv_xor_v2_issue_pending(struct dma_chan *chan)
{
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
spin_lock_bh(&xor_dev->lock);
/*
* update the engine with the number of descriptors to
* process
*/
mv_xor_v2_add_desc_to_desq(xor_dev, xor_dev->npendings);
xor_dev->npendings = 0;
spin_unlock_bh(&xor_dev->lock);
}
static inline
int mv_xor_v2_get_pending_params(struct mv_xor_v2_device *xor_dev,
int *pending_ptr)
{
u32 reg;
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
/* get the next pending descriptor index */
*pending_ptr = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK);
/* get the number of descriptors pending handle */
return ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
}
/*
* handle the descriptors after HW process
*/
static void mv_xor_v2_tasklet(unsigned long data)
{
struct mv_xor_v2_device *xor_dev = (struct mv_xor_v2_device *) data;
int pending_ptr, num_of_pending, i;
struct mv_xor_v2_sw_desc *next_pending_sw_desc = NULL;
dev_dbg(xor_dev->dmadev.dev, "%s %d\n", __func__, __LINE__);
/* get the pending descriptors parameters */
num_of_pending = mv_xor_v2_get_pending_params(xor_dev, &pending_ptr);
/* loop over free descriptors */
for (i = 0; i < num_of_pending; i++) {
struct mv_xor_v2_descriptor *next_pending_hw_desc =
xor_dev->hw_desq_virt + pending_ptr;
/* get the SW descriptor related to the HW descriptor */
next_pending_sw_desc =
&xor_dev->sw_desq[next_pending_hw_desc->desc_id];
/* call the callback */
if (next_pending_sw_desc->async_tx.cookie > 0) {
/*
* update the channel's completed cookie - no
* lock is required the IMSG threshold provide
* the locking
*/
dma_cookie_complete(&next_pending_sw_desc->async_tx);
dma_descriptor_unmap(&next_pending_sw_desc->async_tx);
dmaengine_desc_get_callback_invoke(
&next_pending_sw_desc->async_tx, NULL);
}
dma_run_dependencies(&next_pending_sw_desc->async_tx);
/* Lock the channel */
spin_lock_bh(&xor_dev->lock);
/* add the SW descriptor to the free descriptors list */
list_add(&next_pending_sw_desc->free_list,
&xor_dev->free_sw_desc);
/* Release the channel */
spin_unlock_bh(&xor_dev->lock);
/* increment the next descriptor */
pending_ptr++;
if (pending_ptr >= MV_XOR_V2_DESC_NUM)
pending_ptr = 0;
}
if (num_of_pending != 0) {
/* free the descriptores */
mv_xor_v2_free_desc_from_desq(xor_dev, num_of_pending);
}
}
/*
* Set DMA Interrupt-message (IMSG) parameters
*/
static void mv_xor_v2_set_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
struct mv_xor_v2_device *xor_dev = dev_get_drvdata(desc->dev);
writel(msg->address_lo,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BALR_OFF);
writel(msg->address_hi & 0xFFFF,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BAHR_OFF);
writel(msg->data,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_CDAT_OFF);
}
static int mv_xor_v2_descq_init(struct mv_xor_v2_device *xor_dev)
{
u32 reg;
/* write the DESQ size to the DMA engine */
writel(MV_XOR_V2_DESC_NUM,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_SIZE_OFF);
/* write the DESQ address to the DMA enngine*/
writel(lower_32_bits(xor_dev->hw_desq),
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BALR_OFF);
writel(upper_32_bits(xor_dev->hw_desq),
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BAHR_OFF);
/*
* This is a temporary solution, until we activate the
* SMMU. Set the attributes for reading & writing data buffers
* & descriptors to:
*
* - OuterShareable - Snoops will be performed on CPU caches
* - Enable cacheable - Bufferable, Modifiable, Other Allocate
* and Allocate
*/
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
/* BW CTRL - set values to optimize the XOR performance:
*
* - Set WrBurstLen & RdBurstLen - the unit will issue
* maximum of 256B write/read transactions.
* - Limit the number of outstanding write & read data
* (OBB/IBB) requests to the maximal value.
*/
reg = ((MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT));
writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_BW_CTRL);
/* Disable the AXI timer feature */
reg = readl(xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
reg |= MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL;
writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
/* enable the DMA engine */
writel(0, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
return 0;
}
static int mv_xor_v2_suspend(struct platform_device *dev, pm_message_t state)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
/* Set this bit to disable to stop the XOR unit. */
writel(0x1, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
return 0;
}
static int mv_xor_v2_resume(struct platform_device *dev)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
mv_xor_v2_set_desc_size(xor_dev);
mv_xor_v2_enable_imsg_thrd(xor_dev);
mv_xor_v2_descq_init(xor_dev);
return 0;
}
static int mv_xor_v2_probe(struct platform_device *pdev)
{
struct mv_xor_v2_device *xor_dev;
struct resource *res;
int i, ret = 0;
struct dma_device *dma_dev;
struct mv_xor_v2_sw_desc *sw_desc;
struct msi_desc *msi_desc;
BUILD_BUG_ON(sizeof(struct mv_xor_v2_descriptor) !=
MV_XOR_V2_EXT_DESC_SIZE);
xor_dev = devm_kzalloc(&pdev->dev, sizeof(*xor_dev), GFP_KERNEL);
if (!xor_dev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xor_dev->dma_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xor_dev->dma_base))
return PTR_ERR(xor_dev->dma_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
xor_dev->glob_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xor_dev->glob_base))
return PTR_ERR(xor_dev->glob_base);
platform_set_drvdata(pdev, xor_dev);
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
if (ret)
return ret;
xor_dev->reg_clk = devm_clk_get(&pdev->dev, "reg");
if (PTR_ERR(xor_dev->reg_clk) != -ENOENT) {
if (!IS_ERR(xor_dev->reg_clk)) {
ret = clk_prepare_enable(xor_dev->reg_clk);
if (ret)
return ret;
} else {
return PTR_ERR(xor_dev->reg_clk);
}
}
xor_dev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(xor_dev->clk) && PTR_ERR(xor_dev->clk) == -EPROBE_DEFER) {
ret = EPROBE_DEFER;
goto disable_reg_clk;
}
if (!IS_ERR(xor_dev->clk)) {
ret = clk_prepare_enable(xor_dev->clk);
if (ret)
goto disable_reg_clk;
}
ret = platform_msi_domain_alloc_irqs(&pdev->dev, 1,
mv_xor_v2_set_msi_msg);
if (ret)
goto disable_clk;
msi_desc = first_msi_entry(&pdev->dev);
if (!msi_desc)
goto free_msi_irqs;
xor_dev->msi_desc = msi_desc;
ret = devm_request_irq(&pdev->dev, msi_desc->irq,
mv_xor_v2_interrupt_handler, 0,
dev_name(&pdev->dev), xor_dev);
if (ret)
goto free_msi_irqs;
tasklet_init(&xor_dev->irq_tasklet, mv_xor_v2_tasklet,
(unsigned long) xor_dev);
xor_dev->desc_size = mv_xor_v2_set_desc_size(xor_dev);
dma_cookie_init(&xor_dev->dmachan);
/*
* allocate coherent memory for hardware descriptors
* note: writecombine gives slightly better performance, but
* requires that we explicitly flush the writes
*/
xor_dev->hw_desq_virt =
dma_alloc_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
&xor_dev->hw_desq, GFP_KERNEL);
if (!xor_dev->hw_desq_virt) {
ret = -ENOMEM;
goto free_msi_irqs;
}
/* alloc memory for the SW descriptors */
xor_dev->sw_desq = devm_kcalloc(&pdev->dev,
MV_XOR_V2_DESC_NUM, sizeof(*sw_desc),
GFP_KERNEL);
if (!xor_dev->sw_desq) {
ret = -ENOMEM;
goto free_hw_desq;
}
spin_lock_init(&xor_dev->lock);
/* init the free SW descriptors list */
INIT_LIST_HEAD(&xor_dev->free_sw_desc);
/* add all SW descriptors to the free list */
for (i = 0; i < MV_XOR_V2_DESC_NUM; i++) {
struct mv_xor_v2_sw_desc *sw_desc =
xor_dev->sw_desq + i;
sw_desc->idx = i;
dma_async_tx_descriptor_init(&sw_desc->async_tx,
&xor_dev->dmachan);
sw_desc->async_tx.tx_submit = mv_xor_v2_tx_submit;
async_tx_ack(&sw_desc->async_tx);
list_add(&sw_desc->free_list,
&xor_dev->free_sw_desc);
}
dma_dev = &xor_dev->dmadev;
/* set DMA capabilities */
dma_cap_zero(dma_dev->cap_mask);
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
dma_cap_set(DMA_INTERRUPT, dma_dev->cap_mask);
/* init dma link list */
INIT_LIST_HEAD(&dma_dev->channels);
/* set base routines */
dma_dev->device_tx_status = dma_cookie_status;
dma_dev->device_issue_pending = mv_xor_v2_issue_pending;
dma_dev->dev = &pdev->dev;
dma_dev->device_prep_dma_memcpy = mv_xor_v2_prep_dma_memcpy;
dma_dev->device_prep_dma_interrupt = mv_xor_v2_prep_dma_interrupt;
dma_dev->max_xor = 8;
dma_dev->device_prep_dma_xor = mv_xor_v2_prep_dma_xor;
xor_dev->dmachan.device = dma_dev;
list_add_tail(&xor_dev->dmachan.device_node,
&dma_dev->channels);
mv_xor_v2_enable_imsg_thrd(xor_dev);
mv_xor_v2_descq_init(xor_dev);
ret = dma_async_device_register(dma_dev);
if (ret)
goto free_hw_desq;
dev_notice(&pdev->dev, "Marvell Version 2 XOR driver\n");
return 0;
free_hw_desq:
dma_free_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
xor_dev->hw_desq_virt, xor_dev->hw_desq);
free_msi_irqs:
platform_msi_domain_free_irqs(&pdev->dev);
disable_clk:
clk_disable_unprepare(xor_dev->clk);
disable_reg_clk:
clk_disable_unprepare(xor_dev->reg_clk);
return ret;
}
static int mv_xor_v2_remove(struct platform_device *pdev)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(pdev);
dma_async_device_unregister(&xor_dev->dmadev);
dma_free_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
xor_dev->hw_desq_virt, xor_dev->hw_desq);
devm_free_irq(&pdev->dev, xor_dev->msi_desc->irq, xor_dev);
platform_msi_domain_free_irqs(&pdev->dev);
tasklet_kill(&xor_dev->irq_tasklet);
clk_disable_unprepare(xor_dev->clk);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mv_xor_v2_dt_ids[] = {
{ .compatible = "marvell,xor-v2", },
{},
};
MODULE_DEVICE_TABLE(of, mv_xor_v2_dt_ids);
#endif
static struct platform_driver mv_xor_v2_driver = {
.probe = mv_xor_v2_probe,
.suspend = mv_xor_v2_suspend,
.resume = mv_xor_v2_resume,
.remove = mv_xor_v2_remove,
.driver = {
.name = "mv_xor_v2",
.of_match_table = of_match_ptr(mv_xor_v2_dt_ids),
},
};
module_platform_driver(mv_xor_v2_driver);
MODULE_DESCRIPTION("DMA engine driver for Marvell's Version 2 of XOR engine");
MODULE_LICENSE("GPL");