2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 15:13:55 +08:00
linux-next/drivers/block/brd.c
Linus Torvalds 53ef7d0e20 libnvdimm for 4.12
* Region media error reporting: A libnvdimm region device is the parent
 to one or more namespaces. To date, media errors have been reported via
 the "badblocks" attribute attached to pmem block devices for namespaces
 in "raw" or "memory" mode. Given that namespaces can be in "device-dax"
 or "btt-sector" mode this new interface reports media errors
 generically, i.e. independent of namespace modes or state. This
 subsequently allows userspace tooling to craft "ACPI 6.1 Section
 9.20.7.6 Function Index 4 - Clear Uncorrectable Error" requests and
 submit them via the ioctl path for NVDIMM root bus devices.
 
 * Introduce 'struct dax_device' and 'struct dax_operations': Prompted by
 a request from Linus and feedback from Christoph this allows for dax
 capable drivers to publish their own custom dax operations. This fixes
 the broken assumption that all dax operations are related to a
 persistent memory device, and makes it easier for other architectures
 and platforms to add customized persistent memory support.
 
 * 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
 available for storage appliance applications to manually trigger memory
 controllers to drain write-pending buffers that would otherwise be
 flushed automatically by the platform ADR (asynchronous-DRAM-refresh)
 mechanism at a power loss event. Support for "locked" DIMMs is included
 to prevent namespaces from surfacing when the namespace label data area
 is locked. Finally, fixes for various reported deadlocks and crashes,
 also tagged for -stable.
 
 * ACPI / nfit driver updates: General updates of the nfit driver to add
 DSM command overrides, ACPI 6.1 health state flags support, DSM payload
 debug available by default, and various fixes.
 
 Acknowledgements that came after the branch was pushed:
 
 commmit 565851c972 "device-dax: fix sysfs attribute deadlock"
 Tested-by: Yi Zhang <yizhan@redhat.com>
 
 commit 23f4984483 "libnvdimm: rework region badblocks clearing"
 Tested-by: Toshi Kani <toshi.kani@hpe.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJZDONJAAoJEB7SkWpmfYgC3SsP/2KrLvTUcz646ViuPOgZ2cC4
 W6wAx6cvDSt+H52kLnFEsYoFt7WAj20ggPirb/Bc5jkGlvwE0lT9Xtmso9GpVkYT
 J9ZJ9pP/4YaAD3II1gmTwaUjYi0FxoOdx3Eb92yuWkO/8ylz4b2Nu3cBpYwyziGQ
 nIfEVwDXRLE86u6x0bWuf6TlVuvsbdiAI55CDqDMVQC6xIOLbSez7b8QIHlpiKEb
 Mw+xqdQva0esoreZEOXEhWNO+qtfILx8/ceBEGTNMp4e/JjZ2FbrSNplM+9bH5k7
 ywqP8lW+mBEw0fmBBkYoVG/xyesiiBb55JLnbi8Ew+7IUxw8a3iV7wftRi62lHcK
 zAjsHe4L+MansgtZsCL8wluvIPaktAdtB4xr7l9VNLKRYRUG73jEWU0gcUNryHIL
 BkQJ52pUS1PkClyAsWbBBHl1I/CvzVPd21VW0YELmLR4OywKy1c+eKw2bcYgjrb4
 59HZSv6S6EoKaQC+2qvVNpePil7cdfg5V2ubH/ki9HoYVyoxDptEWHnvf0NNatIH
 Y7mNcOPvhOksJmnKSyHbDjtRur7WoHIlC9D7UjEFkSBWsKPjxJHoidN4SnCMRtjQ
 WKQU0seoaKj04b68Bs/Qm9NozVgnsPFIUDZeLMikLFX2Jt7YSPu+Jmi2s4re6WLh
 TmJQ3Ly9t3o3/weHSzmn
 =Ox0s
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The bulk of this has been in multiple -next releases. There were a few
  late breaking fixes and small features that got added in the last
  couple days, but the whole set has received a build success
  notification from the kbuild robot.

  Change summary:

   - Region media error reporting: A libnvdimm region device is the
     parent to one or more namespaces. To date, media errors have been
     reported via the "badblocks" attribute attached to pmem block
     devices for namespaces in "raw" or "memory" mode. Given that
     namespaces can be in "device-dax" or "btt-sector" mode this new
     interface reports media errors generically, i.e. independent of
     namespace modes or state.

     This subsequently allows userspace tooling to craft "ACPI 6.1
     Section 9.20.7.6 Function Index 4 - Clear Uncorrectable Error"
     requests and submit them via the ioctl path for NVDIMM root bus
     devices.

   - Introduce 'struct dax_device' and 'struct dax_operations': Prompted
     by a request from Linus and feedback from Christoph this allows for
     dax capable drivers to publish their own custom dax operations.
     This fixes the broken assumption that all dax operations are
     related to a persistent memory device, and makes it easier for
     other architectures and platforms to add customized persistent
     memory support.

   - 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
     available for storage appliance applications to manually trigger
     memory controllers to drain write-pending buffers that would
     otherwise be flushed automatically by the platform ADR
     (asynchronous-DRAM-refresh) mechanism at a power loss event.
     Support for "locked" DIMMs is included to prevent namespaces from
     surfacing when the namespace label data area is locked. Finally,
     fixes for various reported deadlocks and crashes, also tagged for
     -stable.

   - ACPI / nfit driver updates: General updates of the nfit driver to
     add DSM command overrides, ACPI 6.1 health state flags support, DSM
     payload debug available by default, and various fixes.

  Acknowledgements that came after the branch was pushed:

   - commmit 565851c972 "device-dax: fix sysfs attribute deadlock":
     Tested-by: Yi Zhang <yizhan@redhat.com>

   - commit 23f4984483 "libnvdimm: rework region badblocks clearing"
     Tested-by: Toshi Kani <toshi.kani@hpe.com>"

* tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (52 commits)
  libnvdimm, pfn: fix 'npfns' vs section alignment
  libnvdimm: handle locked label storage areas
  libnvdimm: convert NDD_ flags to use bitops, introduce NDD_LOCKED
  brd: fix uninitialized use of brd->dax_dev
  block, dax: use correct format string in bdev_dax_supported
  device-dax: fix sysfs attribute deadlock
  libnvdimm: restore "libnvdimm: band aid btt vs clear poison locking"
  libnvdimm: fix nvdimm_bus_lock() vs device_lock() ordering
  libnvdimm: rework region badblocks clearing
  acpi, nfit: kill ACPI_NFIT_DEBUG
  libnvdimm: fix clear length of nvdimm_forget_poison()
  libnvdimm, pmem: fix a NULL pointer BUG in nd_pmem_notify
  libnvdimm, region: sysfs trigger for nvdimm_flush()
  libnvdimm: fix phys_addr for nvdimm_clear_poison
  x86, dax, pmem: remove indirection around memcpy_from_pmem()
  block: remove block_device_operations ->direct_access()
  block, dax: convert bdev_dax_supported() to dax_direct_access()
  filesystem-dax: convert to dax_direct_access()
  Revert "block: use DAX for partition table reads"
  ext2, ext4, xfs: retrieve dax_device for iomap operations
  ...
2017-05-05 18:49:20 -07:00

592 lines
14 KiB
C

/*
* Ram backed block device driver.
*
* Copyright (C) 2007 Nick Piggin
* Copyright (C) 2007 Novell Inc.
*
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
* of their respective owners.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/radix-tree.h>
#include <linux/fs.h>
#include <linux/slab.h>
#ifdef CONFIG_BLK_DEV_RAM_DAX
#include <linux/pfn_t.h>
#include <linux/dax.h>
#endif
#include <linux/uaccess.h>
#define SECTOR_SHIFT 9
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
/*
* Each block ramdisk device has a radix_tree brd_pages of pages that stores
* the pages containing the block device's contents. A brd page's ->index is
* its offset in PAGE_SIZE units. This is similar to, but in no way connected
* with, the kernel's pagecache or buffer cache (which sit above our block
* device).
*/
struct brd_device {
int brd_number;
struct request_queue *brd_queue;
struct gendisk *brd_disk;
#ifdef CONFIG_BLK_DEV_RAM_DAX
struct dax_device *dax_dev;
#endif
struct list_head brd_list;
/*
* Backing store of pages and lock to protect it. This is the contents
* of the block device.
*/
spinlock_t brd_lock;
struct radix_tree_root brd_pages;
};
/*
* Look up and return a brd's page for a given sector.
*/
static DEFINE_MUTEX(brd_mutex);
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
/*
* The page lifetime is protected by the fact that we have opened the
* device node -- brd pages will never be deleted under us, so we
* don't need any further locking or refcounting.
*
* This is strictly true for the radix-tree nodes as well (ie. we
* don't actually need the rcu_read_lock()), however that is not a
* documented feature of the radix-tree API so it is better to be
* safe here (we don't have total exclusion from radix tree updates
* here, only deletes).
*/
rcu_read_lock();
idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
page = radix_tree_lookup(&brd->brd_pages, idx);
rcu_read_unlock();
BUG_ON(page && page->index != idx);
return page;
}
/*
* Look up and return a brd's page for a given sector.
* If one does not exist, allocate an empty page, and insert that. Then
* return it.
*/
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
gfp_t gfp_flags;
page = brd_lookup_page(brd, sector);
if (page)
return page;
/*
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*
* Cannot support DAX and highmem, because our ->direct_access
* routine for DAX must return memory that is always addressable.
* If DAX was reworked to use pfns and kmap throughout, this
* restriction might be able to be lifted.
*/
gfp_flags = GFP_NOIO | __GFP_ZERO;
#ifndef CONFIG_BLK_DEV_RAM_DAX
gfp_flags |= __GFP_HIGHMEM;
#endif
page = alloc_page(gfp_flags);
if (!page)
return NULL;
if (radix_tree_preload(GFP_NOIO)) {
__free_page(page);
return NULL;
}
spin_lock(&brd->brd_lock);
idx = sector >> PAGE_SECTORS_SHIFT;
page->index = idx;
if (radix_tree_insert(&brd->brd_pages, idx, page)) {
__free_page(page);
page = radix_tree_lookup(&brd->brd_pages, idx);
BUG_ON(!page);
BUG_ON(page->index != idx);
}
spin_unlock(&brd->brd_lock);
radix_tree_preload_end();
return page;
}
/*
* Free all backing store pages and radix tree. This must only be called when
* there are no other users of the device.
*/
#define FREE_BATCH 16
static void brd_free_pages(struct brd_device *brd)
{
unsigned long pos = 0;
struct page *pages[FREE_BATCH];
int nr_pages;
do {
int i;
nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
(void **)pages, pos, FREE_BATCH);
for (i = 0; i < nr_pages; i++) {
void *ret;
BUG_ON(pages[i]->index < pos);
pos = pages[i]->index;
ret = radix_tree_delete(&brd->brd_pages, pos);
BUG_ON(!ret || ret != pages[i]);
__free_page(pages[i]);
}
pos++;
/*
* This assumes radix_tree_gang_lookup always returns as
* many pages as possible. If the radix-tree code changes,
* so will this have to.
*/
} while (nr_pages == FREE_BATCH);
}
/*
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
*/
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
{
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
if (!brd_insert_page(brd, sector))
return -ENOSPC;
if (copy < n) {
sector += copy >> SECTOR_SHIFT;
if (!brd_insert_page(brd, sector))
return -ENOSPC;
}
return 0;
}
/*
* Copy n bytes from src to the brd starting at sector. Does not sleep.
*/
static void copy_to_brd(struct brd_device *brd, const void *src,
sector_t sector, size_t n)
{
struct page *page;
void *dst;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst + offset, src, copy);
kunmap_atomic(dst);
if (copy < n) {
src += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(dst);
}
}
/*
* Copy n bytes to dst from the brd starting at sector. Does not sleep.
*/
static void copy_from_brd(void *dst, struct brd_device *brd,
sector_t sector, size_t n)
{
struct page *page;
void *src;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src + offset, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
if (copy < n) {
dst += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
}
}
/*
* Process a single bvec of a bio.
*/
static int brd_do_bvec(struct brd_device *brd, struct page *page,
unsigned int len, unsigned int off, bool is_write,
sector_t sector)
{
void *mem;
int err = 0;
if (is_write) {
err = copy_to_brd_setup(brd, sector, len);
if (err)
goto out;
}
mem = kmap_atomic(page);
if (!is_write) {
copy_from_brd(mem + off, brd, sector, len);
flush_dcache_page(page);
} else {
flush_dcache_page(page);
copy_to_brd(brd, mem + off, sector, len);
}
kunmap_atomic(mem);
out:
return err;
}
static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
{
struct block_device *bdev = bio->bi_bdev;
struct brd_device *brd = bdev->bd_disk->private_data;
struct bio_vec bvec;
sector_t sector;
struct bvec_iter iter;
sector = bio->bi_iter.bi_sector;
if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
goto io_error;
bio_for_each_segment(bvec, bio, iter) {
unsigned int len = bvec.bv_len;
int err;
err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
op_is_write(bio_op(bio)), sector);
if (err)
goto io_error;
sector += len >> SECTOR_SHIFT;
}
bio_endio(bio);
return BLK_QC_T_NONE;
io_error:
bio_io_error(bio);
return BLK_QC_T_NONE;
}
static int brd_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, bool is_write)
{
struct brd_device *brd = bdev->bd_disk->private_data;
int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
page_endio(page, is_write, err);
return err;
}
#ifdef CONFIG_BLK_DEV_RAM_DAX
static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
long nr_pages, void **kaddr, pfn_t *pfn)
{
struct page *page;
if (!brd)
return -ENODEV;
page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
if (!page)
return -ENOSPC;
*kaddr = page_address(page);
*pfn = page_to_pfn_t(page);
return 1;
}
static long brd_dax_direct_access(struct dax_device *dax_dev,
pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
{
struct brd_device *brd = dax_get_private(dax_dev);
return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
}
static const struct dax_operations brd_dax_ops = {
.direct_access = brd_dax_direct_access,
};
#endif
static const struct block_device_operations brd_fops = {
.owner = THIS_MODULE,
.rw_page = brd_rw_page,
};
/*
* And now the modules code and kernel interface.
*/
static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
module_param(rd_nr, int, S_IRUGO);
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
module_param(rd_size, ulong, S_IRUGO);
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
static int max_part = 1;
module_param(max_part, int, S_IRUGO);
MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
MODULE_ALIAS("rd");
#ifndef MODULE
/* Legacy boot options - nonmodular */
static int __init ramdisk_size(char *str)
{
rd_size = simple_strtol(str, NULL, 0);
return 1;
}
__setup("ramdisk_size=", ramdisk_size);
#endif
/*
* The device scheme is derived from loop.c. Keep them in synch where possible
* (should share code eventually).
*/
static LIST_HEAD(brd_devices);
static DEFINE_MUTEX(brd_devices_mutex);
static struct brd_device *brd_alloc(int i)
{
struct brd_device *brd;
struct gendisk *disk;
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
if (!brd)
goto out;
brd->brd_number = i;
spin_lock_init(&brd->brd_lock);
INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
if (!brd->brd_queue)
goto out_free_dev;
blk_queue_make_request(brd->brd_queue, brd_make_request);
blk_queue_max_hw_sectors(brd->brd_queue, 1024);
blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
/* This is so fdisk will align partitions on 4k, because of
* direct_access API needing 4k alignment, returning a PFN
* (This is only a problem on very small devices <= 4M,
* otherwise fdisk will align on 1M. Regardless this call
* is harmless)
*/
blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
disk = brd->brd_disk = alloc_disk(max_part);
if (!disk)
goto out_free_queue;
disk->major = RAMDISK_MAJOR;
disk->first_minor = i * max_part;
disk->fops = &brd_fops;
disk->private_data = brd;
disk->queue = brd->brd_queue;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "ram%d", i);
set_capacity(disk, rd_size * 2);
#ifdef CONFIG_BLK_DEV_RAM_DAX
queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
if (!brd->dax_dev)
goto out_free_inode;
#endif
return brd;
#ifdef CONFIG_BLK_DEV_RAM_DAX
out_free_inode:
kill_dax(brd->dax_dev);
put_dax(brd->dax_dev);
#endif
out_free_queue:
blk_cleanup_queue(brd->brd_queue);
out_free_dev:
kfree(brd);
out:
return NULL;
}
static void brd_free(struct brd_device *brd)
{
put_disk(brd->brd_disk);
blk_cleanup_queue(brd->brd_queue);
brd_free_pages(brd);
kfree(brd);
}
static struct brd_device *brd_init_one(int i, bool *new)
{
struct brd_device *brd;
*new = false;
list_for_each_entry(brd, &brd_devices, brd_list) {
if (brd->brd_number == i)
goto out;
}
brd = brd_alloc(i);
if (brd) {
add_disk(brd->brd_disk);
list_add_tail(&brd->brd_list, &brd_devices);
}
*new = true;
out:
return brd;
}
static void brd_del_one(struct brd_device *brd)
{
list_del(&brd->brd_list);
#ifdef CONFIG_BLK_DEV_RAM_DAX
kill_dax(brd->dax_dev);
put_dax(brd->dax_dev);
#endif
del_gendisk(brd->brd_disk);
brd_free(brd);
}
static struct kobject *brd_probe(dev_t dev, int *part, void *data)
{
struct brd_device *brd;
struct kobject *kobj;
bool new;
mutex_lock(&brd_devices_mutex);
brd = brd_init_one(MINOR(dev) / max_part, &new);
kobj = brd ? get_disk(brd->brd_disk) : NULL;
mutex_unlock(&brd_devices_mutex);
if (new)
*part = 0;
return kobj;
}
static int __init brd_init(void)
{
struct brd_device *brd, *next;
int i;
/*
* brd module now has a feature to instantiate underlying device
* structure on-demand, provided that there is an access dev node.
*
* (1) if rd_nr is specified, create that many upfront. else
* it defaults to CONFIG_BLK_DEV_RAM_COUNT
* (2) User can further extend brd devices by create dev node themselves
* and have kernel automatically instantiate actual device
* on-demand. Example:
* mknod /path/devnod_name b 1 X # 1 is the rd major
* fdisk -l /path/devnod_name
* If (X / max_part) was not already created it will be created
* dynamically.
*/
if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
return -EIO;
if (unlikely(!max_part))
max_part = 1;
for (i = 0; i < rd_nr; i++) {
brd = brd_alloc(i);
if (!brd)
goto out_free;
list_add_tail(&brd->brd_list, &brd_devices);
}
/* point of no return */
list_for_each_entry(brd, &brd_devices, brd_list)
add_disk(brd->brd_disk);
blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
THIS_MODULE, brd_probe, NULL, NULL);
pr_info("brd: module loaded\n");
return 0;
out_free:
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
list_del(&brd->brd_list);
brd_free(brd);
}
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
pr_info("brd: module NOT loaded !!!\n");
return -ENOMEM;
}
static void __exit brd_exit(void)
{
struct brd_device *brd, *next;
list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
brd_del_one(brd);
blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
pr_info("brd: module unloaded\n");
}
module_init(brd_init);
module_exit(brd_exit);