mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 06:34:11 +08:00
cb17b2a674
hpet_assign_irq() is called with hpet_device->num as "hardware interrupt number", but hpet_device->num is initialized after the interrupt has been assigned, so it's always 0. As a consequence only the first MSI allocation succeeds, the following ones fail because the "hardware interrupt number" already exists. Move the initialization of dev->num and other fields before the call to hpet_assign_irq(), which is the ordering before the offending commit which introduced that regression. Fixes: "3cb96f0c9733 x86/hpet: Enhance HPET IRQ to support hierarchical irqdomains" Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1506211635010.4107@nanos Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de>
1228 lines
28 KiB
C
1228 lines
28 KiB
C
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/i8253.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hpet.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/irqdomain.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/time.h>
|
|
|
|
#define HPET_MASK CLOCKSOURCE_MASK(32)
|
|
|
|
/* FSEC = 10^-15
|
|
NSEC = 10^-9 */
|
|
#define FSEC_PER_NSEC 1000000L
|
|
|
|
#define HPET_DEV_USED_BIT 2
|
|
#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
|
|
#define HPET_DEV_VALID 0x8
|
|
#define HPET_DEV_FSB_CAP 0x1000
|
|
#define HPET_DEV_PERI_CAP 0x2000
|
|
|
|
#define HPET_MIN_CYCLES 128
|
|
#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
|
|
|
|
/*
|
|
* HPET address is set in acpi/boot.c, when an ACPI entry exists
|
|
*/
|
|
unsigned long hpet_address;
|
|
u8 hpet_blockid; /* OS timer block num */
|
|
u8 hpet_msi_disable;
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
static unsigned long hpet_num_timers;
|
|
#endif
|
|
static void __iomem *hpet_virt_address;
|
|
|
|
struct hpet_dev {
|
|
struct clock_event_device evt;
|
|
unsigned int num;
|
|
int cpu;
|
|
unsigned int irq;
|
|
unsigned int flags;
|
|
char name[10];
|
|
};
|
|
|
|
inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
|
|
{
|
|
return container_of(evtdev, struct hpet_dev, evt);
|
|
}
|
|
|
|
inline unsigned int hpet_readl(unsigned int a)
|
|
{
|
|
return readl(hpet_virt_address + a);
|
|
}
|
|
|
|
static inline void hpet_writel(unsigned int d, unsigned int a)
|
|
{
|
|
writel(d, hpet_virt_address + a);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#include <asm/pgtable.h>
|
|
#endif
|
|
|
|
static inline void hpet_set_mapping(void)
|
|
{
|
|
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
|
|
}
|
|
|
|
static inline void hpet_clear_mapping(void)
|
|
{
|
|
iounmap(hpet_virt_address);
|
|
hpet_virt_address = NULL;
|
|
}
|
|
|
|
/*
|
|
* HPET command line enable / disable
|
|
*/
|
|
int boot_hpet_disable;
|
|
int hpet_force_user;
|
|
static int hpet_verbose;
|
|
|
|
static int __init hpet_setup(char *str)
|
|
{
|
|
while (str) {
|
|
char *next = strchr(str, ',');
|
|
|
|
if (next)
|
|
*next++ = 0;
|
|
if (!strncmp("disable", str, 7))
|
|
boot_hpet_disable = 1;
|
|
if (!strncmp("force", str, 5))
|
|
hpet_force_user = 1;
|
|
if (!strncmp("verbose", str, 7))
|
|
hpet_verbose = 1;
|
|
str = next;
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("hpet=", hpet_setup);
|
|
|
|
static int __init disable_hpet(char *str)
|
|
{
|
|
boot_hpet_disable = 1;
|
|
return 1;
|
|
}
|
|
__setup("nohpet", disable_hpet);
|
|
|
|
static inline int is_hpet_capable(void)
|
|
{
|
|
return !boot_hpet_disable && hpet_address;
|
|
}
|
|
|
|
/*
|
|
* HPET timer interrupt enable / disable
|
|
*/
|
|
static int hpet_legacy_int_enabled;
|
|
|
|
/**
|
|
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
|
|
*/
|
|
int is_hpet_enabled(void)
|
|
{
|
|
return is_hpet_capable() && hpet_legacy_int_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_hpet_enabled);
|
|
|
|
static void _hpet_print_config(const char *function, int line)
|
|
{
|
|
u32 i, timers, l, h;
|
|
printk(KERN_INFO "hpet: %s(%d):\n", function, line);
|
|
l = hpet_readl(HPET_ID);
|
|
h = hpet_readl(HPET_PERIOD);
|
|
timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
|
|
printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
|
|
l = hpet_readl(HPET_CFG);
|
|
h = hpet_readl(HPET_STATUS);
|
|
printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
|
|
l = hpet_readl(HPET_COUNTER);
|
|
h = hpet_readl(HPET_COUNTER+4);
|
|
printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
|
|
|
|
for (i = 0; i < timers; i++) {
|
|
l = hpet_readl(HPET_Tn_CFG(i));
|
|
h = hpet_readl(HPET_Tn_CFG(i)+4);
|
|
printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
|
|
i, l, h);
|
|
l = hpet_readl(HPET_Tn_CMP(i));
|
|
h = hpet_readl(HPET_Tn_CMP(i)+4);
|
|
printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
|
|
i, l, h);
|
|
l = hpet_readl(HPET_Tn_ROUTE(i));
|
|
h = hpet_readl(HPET_Tn_ROUTE(i)+4);
|
|
printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
|
|
i, l, h);
|
|
}
|
|
}
|
|
|
|
#define hpet_print_config() \
|
|
do { \
|
|
if (hpet_verbose) \
|
|
_hpet_print_config(__func__, __LINE__); \
|
|
} while (0)
|
|
|
|
/*
|
|
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
|
|
* timer 0 and timer 1 in case of RTC emulation.
|
|
*/
|
|
#ifdef CONFIG_HPET
|
|
|
|
static void hpet_reserve_msi_timers(struct hpet_data *hd);
|
|
|
|
static void hpet_reserve_platform_timers(unsigned int id)
|
|
{
|
|
struct hpet __iomem *hpet = hpet_virt_address;
|
|
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
|
|
unsigned int nrtimers, i;
|
|
struct hpet_data hd;
|
|
|
|
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
|
|
|
|
memset(&hd, 0, sizeof(hd));
|
|
hd.hd_phys_address = hpet_address;
|
|
hd.hd_address = hpet;
|
|
hd.hd_nirqs = nrtimers;
|
|
hpet_reserve_timer(&hd, 0);
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
hpet_reserve_timer(&hd, 1);
|
|
#endif
|
|
|
|
/*
|
|
* NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
|
|
* is wrong for i8259!) not the output IRQ. Many BIOS writers
|
|
* don't bother configuring *any* comparator interrupts.
|
|
*/
|
|
hd.hd_irq[0] = HPET_LEGACY_8254;
|
|
hd.hd_irq[1] = HPET_LEGACY_RTC;
|
|
|
|
for (i = 2; i < nrtimers; timer++, i++) {
|
|
hd.hd_irq[i] = (readl(&timer->hpet_config) &
|
|
Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
|
|
}
|
|
|
|
hpet_reserve_msi_timers(&hd);
|
|
|
|
hpet_alloc(&hd);
|
|
|
|
}
|
|
#else
|
|
static void hpet_reserve_platform_timers(unsigned int id) { }
|
|
#endif
|
|
|
|
/*
|
|
* Common hpet info
|
|
*/
|
|
static unsigned long hpet_freq;
|
|
|
|
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt);
|
|
static int hpet_legacy_next_event(unsigned long delta,
|
|
struct clock_event_device *evt);
|
|
|
|
/*
|
|
* The hpet clock event device
|
|
*/
|
|
static struct clock_event_device hpet_clockevent = {
|
|
.name = "hpet",
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
|
.set_mode = hpet_legacy_set_mode,
|
|
.set_next_event = hpet_legacy_next_event,
|
|
.irq = 0,
|
|
.rating = 50,
|
|
};
|
|
|
|
static void hpet_stop_counter(void)
|
|
{
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
}
|
|
|
|
static void hpet_reset_counter(void)
|
|
{
|
|
hpet_writel(0, HPET_COUNTER);
|
|
hpet_writel(0, HPET_COUNTER + 4);
|
|
}
|
|
|
|
static void hpet_start_counter(void)
|
|
{
|
|
unsigned int cfg = hpet_readl(HPET_CFG);
|
|
cfg |= HPET_CFG_ENABLE;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
}
|
|
|
|
static void hpet_restart_counter(void)
|
|
{
|
|
hpet_stop_counter();
|
|
hpet_reset_counter();
|
|
hpet_start_counter();
|
|
}
|
|
|
|
static void hpet_resume_device(void)
|
|
{
|
|
force_hpet_resume();
|
|
}
|
|
|
|
static void hpet_resume_counter(struct clocksource *cs)
|
|
{
|
|
hpet_resume_device();
|
|
hpet_restart_counter();
|
|
}
|
|
|
|
static void hpet_enable_legacy_int(void)
|
|
{
|
|
unsigned int cfg = hpet_readl(HPET_CFG);
|
|
|
|
cfg |= HPET_CFG_LEGACY;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
hpet_legacy_int_enabled = 1;
|
|
}
|
|
|
|
static void hpet_legacy_clockevent_register(void)
|
|
{
|
|
/* Start HPET legacy interrupts */
|
|
hpet_enable_legacy_int();
|
|
|
|
/*
|
|
* Start hpet with the boot cpu mask and make it
|
|
* global after the IO_APIC has been initialized.
|
|
*/
|
|
hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
|
|
clockevents_config_and_register(&hpet_clockevent, hpet_freq,
|
|
HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
|
|
global_clock_event = &hpet_clockevent;
|
|
printk(KERN_DEBUG "hpet clockevent registered\n");
|
|
}
|
|
|
|
static void hpet_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt, int timer)
|
|
{
|
|
unsigned int cfg, cmp, now;
|
|
uint64_t delta;
|
|
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
hpet_stop_counter();
|
|
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
|
|
delta >>= evt->shift;
|
|
now = hpet_readl(HPET_COUNTER);
|
|
cmp = now + (unsigned int) delta;
|
|
cfg = hpet_readl(HPET_Tn_CFG(timer));
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
|
HPET_TN_SETVAL | HPET_TN_32BIT;
|
|
hpet_writel(cfg, HPET_Tn_CFG(timer));
|
|
hpet_writel(cmp, HPET_Tn_CMP(timer));
|
|
udelay(1);
|
|
/*
|
|
* HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
|
|
* cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
|
|
* bit is automatically cleared after the first write.
|
|
* (See AMD-8111 HyperTransport I/O Hub Data Sheet,
|
|
* Publication # 24674)
|
|
*/
|
|
hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
|
|
hpet_start_counter();
|
|
hpet_print_config();
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
cfg = hpet_readl(HPET_Tn_CFG(timer));
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
hpet_writel(cfg, HPET_Tn_CFG(timer));
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
cfg = hpet_readl(HPET_Tn_CFG(timer));
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
hpet_writel(cfg, HPET_Tn_CFG(timer));
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
if (timer == 0) {
|
|
hpet_enable_legacy_int();
|
|
} else {
|
|
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
|
|
irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
|
|
disable_irq(hdev->irq);
|
|
irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
|
|
enable_irq(hdev->irq);
|
|
}
|
|
hpet_print_config();
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int hpet_next_event(unsigned long delta,
|
|
struct clock_event_device *evt, int timer)
|
|
{
|
|
u32 cnt;
|
|
s32 res;
|
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
cnt += (u32) delta;
|
|
hpet_writel(cnt, HPET_Tn_CMP(timer));
|
|
|
|
/*
|
|
* HPETs are a complete disaster. The compare register is
|
|
* based on a equal comparison and neither provides a less
|
|
* than or equal functionality (which would require to take
|
|
* the wraparound into account) nor a simple count down event
|
|
* mode. Further the write to the comparator register is
|
|
* delayed internally up to two HPET clock cycles in certain
|
|
* chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
|
|
* longer delays. We worked around that by reading back the
|
|
* compare register, but that required another workaround for
|
|
* ICH9,10 chips where the first readout after write can
|
|
* return the old stale value. We already had a minimum
|
|
* programming delta of 5us enforced, but a NMI or SMI hitting
|
|
* between the counter readout and the comparator write can
|
|
* move us behind that point easily. Now instead of reading
|
|
* the compare register back several times, we make the ETIME
|
|
* decision based on the following: Return ETIME if the
|
|
* counter value after the write is less than HPET_MIN_CYCLES
|
|
* away from the event or if the counter is already ahead of
|
|
* the event. The minimum programming delta for the generic
|
|
* clockevents code is set to 1.5 * HPET_MIN_CYCLES.
|
|
*/
|
|
res = (s32)(cnt - hpet_readl(HPET_COUNTER));
|
|
|
|
return res < HPET_MIN_CYCLES ? -ETIME : 0;
|
|
}
|
|
|
|
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
hpet_set_mode(mode, evt, 0);
|
|
}
|
|
|
|
static int hpet_legacy_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
return hpet_next_event(delta, evt, 0);
|
|
}
|
|
|
|
/*
|
|
* HPET MSI Support
|
|
*/
|
|
#ifdef CONFIG_PCI_MSI
|
|
|
|
static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
|
|
static struct hpet_dev *hpet_devs;
|
|
static struct irq_domain *hpet_domain;
|
|
|
|
void hpet_msi_unmask(struct irq_data *data)
|
|
{
|
|
struct hpet_dev *hdev = data->handler_data;
|
|
unsigned int cfg;
|
|
|
|
/* unmask it */
|
|
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
|
|
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
|
|
}
|
|
|
|
void hpet_msi_mask(struct irq_data *data)
|
|
{
|
|
struct hpet_dev *hdev = data->handler_data;
|
|
unsigned int cfg;
|
|
|
|
/* mask it */
|
|
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
|
|
cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
|
|
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
|
|
}
|
|
|
|
void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
|
|
{
|
|
hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
|
|
hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
|
|
}
|
|
|
|
void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
|
|
{
|
|
msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
|
|
msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
|
|
msg->address_hi = 0;
|
|
}
|
|
|
|
static void hpet_msi_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
|
|
hpet_set_mode(mode, evt, hdev->num);
|
|
}
|
|
|
|
static int hpet_msi_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
|
|
return hpet_next_event(delta, evt, hdev->num);
|
|
}
|
|
|
|
static irqreturn_t hpet_interrupt_handler(int irq, void *data)
|
|
{
|
|
struct hpet_dev *dev = (struct hpet_dev *)data;
|
|
struct clock_event_device *hevt = &dev->evt;
|
|
|
|
if (!hevt->event_handler) {
|
|
printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
|
|
dev->num);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
hevt->event_handler(hevt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int hpet_setup_irq(struct hpet_dev *dev)
|
|
{
|
|
|
|
if (request_irq(dev->irq, hpet_interrupt_handler,
|
|
IRQF_TIMER | IRQF_NOBALANCING,
|
|
dev->name, dev))
|
|
return -1;
|
|
|
|
disable_irq(dev->irq);
|
|
irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
|
|
enable_irq(dev->irq);
|
|
|
|
printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
|
|
dev->name, dev->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This should be called in specific @cpu */
|
|
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
|
|
{
|
|
struct clock_event_device *evt = &hdev->evt;
|
|
|
|
WARN_ON(cpu != smp_processor_id());
|
|
if (!(hdev->flags & HPET_DEV_VALID))
|
|
return;
|
|
|
|
hdev->cpu = cpu;
|
|
per_cpu(cpu_hpet_dev, cpu) = hdev;
|
|
evt->name = hdev->name;
|
|
hpet_setup_irq(hdev);
|
|
evt->irq = hdev->irq;
|
|
|
|
evt->rating = 110;
|
|
evt->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
if (hdev->flags & HPET_DEV_PERI_CAP)
|
|
evt->features |= CLOCK_EVT_FEAT_PERIODIC;
|
|
|
|
evt->set_mode = hpet_msi_set_mode;
|
|
evt->set_next_event = hpet_msi_next_event;
|
|
evt->cpumask = cpumask_of(hdev->cpu);
|
|
|
|
clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
|
|
0x7FFFFFFF);
|
|
}
|
|
|
|
#ifdef CONFIG_HPET
|
|
/* Reserve at least one timer for userspace (/dev/hpet) */
|
|
#define RESERVE_TIMERS 1
|
|
#else
|
|
#define RESERVE_TIMERS 0
|
|
#endif
|
|
|
|
static void hpet_msi_capability_lookup(unsigned int start_timer)
|
|
{
|
|
unsigned int id;
|
|
unsigned int num_timers;
|
|
unsigned int num_timers_used = 0;
|
|
int i, irq;
|
|
|
|
if (hpet_msi_disable)
|
|
return;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARAT))
|
|
return;
|
|
id = hpet_readl(HPET_ID);
|
|
|
|
num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
|
|
num_timers++; /* Value read out starts from 0 */
|
|
hpet_print_config();
|
|
|
|
hpet_domain = hpet_create_irq_domain(hpet_blockid);
|
|
if (!hpet_domain)
|
|
return;
|
|
|
|
hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
|
|
if (!hpet_devs)
|
|
return;
|
|
|
|
hpet_num_timers = num_timers;
|
|
|
|
for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
|
|
struct hpet_dev *hdev = &hpet_devs[num_timers_used];
|
|
unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
|
|
|
|
/* Only consider HPET timer with MSI support */
|
|
if (!(cfg & HPET_TN_FSB_CAP))
|
|
continue;
|
|
|
|
hdev->flags = 0;
|
|
if (cfg & HPET_TN_PERIODIC_CAP)
|
|
hdev->flags |= HPET_DEV_PERI_CAP;
|
|
sprintf(hdev->name, "hpet%d", i);
|
|
hdev->num = i;
|
|
|
|
irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
|
|
if (irq <= 0)
|
|
continue;
|
|
|
|
hdev->irq = irq;
|
|
hdev->flags |= HPET_DEV_FSB_CAP;
|
|
hdev->flags |= HPET_DEV_VALID;
|
|
num_timers_used++;
|
|
if (num_timers_used == num_possible_cpus())
|
|
break;
|
|
}
|
|
|
|
printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
|
|
num_timers, num_timers_used);
|
|
}
|
|
|
|
#ifdef CONFIG_HPET
|
|
static void hpet_reserve_msi_timers(struct hpet_data *hd)
|
|
{
|
|
int i;
|
|
|
|
if (!hpet_devs)
|
|
return;
|
|
|
|
for (i = 0; i < hpet_num_timers; i++) {
|
|
struct hpet_dev *hdev = &hpet_devs[i];
|
|
|
|
if (!(hdev->flags & HPET_DEV_VALID))
|
|
continue;
|
|
|
|
hd->hd_irq[hdev->num] = hdev->irq;
|
|
hpet_reserve_timer(hd, hdev->num);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static struct hpet_dev *hpet_get_unused_timer(void)
|
|
{
|
|
int i;
|
|
|
|
if (!hpet_devs)
|
|
return NULL;
|
|
|
|
for (i = 0; i < hpet_num_timers; i++) {
|
|
struct hpet_dev *hdev = &hpet_devs[i];
|
|
|
|
if (!(hdev->flags & HPET_DEV_VALID))
|
|
continue;
|
|
if (test_and_set_bit(HPET_DEV_USED_BIT,
|
|
(unsigned long *)&hdev->flags))
|
|
continue;
|
|
return hdev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct hpet_work_struct {
|
|
struct delayed_work work;
|
|
struct completion complete;
|
|
};
|
|
|
|
static void hpet_work(struct work_struct *w)
|
|
{
|
|
struct hpet_dev *hdev;
|
|
int cpu = smp_processor_id();
|
|
struct hpet_work_struct *hpet_work;
|
|
|
|
hpet_work = container_of(w, struct hpet_work_struct, work.work);
|
|
|
|
hdev = hpet_get_unused_timer();
|
|
if (hdev)
|
|
init_one_hpet_msi_clockevent(hdev, cpu);
|
|
|
|
complete(&hpet_work->complete);
|
|
}
|
|
|
|
static int hpet_cpuhp_notify(struct notifier_block *n,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned long cpu = (unsigned long)hcpu;
|
|
struct hpet_work_struct work;
|
|
struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
|
|
|
|
switch (action & 0xf) {
|
|
case CPU_ONLINE:
|
|
INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
|
|
init_completion(&work.complete);
|
|
/* FIXME: add schedule_work_on() */
|
|
schedule_delayed_work_on(cpu, &work.work, 0);
|
|
wait_for_completion(&work.complete);
|
|
destroy_delayed_work_on_stack(&work.work);
|
|
break;
|
|
case CPU_DEAD:
|
|
if (hdev) {
|
|
free_irq(hdev->irq, hdev);
|
|
hdev->flags &= ~HPET_DEV_USED;
|
|
per_cpu(cpu_hpet_dev, cpu) = NULL;
|
|
}
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#else
|
|
|
|
static void hpet_msi_capability_lookup(unsigned int start_timer)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_HPET
|
|
static void hpet_reserve_msi_timers(struct hpet_data *hd)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static int hpet_cpuhp_notify(struct notifier_block *n,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Clock source related code
|
|
*/
|
|
static cycle_t read_hpet(struct clocksource *cs)
|
|
{
|
|
return (cycle_t)hpet_readl(HPET_COUNTER);
|
|
}
|
|
|
|
static struct clocksource clocksource_hpet = {
|
|
.name = "hpet",
|
|
.rating = 250,
|
|
.read = read_hpet,
|
|
.mask = HPET_MASK,
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
.resume = hpet_resume_counter,
|
|
.archdata = { .vclock_mode = VCLOCK_HPET },
|
|
};
|
|
|
|
static int hpet_clocksource_register(void)
|
|
{
|
|
u64 start, now;
|
|
cycle_t t1;
|
|
|
|
/* Start the counter */
|
|
hpet_restart_counter();
|
|
|
|
/* Verify whether hpet counter works */
|
|
t1 = hpet_readl(HPET_COUNTER);
|
|
rdtscll(start);
|
|
|
|
/*
|
|
* We don't know the TSC frequency yet, but waiting for
|
|
* 200000 TSC cycles is safe:
|
|
* 4 GHz == 50us
|
|
* 1 GHz == 200us
|
|
*/
|
|
do {
|
|
rep_nop();
|
|
rdtscll(now);
|
|
} while ((now - start) < 200000UL);
|
|
|
|
if (t1 == hpet_readl(HPET_COUNTER)) {
|
|
printk(KERN_WARNING
|
|
"HPET counter not counting. HPET disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
|
|
return 0;
|
|
}
|
|
|
|
static u32 *hpet_boot_cfg;
|
|
|
|
/**
|
|
* hpet_enable - Try to setup the HPET timer. Returns 1 on success.
|
|
*/
|
|
int __init hpet_enable(void)
|
|
{
|
|
u32 hpet_period, cfg, id;
|
|
u64 freq;
|
|
unsigned int i, last;
|
|
|
|
if (!is_hpet_capable())
|
|
return 0;
|
|
|
|
hpet_set_mapping();
|
|
|
|
/*
|
|
* Read the period and check for a sane value:
|
|
*/
|
|
hpet_period = hpet_readl(HPET_PERIOD);
|
|
|
|
/*
|
|
* AMD SB700 based systems with spread spectrum enabled use a
|
|
* SMM based HPET emulation to provide proper frequency
|
|
* setting. The SMM code is initialized with the first HPET
|
|
* register access and takes some time to complete. During
|
|
* this time the config register reads 0xffffffff. We check
|
|
* for max. 1000 loops whether the config register reads a non
|
|
* 0xffffffff value to make sure that HPET is up and running
|
|
* before we go further. A counting loop is safe, as the HPET
|
|
* access takes thousands of CPU cycles. On non SB700 based
|
|
* machines this check is only done once and has no side
|
|
* effects.
|
|
*/
|
|
for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
|
|
if (i == 1000) {
|
|
printk(KERN_WARNING
|
|
"HPET config register value = 0xFFFFFFFF. "
|
|
"Disabling HPET\n");
|
|
goto out_nohpet;
|
|
}
|
|
}
|
|
|
|
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
|
|
goto out_nohpet;
|
|
|
|
/*
|
|
* The period is a femto seconds value. Convert it to a
|
|
* frequency.
|
|
*/
|
|
freq = FSEC_PER_SEC;
|
|
do_div(freq, hpet_period);
|
|
hpet_freq = freq;
|
|
|
|
/*
|
|
* Read the HPET ID register to retrieve the IRQ routing
|
|
* information and the number of channels
|
|
*/
|
|
id = hpet_readl(HPET_ID);
|
|
hpet_print_config();
|
|
|
|
last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
/*
|
|
* The legacy routing mode needs at least two channels, tick timer
|
|
* and the rtc emulation channel.
|
|
*/
|
|
if (!last)
|
|
goto out_nohpet;
|
|
#endif
|
|
|
|
cfg = hpet_readl(HPET_CFG);
|
|
hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
|
|
GFP_KERNEL);
|
|
if (hpet_boot_cfg)
|
|
*hpet_boot_cfg = cfg;
|
|
else
|
|
pr_warn("HPET initial state will not be saved\n");
|
|
cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
|
|
hpet_writel(cfg, HPET_CFG);
|
|
if (cfg)
|
|
pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
|
|
cfg);
|
|
|
|
for (i = 0; i <= last; ++i) {
|
|
cfg = hpet_readl(HPET_Tn_CFG(i));
|
|
if (hpet_boot_cfg)
|
|
hpet_boot_cfg[i + 1] = cfg;
|
|
cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
|
|
hpet_writel(cfg, HPET_Tn_CFG(i));
|
|
cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
|
|
| HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
|
|
| HPET_TN_FSB | HPET_TN_FSB_CAP);
|
|
if (cfg)
|
|
pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
|
|
cfg, i);
|
|
}
|
|
hpet_print_config();
|
|
|
|
if (hpet_clocksource_register())
|
|
goto out_nohpet;
|
|
|
|
if (id & HPET_ID_LEGSUP) {
|
|
hpet_legacy_clockevent_register();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
out_nohpet:
|
|
hpet_clear_mapping();
|
|
hpet_address = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Needs to be late, as the reserve_timer code calls kalloc !
|
|
*
|
|
* Not a problem on i386 as hpet_enable is called from late_time_init,
|
|
* but on x86_64 it is necessary !
|
|
*/
|
|
static __init int hpet_late_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (boot_hpet_disable)
|
|
return -ENODEV;
|
|
|
|
if (!hpet_address) {
|
|
if (!force_hpet_address)
|
|
return -ENODEV;
|
|
|
|
hpet_address = force_hpet_address;
|
|
hpet_enable();
|
|
}
|
|
|
|
if (!hpet_virt_address)
|
|
return -ENODEV;
|
|
|
|
if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
|
|
hpet_msi_capability_lookup(2);
|
|
else
|
|
hpet_msi_capability_lookup(0);
|
|
|
|
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
|
|
hpet_print_config();
|
|
|
|
if (hpet_msi_disable)
|
|
return 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_ARAT))
|
|
return 0;
|
|
|
|
cpu_notifier_register_begin();
|
|
for_each_online_cpu(cpu) {
|
|
hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
|
|
}
|
|
|
|
/* This notifier should be called after workqueue is ready */
|
|
__hotcpu_notifier(hpet_cpuhp_notify, -20);
|
|
cpu_notifier_register_done();
|
|
|
|
return 0;
|
|
}
|
|
fs_initcall(hpet_late_init);
|
|
|
|
void hpet_disable(void)
|
|
{
|
|
if (is_hpet_capable() && hpet_virt_address) {
|
|
unsigned int cfg = hpet_readl(HPET_CFG), id, last;
|
|
|
|
if (hpet_boot_cfg)
|
|
cfg = *hpet_boot_cfg;
|
|
else if (hpet_legacy_int_enabled) {
|
|
cfg &= ~HPET_CFG_LEGACY;
|
|
hpet_legacy_int_enabled = 0;
|
|
}
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
if (!hpet_boot_cfg)
|
|
return;
|
|
|
|
id = hpet_readl(HPET_ID);
|
|
last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
|
|
|
|
for (id = 0; id <= last; ++id)
|
|
hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
|
|
|
|
if (*hpet_boot_cfg & HPET_CFG_ENABLE)
|
|
hpet_writel(*hpet_boot_cfg, HPET_CFG);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
|
|
* is enabled, we support RTC interrupt functionality in software.
|
|
* RTC has 3 kinds of interrupts:
|
|
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
|
|
* is updated
|
|
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
|
|
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
|
|
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
|
|
* (1) and (2) above are implemented using polling at a frequency of
|
|
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
|
|
* overhead. (DEFAULT_RTC_INT_FREQ)
|
|
* For (3), we use interrupts at 64Hz or user specified periodic
|
|
* frequency, whichever is higher.
|
|
*/
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/rtc.h>
|
|
#include <asm/rtc.h>
|
|
|
|
#define DEFAULT_RTC_INT_FREQ 64
|
|
#define DEFAULT_RTC_SHIFT 6
|
|
#define RTC_NUM_INTS 1
|
|
|
|
static unsigned long hpet_rtc_flags;
|
|
static int hpet_prev_update_sec;
|
|
static struct rtc_time hpet_alarm_time;
|
|
static unsigned long hpet_pie_count;
|
|
static u32 hpet_t1_cmp;
|
|
static u32 hpet_default_delta;
|
|
static u32 hpet_pie_delta;
|
|
static unsigned long hpet_pie_limit;
|
|
|
|
static rtc_irq_handler irq_handler;
|
|
|
|
/*
|
|
* Check that the hpet counter c1 is ahead of the c2
|
|
*/
|
|
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
|
|
{
|
|
return (s32)(c2 - c1) < 0;
|
|
}
|
|
|
|
/*
|
|
* Registers a IRQ handler.
|
|
*/
|
|
int hpet_register_irq_handler(rtc_irq_handler handler)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return -ENODEV;
|
|
if (irq_handler)
|
|
return -EBUSY;
|
|
|
|
irq_handler = handler;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
|
|
|
|
/*
|
|
* Deregisters the IRQ handler registered with hpet_register_irq_handler()
|
|
* and does cleanup.
|
|
*/
|
|
void hpet_unregister_irq_handler(rtc_irq_handler handler)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return;
|
|
|
|
irq_handler = NULL;
|
|
hpet_rtc_flags = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
|
|
|
|
/*
|
|
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
|
|
* is not supported by all HPET implementations for timer 1.
|
|
*
|
|
* hpet_rtc_timer_init() is called when the rtc is initialized.
|
|
*/
|
|
int hpet_rtc_timer_init(void)
|
|
{
|
|
unsigned int cfg, cnt, delta;
|
|
unsigned long flags;
|
|
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
if (!hpet_default_delta) {
|
|
uint64_t clc;
|
|
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
|
|
hpet_default_delta = clc;
|
|
}
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
delta = hpet_default_delta;
|
|
else
|
|
delta = hpet_pie_delta;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cnt = delta + hpet_readl(HPET_COUNTER);
|
|
hpet_writel(cnt, HPET_T1_CMP);
|
|
hpet_t1_cmp = cnt;
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
|
|
|
|
static void hpet_disable_rtc_channel(void)
|
|
{
|
|
unsigned long cfg;
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
}
|
|
|
|
/*
|
|
* The functions below are called from rtc driver.
|
|
* Return 0 if HPET is not being used.
|
|
* Otherwise do the necessary changes and return 1.
|
|
*/
|
|
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
hpet_rtc_flags &= ~bit_mask;
|
|
if (unlikely(!hpet_rtc_flags))
|
|
hpet_disable_rtc_channel();
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
|
|
|
|
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
|
|
{
|
|
unsigned long oldbits = hpet_rtc_flags;
|
|
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
hpet_rtc_flags |= bit_mask;
|
|
|
|
if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
|
|
hpet_prev_update_sec = -1;
|
|
|
|
if (!oldbits)
|
|
hpet_rtc_timer_init();
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
|
|
|
|
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
|
|
unsigned char sec)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
hpet_alarm_time.tm_hour = hrs;
|
|
hpet_alarm_time.tm_min = min;
|
|
hpet_alarm_time.tm_sec = sec;
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
|
|
|
|
int hpet_set_periodic_freq(unsigned long freq)
|
|
{
|
|
uint64_t clc;
|
|
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
if (freq <= DEFAULT_RTC_INT_FREQ)
|
|
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
|
|
else {
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
do_div(clc, freq);
|
|
clc >>= hpet_clockevent.shift;
|
|
hpet_pie_delta = clc;
|
|
hpet_pie_limit = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
|
|
|
|
int hpet_rtc_dropped_irq(void)
|
|
{
|
|
return is_hpet_enabled();
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
|
|
|
|
static void hpet_rtc_timer_reinit(void)
|
|
{
|
|
unsigned int delta;
|
|
int lost_ints = -1;
|
|
|
|
if (unlikely(!hpet_rtc_flags))
|
|
hpet_disable_rtc_channel();
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
delta = hpet_default_delta;
|
|
else
|
|
delta = hpet_pie_delta;
|
|
|
|
/*
|
|
* Increment the comparator value until we are ahead of the
|
|
* current count.
|
|
*/
|
|
do {
|
|
hpet_t1_cmp += delta;
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
lost_ints++;
|
|
} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
|
|
|
|
if (lost_ints) {
|
|
if (hpet_rtc_flags & RTC_PIE)
|
|
hpet_pie_count += lost_ints;
|
|
if (printk_ratelimit())
|
|
printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
|
|
lost_ints);
|
|
}
|
|
}
|
|
|
|
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct rtc_time curr_time;
|
|
unsigned long rtc_int_flag = 0;
|
|
|
|
hpet_rtc_timer_reinit();
|
|
memset(&curr_time, 0, sizeof(struct rtc_time));
|
|
|
|
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
|
|
get_rtc_time(&curr_time);
|
|
|
|
if (hpet_rtc_flags & RTC_UIE &&
|
|
curr_time.tm_sec != hpet_prev_update_sec) {
|
|
if (hpet_prev_update_sec >= 0)
|
|
rtc_int_flag = RTC_UF;
|
|
hpet_prev_update_sec = curr_time.tm_sec;
|
|
}
|
|
|
|
if (hpet_rtc_flags & RTC_PIE &&
|
|
++hpet_pie_count >= hpet_pie_limit) {
|
|
rtc_int_flag |= RTC_PF;
|
|
hpet_pie_count = 0;
|
|
}
|
|
|
|
if (hpet_rtc_flags & RTC_AIE &&
|
|
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
|
|
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
|
|
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
|
|
rtc_int_flag |= RTC_AF;
|
|
|
|
if (rtc_int_flag) {
|
|
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
|
|
if (irq_handler)
|
|
irq_handler(rtc_int_flag, dev_id);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
|
|
#endif
|