mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-16 01:04:08 +08:00
3e21d9a501
In case memory resources for _ptr2_ were allocated, release them before
return.
Notice that in case _ptr1_ happens to be NULL, krealloc() behaves
exactly like kmalloc().
Addresses-Coverity-ID: 1490594 ("Resource leak")
Link: http://lkml.kernel.org/r/20200123160115.GA4202@embeddedor
Fixes: 3f15801cdc
("lib: add kasan test module")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
831 lines
17 KiB
C
831 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kasan test: %s " fmt, __func__
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
/*
|
|
* Note: test functions are marked noinline so that their names appear in
|
|
* reports.
|
|
*/
|
|
|
|
static noinline void __init kmalloc_oob_right(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 123;
|
|
|
|
pr_info("out-of-bounds to right\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
ptr[size] = 'x';
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_left(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 15;
|
|
|
|
pr_info("out-of-bounds to left\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
*ptr = *(ptr - 1);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_node_oob_right(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 4096;
|
|
|
|
pr_info("kmalloc_node(): out-of-bounds to right\n");
|
|
ptr = kmalloc_node(size, GFP_KERNEL, 0);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
ptr[size] = 0;
|
|
kfree(ptr);
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB
|
|
static noinline void __init kmalloc_pagealloc_oob_right(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
/* Allocate a chunk that does not fit into a SLUB cache to trigger
|
|
* the page allocator fallback.
|
|
*/
|
|
pr_info("kmalloc pagealloc allocation: out-of-bounds to right\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
ptr[size] = 0;
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_pagealloc_uaf(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
pr_info("kmalloc pagealloc allocation: use-after-free\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kfree(ptr);
|
|
ptr[0] = 0;
|
|
}
|
|
|
|
static noinline void __init kmalloc_pagealloc_invalid_free(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
pr_info("kmalloc pagealloc allocation: invalid-free\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kfree(ptr + 1);
|
|
}
|
|
#endif
|
|
|
|
static noinline void __init kmalloc_large_oob_right(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
|
|
/* Allocate a chunk that is large enough, but still fits into a slab
|
|
* and does not trigger the page allocator fallback in SLUB.
|
|
*/
|
|
pr_info("kmalloc large allocation: out-of-bounds to right\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
ptr[size] = 0;
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_krealloc_more(void)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size1 = 17;
|
|
size_t size2 = 19;
|
|
|
|
pr_info("out-of-bounds after krealloc more\n");
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
if (!ptr1 || !ptr2) {
|
|
pr_err("Allocation failed\n");
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
return;
|
|
}
|
|
|
|
ptr2[size2] = 'x';
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_krealloc_less(void)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size1 = 17;
|
|
size_t size2 = 15;
|
|
|
|
pr_info("out-of-bounds after krealloc less\n");
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
if (!ptr1 || !ptr2) {
|
|
pr_err("Allocation failed\n");
|
|
kfree(ptr1);
|
|
return;
|
|
}
|
|
ptr2[size2] = 'x';
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_16(void)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
pr_info("kmalloc out-of-bounds for 16-bytes access\n");
|
|
ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
if (!ptr1 || !ptr2) {
|
|
pr_err("Allocation failed\n");
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
return;
|
|
}
|
|
*ptr1 = *ptr2;
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_memset_2(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
|
|
pr_info("out-of-bounds in memset2\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
memset(ptr+7, 0, 2);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_memset_4(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
|
|
pr_info("out-of-bounds in memset4\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
memset(ptr+5, 0, 4);
|
|
kfree(ptr);
|
|
}
|
|
|
|
|
|
static noinline void __init kmalloc_oob_memset_8(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
|
|
pr_info("out-of-bounds in memset8\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
memset(ptr+1, 0, 8);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_memset_16(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 16;
|
|
|
|
pr_info("out-of-bounds in memset16\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
memset(ptr+1, 0, 16);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_oob_in_memset(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 666;
|
|
|
|
pr_info("out-of-bounds in memset\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
memset(ptr, 0, size+5);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kmalloc_uaf(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 10;
|
|
|
|
pr_info("use-after-free\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kfree(ptr);
|
|
*(ptr + 8) = 'x';
|
|
}
|
|
|
|
static noinline void __init kmalloc_uaf_memset(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 33;
|
|
|
|
pr_info("use-after-free in memset\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kfree(ptr);
|
|
memset(ptr, 0, size);
|
|
}
|
|
|
|
static noinline void __init kmalloc_uaf2(void)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size = 43;
|
|
|
|
pr_info("use-after-free after another kmalloc\n");
|
|
ptr1 = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr1) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kfree(ptr1);
|
|
ptr2 = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr2) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
ptr1[40] = 'x';
|
|
if (ptr1 == ptr2)
|
|
pr_err("Could not detect use-after-free: ptr1 == ptr2\n");
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static noinline void __init kfree_via_page(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
struct page *page;
|
|
unsigned long offset;
|
|
|
|
pr_info("invalid-free false positive (via page)\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
page = virt_to_page(ptr);
|
|
offset = offset_in_page(ptr);
|
|
kfree(page_address(page) + offset);
|
|
}
|
|
|
|
static noinline void __init kfree_via_phys(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
phys_addr_t phys;
|
|
|
|
pr_info("invalid-free false positive (via phys)\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
phys = virt_to_phys(ptr);
|
|
kfree(phys_to_virt(phys));
|
|
}
|
|
|
|
static noinline void __init kmem_cache_oob(void)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache = kmem_cache_create("test_cache",
|
|
size, 0,
|
|
0, NULL);
|
|
if (!cache) {
|
|
pr_err("Cache allocation failed\n");
|
|
return;
|
|
}
|
|
pr_info("out-of-bounds in kmem_cache_alloc\n");
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
pr_err("Allocation failed\n");
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
*p = p[size];
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static noinline void __init memcg_accounted_kmem_cache(void)
|
|
{
|
|
int i;
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
|
|
if (!cache) {
|
|
pr_err("Cache allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("allocate memcg accounted object\n");
|
|
/*
|
|
* Several allocations with a delay to allow for lazy per memcg kmem
|
|
* cache creation.
|
|
*/
|
|
for (i = 0; i < 5; i++) {
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p)
|
|
goto free_cache;
|
|
|
|
kmem_cache_free(cache, p);
|
|
msleep(100);
|
|
}
|
|
|
|
free_cache:
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static char global_array[10];
|
|
|
|
static noinline void __init kasan_global_oob(void)
|
|
{
|
|
volatile int i = 3;
|
|
char *p = &global_array[ARRAY_SIZE(global_array) + i];
|
|
|
|
pr_info("out-of-bounds global variable\n");
|
|
*(volatile char *)p;
|
|
}
|
|
|
|
static noinline void __init kasan_stack_oob(void)
|
|
{
|
|
char stack_array[10];
|
|
volatile int i = 0;
|
|
char *p = &stack_array[ARRAY_SIZE(stack_array) + i];
|
|
|
|
pr_info("out-of-bounds on stack\n");
|
|
*(volatile char *)p;
|
|
}
|
|
|
|
static noinline void __init ksize_unpoisons_memory(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 123, real_size;
|
|
|
|
pr_info("ksize() unpoisons the whole allocated chunk\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
real_size = ksize(ptr);
|
|
/* This access doesn't trigger an error. */
|
|
ptr[size] = 'x';
|
|
/* This one does. */
|
|
ptr[real_size] = 'y';
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init copy_user_test(void)
|
|
{
|
|
char *kmem;
|
|
char __user *usermem;
|
|
size_t size = 10;
|
|
int unused;
|
|
|
|
kmem = kmalloc(size, GFP_KERNEL);
|
|
if (!kmem)
|
|
return;
|
|
|
|
usermem = (char __user *)vm_mmap(NULL, 0, PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_ANONYMOUS | MAP_PRIVATE, 0);
|
|
if (IS_ERR(usermem)) {
|
|
pr_err("Failed to allocate user memory\n");
|
|
kfree(kmem);
|
|
return;
|
|
}
|
|
|
|
pr_info("out-of-bounds in copy_from_user()\n");
|
|
unused = copy_from_user(kmem, usermem, size + 1);
|
|
|
|
pr_info("out-of-bounds in copy_to_user()\n");
|
|
unused = copy_to_user(usermem, kmem, size + 1);
|
|
|
|
pr_info("out-of-bounds in __copy_from_user()\n");
|
|
unused = __copy_from_user(kmem, usermem, size + 1);
|
|
|
|
pr_info("out-of-bounds in __copy_to_user()\n");
|
|
unused = __copy_to_user(usermem, kmem, size + 1);
|
|
|
|
pr_info("out-of-bounds in __copy_from_user_inatomic()\n");
|
|
unused = __copy_from_user_inatomic(kmem, usermem, size + 1);
|
|
|
|
pr_info("out-of-bounds in __copy_to_user_inatomic()\n");
|
|
unused = __copy_to_user_inatomic(usermem, kmem, size + 1);
|
|
|
|
pr_info("out-of-bounds in strncpy_from_user()\n");
|
|
unused = strncpy_from_user(kmem, usermem, size + 1);
|
|
|
|
vm_munmap((unsigned long)usermem, PAGE_SIZE);
|
|
kfree(kmem);
|
|
}
|
|
|
|
static noinline void __init kasan_alloca_oob_left(void)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
char *p = alloca_array - 1;
|
|
|
|
pr_info("out-of-bounds to left on alloca\n");
|
|
*(volatile char *)p;
|
|
}
|
|
|
|
static noinline void __init kasan_alloca_oob_right(void)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
char *p = alloca_array + i;
|
|
|
|
pr_info("out-of-bounds to right on alloca\n");
|
|
*(volatile char *)p;
|
|
}
|
|
|
|
static noinline void __init kmem_cache_double_free(void)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
if (!cache) {
|
|
pr_err("Cache allocation failed\n");
|
|
return;
|
|
}
|
|
pr_info("double-free on heap object\n");
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
pr_err("Allocation failed\n");
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static noinline void __init kmem_cache_invalid_free(void)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
|
|
NULL);
|
|
if (!cache) {
|
|
pr_err("Cache allocation failed\n");
|
|
return;
|
|
}
|
|
pr_info("invalid-free of heap object\n");
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
pr_err("Allocation failed\n");
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
/* Trigger invalid free, the object doesn't get freed */
|
|
kmem_cache_free(cache, p + 1);
|
|
|
|
/*
|
|
* Properly free the object to prevent the "Objects remaining in
|
|
* test_cache on __kmem_cache_shutdown" BUG failure.
|
|
*/
|
|
kmem_cache_free(cache, p);
|
|
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static noinline void __init kasan_memchr(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
pr_info("out-of-bounds in memchr\n");
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (!ptr)
|
|
return;
|
|
|
|
memchr(ptr, '1', size + 1);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kasan_memcmp(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
int arr[9];
|
|
|
|
pr_info("out-of-bounds in memcmp\n");
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (!ptr)
|
|
return;
|
|
|
|
memset(arr, 0, sizeof(arr));
|
|
memcmp(ptr, arr, size+1);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static noinline void __init kasan_strings(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
pr_info("use-after-free in strchr\n");
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (!ptr)
|
|
return;
|
|
|
|
kfree(ptr);
|
|
|
|
/*
|
|
* Try to cause only 1 invalid access (less spam in dmesg).
|
|
* For that we need ptr to point to zeroed byte.
|
|
* Skip metadata that could be stored in freed object so ptr
|
|
* will likely point to zeroed byte.
|
|
*/
|
|
ptr += 16;
|
|
strchr(ptr, '1');
|
|
|
|
pr_info("use-after-free in strrchr\n");
|
|
strrchr(ptr, '1');
|
|
|
|
pr_info("use-after-free in strcmp\n");
|
|
strcmp(ptr, "2");
|
|
|
|
pr_info("use-after-free in strncmp\n");
|
|
strncmp(ptr, "2", 1);
|
|
|
|
pr_info("use-after-free in strlen\n");
|
|
strlen(ptr);
|
|
|
|
pr_info("use-after-free in strnlen\n");
|
|
strnlen(ptr, 1);
|
|
}
|
|
|
|
static noinline void __init kasan_bitops(void)
|
|
{
|
|
/*
|
|
* Allocate 1 more byte, which causes kzalloc to round up to 16-bytes;
|
|
* this way we do not actually corrupt other memory.
|
|
*/
|
|
long *bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
|
|
if (!bits)
|
|
return;
|
|
|
|
/*
|
|
* Below calls try to access bit within allocated memory; however, the
|
|
* below accesses are still out-of-bounds, since bitops are defined to
|
|
* operate on the whole long the bit is in.
|
|
*/
|
|
pr_info("out-of-bounds in set_bit\n");
|
|
set_bit(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in __set_bit\n");
|
|
__set_bit(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in clear_bit\n");
|
|
clear_bit(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in __clear_bit\n");
|
|
__clear_bit(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in clear_bit_unlock\n");
|
|
clear_bit_unlock(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in __clear_bit_unlock\n");
|
|
__clear_bit_unlock(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in change_bit\n");
|
|
change_bit(BITS_PER_LONG, bits);
|
|
|
|
pr_info("out-of-bounds in __change_bit\n");
|
|
__change_bit(BITS_PER_LONG, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit beyond allocated memory.
|
|
*/
|
|
pr_info("out-of-bounds in test_and_set_bit\n");
|
|
test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in __test_and_set_bit\n");
|
|
__test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in test_and_set_bit_lock\n");
|
|
test_and_set_bit_lock(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in test_and_clear_bit\n");
|
|
test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in __test_and_clear_bit\n");
|
|
__test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in test_and_change_bit\n");
|
|
test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in __test_and_change_bit\n");
|
|
__test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
pr_info("out-of-bounds in test_bit\n");
|
|
(void)test_bit(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
#if defined(clear_bit_unlock_is_negative_byte)
|
|
pr_info("out-of-bounds in clear_bit_unlock_is_negative_byte\n");
|
|
clear_bit_unlock_is_negative_byte(BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
#endif
|
|
kfree(bits);
|
|
}
|
|
|
|
static noinline void __init kmalloc_double_kzfree(void)
|
|
{
|
|
char *ptr;
|
|
size_t size = 16;
|
|
|
|
pr_info("double-free (kzfree)\n");
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
if (!ptr) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
kzfree(ptr);
|
|
kzfree(ptr);
|
|
}
|
|
|
|
#ifdef CONFIG_KASAN_VMALLOC
|
|
static noinline void __init vmalloc_oob(void)
|
|
{
|
|
void *area;
|
|
|
|
pr_info("vmalloc out-of-bounds\n");
|
|
|
|
/*
|
|
* We have to be careful not to hit the guard page.
|
|
* The MMU will catch that and crash us.
|
|
*/
|
|
area = vmalloc(3000);
|
|
if (!area) {
|
|
pr_err("Allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
((volatile char *)area)[3100];
|
|
vfree(area);
|
|
}
|
|
#else
|
|
static void __init vmalloc_oob(void) {}
|
|
#endif
|
|
|
|
static int __init kmalloc_tests_init(void)
|
|
{
|
|
/*
|
|
* Temporarily enable multi-shot mode. Otherwise, we'd only get a
|
|
* report for the first case.
|
|
*/
|
|
bool multishot = kasan_save_enable_multi_shot();
|
|
|
|
kmalloc_oob_right();
|
|
kmalloc_oob_left();
|
|
kmalloc_node_oob_right();
|
|
#ifdef CONFIG_SLUB
|
|
kmalloc_pagealloc_oob_right();
|
|
kmalloc_pagealloc_uaf();
|
|
kmalloc_pagealloc_invalid_free();
|
|
#endif
|
|
kmalloc_large_oob_right();
|
|
kmalloc_oob_krealloc_more();
|
|
kmalloc_oob_krealloc_less();
|
|
kmalloc_oob_16();
|
|
kmalloc_oob_in_memset();
|
|
kmalloc_oob_memset_2();
|
|
kmalloc_oob_memset_4();
|
|
kmalloc_oob_memset_8();
|
|
kmalloc_oob_memset_16();
|
|
kmalloc_uaf();
|
|
kmalloc_uaf_memset();
|
|
kmalloc_uaf2();
|
|
kfree_via_page();
|
|
kfree_via_phys();
|
|
kmem_cache_oob();
|
|
memcg_accounted_kmem_cache();
|
|
kasan_stack_oob();
|
|
kasan_global_oob();
|
|
kasan_alloca_oob_left();
|
|
kasan_alloca_oob_right();
|
|
ksize_unpoisons_memory();
|
|
copy_user_test();
|
|
kmem_cache_double_free();
|
|
kmem_cache_invalid_free();
|
|
kasan_memchr();
|
|
kasan_memcmp();
|
|
kasan_strings();
|
|
kasan_bitops();
|
|
kmalloc_double_kzfree();
|
|
vmalloc_oob();
|
|
|
|
kasan_restore_multi_shot(multishot);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
module_init(kmalloc_tests_init);
|
|
MODULE_LICENSE("GPL");
|