2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/arch/arm/mach-omap2/opp2420_data.c
Tony Lindgren dbc0416104 ARM: OMAP: Split plat/hardware.h, use local soc.h for omap2+
As the plat and mach includes need to disappear for single zImage work,
we need to remove plat/hardware.h.

Do this by splitting plat/hardware.h into omap1 and omap2+ specific files.

The old plat/hardware.h already has omap1 only defines, so it gets moved
to mach/hardware.h for omap1. For omap2+, we use the local soc.h
that for now just includes the related SoC headers to keep this patch more
readable.

Note that the local soc.h still includes plat/cpu.h that can be dealt
with in later patches. Let's also include plat/serial.h from common.h for
all the board-*.c files. This allows making the include files local later
on without patching these files again.

Note that only minimal changes are done in this patch for the
drivers/watchdog/omap_wdt.c driver to keep things compiling. Further
patches are needed to eventually remove cpu_is_omap usage in the drivers.

Also only minimal changes are done to sound/soc/omap/* to remove the
unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's
no need to include omap44xx.h.

While at it, also sort some of the includes in the standard way.

Cc: linux-watchdog@vger.kernel.org
Cc: alsa-devel@alsa-project.org
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jarkko Nikula <jarkko.nikula@bitmer.com>
Cc: Liam Girdwood <lrg@ti.com>
Acked-by: Wim Van Sebroeck <wim@iguana.be>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-09-12 18:06:31 -07:00

131 lines
4.9 KiB
C

/*
* opp2420_data.c - old-style "OPP" table for OMAP2420
*
* Copyright (C) 2005-2009 Texas Instruments, Inc.
* Copyright (C) 2004-2009 Nokia Corporation
*
* Richard Woodruff <r-woodruff2@ti.com>
*
* The OMAP2 processor can be run at several discrete 'PRCM configurations'.
* These configurations are characterized by voltage and speed for clocks.
* The device is only validated for certain combinations. One way to express
* these combinations is via the 'ratios' which the clocks operate with
* respect to each other. These ratio sets are for a given voltage/DPLL
* setting. All configurations can be described by a DPLL setting and a ratio.
*
* XXX Missing voltage data.
* XXX Missing 19.2MHz sys_clk rate sets (needed for N800/N810)
*
* THe format described in this file is deprecated. Once a reasonable
* OPP API exists, the data in this file should be converted to use it.
*
* This is technically part of the OMAP2xxx clock code.
*
* Considerable work is still needed to fully support dynamic frequency
* changes on OMAP2xxx-series chips. Readers interested in such a
* project are encouraged to review the Maemo Diablo RX-34 and RX-44
* kernel source at:
* http://repository.maemo.org/pool/diablo/free/k/kernel-source-diablo/
*/
#include <linux/kernel.h>
#include "opp2xxx.h"
#include "sdrc.h"
#include "clock.h"
/*
* Key dividers which make up a PRCM set. Ratios for a PRCM are mandated.
* xtal_speed, dpll_speed, mpu_speed, CM_CLKSEL_MPU,
* CM_CLKSEL_DSP, CM_CLKSEL_GFX, CM_CLKSEL1_CORE, CM_CLKSEL1_PLL,
* CM_CLKSEL2_PLL, CM_CLKSEL_MDM
*
* Filling in table based on H4 boards available. There are quite a
* few more rate combinations which could be defined.
*
* When multiple values are defined the start up will try and choose
* the fastest one. If a 'fast' value is defined, then automatically,
* the /2 one should be included as it can be used. Generally having
* more than one fast set does not make sense, as static timings need
* to be changed to change the set. The exception is the bypass
* setting which is available for low power bypass.
*
* Note: This table needs to be sorted, fastest to slowest.
**/
const struct prcm_config omap2420_rate_table[] = {
/* PRCM I - FAST */
{S12M, S660M, S330M, RI_CM_CLKSEL_MPU_VAL, /* 330MHz ARM */
RI_CM_CLKSEL_DSP_VAL, RI_CM_CLKSEL_GFX_VAL,
RI_CM_CLKSEL1_CORE_VAL, MI_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_165MHz,
RATE_IN_242X},
/* PRCM II - FAST */
{S12M, S600M, S300M, RII_CM_CLKSEL_MPU_VAL, /* 300MHz ARM */
RII_CM_CLKSEL_DSP_VAL, RII_CM_CLKSEL_GFX_VAL,
RII_CM_CLKSEL1_CORE_VAL, MII_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_100MHz,
RATE_IN_242X},
{S13M, S600M, S300M, RII_CM_CLKSEL_MPU_VAL, /* 300MHz ARM */
RII_CM_CLKSEL_DSP_VAL, RII_CM_CLKSEL_GFX_VAL,
RII_CM_CLKSEL1_CORE_VAL, MII_CM_CLKSEL1_PLL_13_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_100MHz,
RATE_IN_242X},
/* PRCM III - FAST */
{S12M, S532M, S266M, RIII_CM_CLKSEL_MPU_VAL, /* 266MHz ARM */
RIII_CM_CLKSEL_DSP_VAL, RIII_CM_CLKSEL_GFX_VAL,
RIII_CM_CLKSEL1_CORE_VAL, MIII_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_133MHz,
RATE_IN_242X},
{S13M, S532M, S266M, RIII_CM_CLKSEL_MPU_VAL, /* 266MHz ARM */
RIII_CM_CLKSEL_DSP_VAL, RIII_CM_CLKSEL_GFX_VAL,
RIII_CM_CLKSEL1_CORE_VAL, MIII_CM_CLKSEL1_PLL_13_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_133MHz,
RATE_IN_242X},
/* PRCM II - SLOW */
{S12M, S300M, S150M, RII_CM_CLKSEL_MPU_VAL, /* 150MHz ARM */
RII_CM_CLKSEL_DSP_VAL, RII_CM_CLKSEL_GFX_VAL,
RII_CM_CLKSEL1_CORE_VAL, MII_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_100MHz,
RATE_IN_242X},
{S13M, S300M, S150M, RII_CM_CLKSEL_MPU_VAL, /* 150MHz ARM */
RII_CM_CLKSEL_DSP_VAL, RII_CM_CLKSEL_GFX_VAL,
RII_CM_CLKSEL1_CORE_VAL, MII_CM_CLKSEL1_PLL_13_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_100MHz,
RATE_IN_242X},
/* PRCM III - SLOW */
{S12M, S266M, S133M, RIII_CM_CLKSEL_MPU_VAL, /* 133MHz ARM */
RIII_CM_CLKSEL_DSP_VAL, RIII_CM_CLKSEL_GFX_VAL,
RIII_CM_CLKSEL1_CORE_VAL, MIII_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_133MHz,
RATE_IN_242X},
{S13M, S266M, S133M, RIII_CM_CLKSEL_MPU_VAL, /* 133MHz ARM */
RIII_CM_CLKSEL_DSP_VAL, RIII_CM_CLKSEL_GFX_VAL,
RIII_CM_CLKSEL1_CORE_VAL, MIII_CM_CLKSEL1_PLL_13_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_133MHz,
RATE_IN_242X},
/* PRCM-VII (boot-bypass) */
{S12M, S12M, S12M, RVII_CM_CLKSEL_MPU_VAL, /* 12MHz ARM*/
RVII_CM_CLKSEL_DSP_VAL, RVII_CM_CLKSEL_GFX_VAL,
RVII_CM_CLKSEL1_CORE_VAL, MVII_CM_CLKSEL1_PLL_12_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_BYPASS,
RATE_IN_242X},
/* PRCM-VII (boot-bypass) */
{S13M, S13M, S13M, RVII_CM_CLKSEL_MPU_VAL, /* 13MHz ARM */
RVII_CM_CLKSEL_DSP_VAL, RVII_CM_CLKSEL_GFX_VAL,
RVII_CM_CLKSEL1_CORE_VAL, MVII_CM_CLKSEL1_PLL_13_VAL,
MX_CLKSEL2_PLL_2x_VAL, 0, SDRC_RFR_CTRL_BYPASS,
RATE_IN_242X},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
};