2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/arch/x86/crypto/sha1_ssse3_asm.S
Mathias Krause 66be895158 crypto: sha1 - SSSE3 based SHA1 implementation for x86-64
This is an assembler implementation of the SHA1 algorithm using the
Supplemental SSE3 (SSSE3) instructions or, when available, the
Advanced Vector Extensions (AVX).

Testing with the tcrypt module shows the raw hash performance is up to
2.3 times faster than the C implementation, using 8k data blocks on a
Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25%
faster.

Since this implementation uses SSE/YMM registers it cannot safely be
used in every situation, e.g. while an IRQ interrupts a kernel thread.
The implementation falls back to the generic SHA1 variant, if using
the SSE/YMM registers is not possible.

With this algorithm I was able to increase the throughput of a single
IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using
the SSSE3 variant -- a speedup of +34.8%.

Saving and restoring SSE/YMM state might make the actual throughput
fluctuate when there are FPU intensive userland applications running.
For example, meassuring the performance using iperf2 directly on the
machine under test gives wobbling numbers because iperf2 uses the FPU
for each packet to check if the reporting interval has expired (in the
above test I got min/max/avg: 402/484/464 MBit/s).

Using this algorithm on a IPsec gateway gives much more reasonable and
stable numbers, albeit not as high as in the directly connected case.
Here is the result from an RFC 2544 test run with a EXFO Packet Blazer
FTB-8510:

 frame size    sha1-generic     sha1-ssse3    delta
    64 byte     37.5 MBit/s    37.5 MBit/s     0.0%
   128 byte     56.3 MBit/s    62.5 MBit/s   +11.0%
   256 byte     87.5 MBit/s   100.0 MBit/s   +14.3%
   512 byte    131.3 MBit/s   150.0 MBit/s   +14.2%
  1024 byte    162.5 MBit/s   193.8 MBit/s   +19.3%
  1280 byte    175.0 MBit/s   212.5 MBit/s   +21.4%
  1420 byte    175.0 MBit/s   218.7 MBit/s   +25.0%
  1518 byte    150.0 MBit/s   181.2 MBit/s   +20.8%

The throughput for the largest frame size is lower than for the
previous size because the IP packets need to be fragmented in this
case to make there way through the IPsec tunnel.

Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-10 19:00:29 +08:00

559 lines
11 KiB
ArmAsm

/*
* This is a SIMD SHA-1 implementation. It requires the Intel(R) Supplemental
* SSE3 instruction set extensions introduced in Intel Core Microarchitecture
* processors. CPUs supporting Intel(R) AVX extensions will get an additional
* boost.
*
* This work was inspired by the vectorized implementation of Dean Gaudet.
* Additional information on it can be found at:
* http://www.arctic.org/~dean/crypto/sha1.html
*
* It was improved upon with more efficient vectorization of the message
* scheduling. This implementation has also been optimized for all current and
* several future generations of Intel CPUs.
*
* See this article for more information about the implementation details:
* http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
*
* Copyright (C) 2010, Intel Corp.
* Authors: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
* Ronen Zohar <ronen.zohar@intel.com>
*
* Converted to AT&T syntax and adapted for inclusion in the Linux kernel:
* Author: Mathias Krause <minipli@googlemail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#define CTX %rdi // arg1
#define BUF %rsi // arg2
#define CNT %rdx // arg3
#define REG_A %ecx
#define REG_B %esi
#define REG_C %edi
#define REG_D %ebp
#define REG_E %edx
#define REG_T1 %eax
#define REG_T2 %ebx
#define K_BASE %r8
#define HASH_PTR %r9
#define BUFFER_PTR %r10
#define BUFFER_END %r11
#define W_TMP1 %xmm0
#define W_TMP2 %xmm9
#define W0 %xmm1
#define W4 %xmm2
#define W8 %xmm3
#define W12 %xmm4
#define W16 %xmm5
#define W20 %xmm6
#define W24 %xmm7
#define W28 %xmm8
#define XMM_SHUFB_BSWAP %xmm10
/* we keep window of 64 w[i]+K pre-calculated values in a circular buffer */
#define WK(t) (((t) & 15) * 4)(%rsp)
#define W_PRECALC_AHEAD 16
/*
* This macro implements the SHA-1 function's body for single 64-byte block
* param: function's name
*/
.macro SHA1_VECTOR_ASM name
.global \name
.type \name, @function
.align 32
\name:
push %rbx
push %rbp
push %r12
mov %rsp, %r12
sub $64, %rsp # allocate workspace
and $~15, %rsp # align stack
mov CTX, HASH_PTR
mov BUF, BUFFER_PTR
shl $6, CNT # multiply by 64
add BUF, CNT
mov CNT, BUFFER_END
lea K_XMM_AR(%rip), K_BASE
xmm_mov BSWAP_SHUFB_CTL(%rip), XMM_SHUFB_BSWAP
SHA1_PIPELINED_MAIN_BODY
# cleanup workspace
mov $8, %ecx
mov %rsp, %rdi
xor %rax, %rax
rep stosq
mov %r12, %rsp # deallocate workspace
pop %r12
pop %rbp
pop %rbx
ret
.size \name, .-\name
.endm
/*
* This macro implements 80 rounds of SHA-1 for one 64-byte block
*/
.macro SHA1_PIPELINED_MAIN_BODY
INIT_REGALLOC
mov (HASH_PTR), A
mov 4(HASH_PTR), B
mov 8(HASH_PTR), C
mov 12(HASH_PTR), D
mov 16(HASH_PTR), E
.set i, 0
.rept W_PRECALC_AHEAD
W_PRECALC i
.set i, (i+1)
.endr
.align 4
1:
RR F1,A,B,C,D,E,0
RR F1,D,E,A,B,C,2
RR F1,B,C,D,E,A,4
RR F1,E,A,B,C,D,6
RR F1,C,D,E,A,B,8
RR F1,A,B,C,D,E,10
RR F1,D,E,A,B,C,12
RR F1,B,C,D,E,A,14
RR F1,E,A,B,C,D,16
RR F1,C,D,E,A,B,18
RR F2,A,B,C,D,E,20
RR F2,D,E,A,B,C,22
RR F2,B,C,D,E,A,24
RR F2,E,A,B,C,D,26
RR F2,C,D,E,A,B,28
RR F2,A,B,C,D,E,30
RR F2,D,E,A,B,C,32
RR F2,B,C,D,E,A,34
RR F2,E,A,B,C,D,36
RR F2,C,D,E,A,B,38
RR F3,A,B,C,D,E,40
RR F3,D,E,A,B,C,42
RR F3,B,C,D,E,A,44
RR F3,E,A,B,C,D,46
RR F3,C,D,E,A,B,48
RR F3,A,B,C,D,E,50
RR F3,D,E,A,B,C,52
RR F3,B,C,D,E,A,54
RR F3,E,A,B,C,D,56
RR F3,C,D,E,A,B,58
add $64, BUFFER_PTR # move to the next 64-byte block
cmp BUFFER_END, BUFFER_PTR # if the current is the last one use
cmovae K_BASE, BUFFER_PTR # dummy source to avoid buffer overrun
RR F4,A,B,C,D,E,60
RR F4,D,E,A,B,C,62
RR F4,B,C,D,E,A,64
RR F4,E,A,B,C,D,66
RR F4,C,D,E,A,B,68
RR F4,A,B,C,D,E,70
RR F4,D,E,A,B,C,72
RR F4,B,C,D,E,A,74
RR F4,E,A,B,C,D,76
RR F4,C,D,E,A,B,78
UPDATE_HASH (HASH_PTR), A
UPDATE_HASH 4(HASH_PTR), B
UPDATE_HASH 8(HASH_PTR), C
UPDATE_HASH 12(HASH_PTR), D
UPDATE_HASH 16(HASH_PTR), E
RESTORE_RENAMED_REGS
cmp K_BASE, BUFFER_PTR # K_BASE means, we reached the end
jne 1b
.endm
.macro INIT_REGALLOC
.set A, REG_A
.set B, REG_B
.set C, REG_C
.set D, REG_D
.set E, REG_E
.set T1, REG_T1
.set T2, REG_T2
.endm
.macro RESTORE_RENAMED_REGS
# order is important (REG_C is where it should be)
mov B, REG_B
mov D, REG_D
mov A, REG_A
mov E, REG_E
.endm
.macro SWAP_REG_NAMES a, b
.set _T, \a
.set \a, \b
.set \b, _T
.endm
.macro F1 b, c, d
mov \c, T1
SWAP_REG_NAMES \c, T1
xor \d, T1
and \b, T1
xor \d, T1
.endm
.macro F2 b, c, d
mov \d, T1
SWAP_REG_NAMES \d, T1
xor \c, T1
xor \b, T1
.endm
.macro F3 b, c ,d
mov \c, T1
SWAP_REG_NAMES \c, T1
mov \b, T2
or \b, T1
and \c, T2
and \d, T1
or T2, T1
.endm
.macro F4 b, c, d
F2 \b, \c, \d
.endm
.macro UPDATE_HASH hash, val
add \hash, \val
mov \val, \hash
.endm
/*
* RR does two rounds of SHA-1 back to back with W[] pre-calc
* t1 = F(b, c, d); e += w(i)
* e += t1; b <<= 30; d += w(i+1);
* t1 = F(a, b, c);
* d += t1; a <<= 5;
* e += a;
* t1 = e; a >>= 7;
* t1 <<= 5;
* d += t1;
*/
.macro RR F, a, b, c, d, e, round
add WK(\round), \e
\F \b, \c, \d # t1 = F(b, c, d);
W_PRECALC (\round + W_PRECALC_AHEAD)
rol $30, \b
add T1, \e
add WK(\round + 1), \d
\F \a, \b, \c
W_PRECALC (\round + W_PRECALC_AHEAD + 1)
rol $5, \a
add \a, \e
add T1, \d
ror $7, \a # (a <<r 5) >>r 7) => a <<r 30)
mov \e, T1
SWAP_REG_NAMES \e, T1
rol $5, T1
add T1, \d
# write: \a, \b
# rotate: \a<=\d, \b<=\e, \c<=\a, \d<=\b, \e<=\c
.endm
.macro W_PRECALC r
.set i, \r
.if (i < 20)
.set K_XMM, 0
.elseif (i < 40)
.set K_XMM, 16
.elseif (i < 60)
.set K_XMM, 32
.elseif (i < 80)
.set K_XMM, 48
.endif
.if ((i < 16) || ((i >= 80) && (i < (80 + W_PRECALC_AHEAD))))
.set i, ((\r) % 80) # pre-compute for the next iteration
.if (i == 0)
W_PRECALC_RESET
.endif
W_PRECALC_00_15
.elseif (i<32)
W_PRECALC_16_31
.elseif (i < 80) // rounds 32-79
W_PRECALC_32_79
.endif
.endm
.macro W_PRECALC_RESET
.set W, W0
.set W_minus_04, W4
.set W_minus_08, W8
.set W_minus_12, W12
.set W_minus_16, W16
.set W_minus_20, W20
.set W_minus_24, W24
.set W_minus_28, W28
.set W_minus_32, W
.endm
.macro W_PRECALC_ROTATE
.set W_minus_32, W_minus_28
.set W_minus_28, W_minus_24
.set W_minus_24, W_minus_20
.set W_minus_20, W_minus_16
.set W_minus_16, W_minus_12
.set W_minus_12, W_minus_08
.set W_minus_08, W_minus_04
.set W_minus_04, W
.set W, W_minus_32
.endm
.macro W_PRECALC_SSSE3
.macro W_PRECALC_00_15
W_PRECALC_00_15_SSSE3
.endm
.macro W_PRECALC_16_31
W_PRECALC_16_31_SSSE3
.endm
.macro W_PRECALC_32_79
W_PRECALC_32_79_SSSE3
.endm
/* message scheduling pre-compute for rounds 0-15 */
.macro W_PRECALC_00_15_SSSE3
.if ((i & 3) == 0)
movdqu (i*4)(BUFFER_PTR), W_TMP1
.elseif ((i & 3) == 1)
pshufb XMM_SHUFB_BSWAP, W_TMP1
movdqa W_TMP1, W
.elseif ((i & 3) == 2)
paddd (K_BASE), W_TMP1
.elseif ((i & 3) == 3)
movdqa W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
/* message scheduling pre-compute for rounds 16-31
*
* - calculating last 32 w[i] values in 8 XMM registers
* - pre-calculate K+w[i] values and store to mem, for later load by ALU add
* instruction
*
* some "heavy-lifting" vectorization for rounds 16-31 due to w[i]->w[i-3]
* dependency, but improves for 32-79
*/
.macro W_PRECALC_16_31_SSSE3
# blended scheduling of vector and scalar instruction streams, one 4-wide
# vector iteration / 4 scalar rounds
.if ((i & 3) == 0)
movdqa W_minus_12, W
palignr $8, W_minus_16, W # w[i-14]
movdqa W_minus_04, W_TMP1
psrldq $4, W_TMP1 # w[i-3]
pxor W_minus_08, W
.elseif ((i & 3) == 1)
pxor W_minus_16, W_TMP1
pxor W_TMP1, W
movdqa W, W_TMP2
movdqa W, W_TMP1
pslldq $12, W_TMP2
.elseif ((i & 3) == 2)
psrld $31, W
pslld $1, W_TMP1
por W, W_TMP1
movdqa W_TMP2, W
psrld $30, W_TMP2
pslld $2, W
.elseif ((i & 3) == 3)
pxor W, W_TMP1
pxor W_TMP2, W_TMP1
movdqa W_TMP1, W
paddd K_XMM(K_BASE), W_TMP1
movdqa W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
/* message scheduling pre-compute for rounds 32-79
*
* in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) rol 1
* instead we do equal: w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
* allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
*/
.macro W_PRECALC_32_79_SSSE3
.if ((i & 3) == 0)
movdqa W_minus_04, W_TMP1
pxor W_minus_28, W # W is W_minus_32 before xor
palignr $8, W_minus_08, W_TMP1
.elseif ((i & 3) == 1)
pxor W_minus_16, W
pxor W_TMP1, W
movdqa W, W_TMP1
.elseif ((i & 3) == 2)
psrld $30, W
pslld $2, W_TMP1
por W, W_TMP1
.elseif ((i & 3) == 3)
movdqa W_TMP1, W
paddd K_XMM(K_BASE), W_TMP1
movdqa W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
.endm // W_PRECALC_SSSE3
#define K1 0x5a827999
#define K2 0x6ed9eba1
#define K3 0x8f1bbcdc
#define K4 0xca62c1d6
.section .rodata
.align 16
K_XMM_AR:
.long K1, K1, K1, K1
.long K2, K2, K2, K2
.long K3, K3, K3, K3
.long K4, K4, K4, K4
BSWAP_SHUFB_CTL:
.long 0x00010203
.long 0x04050607
.long 0x08090a0b
.long 0x0c0d0e0f
.section .text
W_PRECALC_SSSE3
.macro xmm_mov a, b
movdqu \a,\b
.endm
/* SSSE3 optimized implementation:
* extern "C" void sha1_transform_ssse3(u32 *digest, const char *data, u32 *ws,
* unsigned int rounds);
*/
SHA1_VECTOR_ASM sha1_transform_ssse3
#ifdef SHA1_ENABLE_AVX_SUPPORT
.macro W_PRECALC_AVX
.purgem W_PRECALC_00_15
.macro W_PRECALC_00_15
W_PRECALC_00_15_AVX
.endm
.purgem W_PRECALC_16_31
.macro W_PRECALC_16_31
W_PRECALC_16_31_AVX
.endm
.purgem W_PRECALC_32_79
.macro W_PRECALC_32_79
W_PRECALC_32_79_AVX
.endm
.macro W_PRECALC_00_15_AVX
.if ((i & 3) == 0)
vmovdqu (i*4)(BUFFER_PTR), W_TMP1
.elseif ((i & 3) == 1)
vpshufb XMM_SHUFB_BSWAP, W_TMP1, W
.elseif ((i & 3) == 2)
vpaddd (K_BASE), W, W_TMP1
.elseif ((i & 3) == 3)
vmovdqa W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
.macro W_PRECALC_16_31_AVX
.if ((i & 3) == 0)
vpalignr $8, W_minus_16, W_minus_12, W # w[i-14]
vpsrldq $4, W_minus_04, W_TMP1 # w[i-3]
vpxor W_minus_08, W, W
vpxor W_minus_16, W_TMP1, W_TMP1
.elseif ((i & 3) == 1)
vpxor W_TMP1, W, W
vpslldq $12, W, W_TMP2
vpslld $1, W, W_TMP1
.elseif ((i & 3) == 2)
vpsrld $31, W, W
vpor W, W_TMP1, W_TMP1
vpslld $2, W_TMP2, W
vpsrld $30, W_TMP2, W_TMP2
.elseif ((i & 3) == 3)
vpxor W, W_TMP1, W_TMP1
vpxor W_TMP2, W_TMP1, W
vpaddd K_XMM(K_BASE), W, W_TMP1
vmovdqu W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
.macro W_PRECALC_32_79_AVX
.if ((i & 3) == 0)
vpalignr $8, W_minus_08, W_minus_04, W_TMP1
vpxor W_minus_28, W, W # W is W_minus_32 before xor
.elseif ((i & 3) == 1)
vpxor W_minus_16, W_TMP1, W_TMP1
vpxor W_TMP1, W, W
.elseif ((i & 3) == 2)
vpslld $2, W, W_TMP1
vpsrld $30, W, W
vpor W, W_TMP1, W
.elseif ((i & 3) == 3)
vpaddd K_XMM(K_BASE), W, W_TMP1
vmovdqu W_TMP1, WK(i&~3)
W_PRECALC_ROTATE
.endif
.endm
.endm // W_PRECALC_AVX
W_PRECALC_AVX
.purgem xmm_mov
.macro xmm_mov a, b
vmovdqu \a,\b
.endm
/* AVX optimized implementation:
* extern "C" void sha1_transform_avx(u32 *digest, const char *data, u32 *ws,
* unsigned int rounds);
*/
SHA1_VECTOR_ASM sha1_transform_avx
#endif