mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
c12d448ba9
Register NIST P384 as an akcipher and extend the testmgr with NIST P384-specific test vectors. Summary of changes: * crypto/ecdsa.c - add ecdsa_nist_p384_init_tfm - register and unregister P384 tfm * crypto/testmgr.c - add test vector for P384 on vector of tests * crypto/testmgr.h - add test vector params for P384(sha1, sha224, sha256, sha384 and sha512) Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br> Tested-by: Stefan Berger <stefanb@linux.ibm.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
377 lines
9.2 KiB
C
377 lines
9.2 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) 2021 IBM Corporation
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <crypto/internal/akcipher.h>
|
|
#include <crypto/akcipher.h>
|
|
#include <crypto/ecdh.h>
|
|
#include <linux/asn1_decoder.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include "ecc.h"
|
|
#include "ecdsasignature.asn1.h"
|
|
|
|
struct ecc_ctx {
|
|
unsigned int curve_id;
|
|
const struct ecc_curve *curve;
|
|
|
|
bool pub_key_set;
|
|
u64 x[ECC_MAX_DIGITS]; /* pub key x and y coordinates */
|
|
u64 y[ECC_MAX_DIGITS];
|
|
struct ecc_point pub_key;
|
|
};
|
|
|
|
struct ecdsa_signature_ctx {
|
|
const struct ecc_curve *curve;
|
|
u64 r[ECC_MAX_DIGITS];
|
|
u64 s[ECC_MAX_DIGITS];
|
|
};
|
|
|
|
/*
|
|
* Get the r and s components of a signature from the X509 certificate.
|
|
*/
|
|
static int ecdsa_get_signature_rs(u64 *dest, size_t hdrlen, unsigned char tag,
|
|
const void *value, size_t vlen, unsigned int ndigits)
|
|
{
|
|
size_t keylen = ndigits * sizeof(u64);
|
|
ssize_t diff = vlen - keylen;
|
|
const char *d = value;
|
|
u8 rs[ECC_MAX_BYTES];
|
|
|
|
if (!value || !vlen)
|
|
return -EINVAL;
|
|
|
|
/* diff = 0: 'value' has exacly the right size
|
|
* diff > 0: 'value' has too many bytes; one leading zero is allowed that
|
|
* makes the value a positive integer; error on more
|
|
* diff < 0: 'value' is missing leading zeros, which we add
|
|
*/
|
|
if (diff > 0) {
|
|
/* skip over leading zeros that make 'value' a positive int */
|
|
if (*d == 0) {
|
|
vlen -= 1;
|
|
diff--;
|
|
d++;
|
|
}
|
|
if (diff)
|
|
return -EINVAL;
|
|
}
|
|
if (-diff >= keylen)
|
|
return -EINVAL;
|
|
|
|
if (diff) {
|
|
/* leading zeros not given in 'value' */
|
|
memset(rs, 0, -diff);
|
|
}
|
|
|
|
memcpy(&rs[-diff], d, vlen);
|
|
|
|
ecc_swap_digits((u64 *)rs, dest, ndigits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ecdsa_get_signature_r(void *context, size_t hdrlen, unsigned char tag,
|
|
const void *value, size_t vlen)
|
|
{
|
|
struct ecdsa_signature_ctx *sig = context;
|
|
|
|
return ecdsa_get_signature_rs(sig->r, hdrlen, tag, value, vlen,
|
|
sig->curve->g.ndigits);
|
|
}
|
|
|
|
int ecdsa_get_signature_s(void *context, size_t hdrlen, unsigned char tag,
|
|
const void *value, size_t vlen)
|
|
{
|
|
struct ecdsa_signature_ctx *sig = context;
|
|
|
|
return ecdsa_get_signature_rs(sig->s, hdrlen, tag, value, vlen,
|
|
sig->curve->g.ndigits);
|
|
}
|
|
|
|
static int _ecdsa_verify(struct ecc_ctx *ctx, const u64 *hash, const u64 *r, const u64 *s)
|
|
{
|
|
const struct ecc_curve *curve = ctx->curve;
|
|
unsigned int ndigits = curve->g.ndigits;
|
|
u64 s1[ECC_MAX_DIGITS];
|
|
u64 u1[ECC_MAX_DIGITS];
|
|
u64 u2[ECC_MAX_DIGITS];
|
|
u64 x1[ECC_MAX_DIGITS];
|
|
u64 y1[ECC_MAX_DIGITS];
|
|
struct ecc_point res = ECC_POINT_INIT(x1, y1, ndigits);
|
|
|
|
/* 0 < r < n and 0 < s < n */
|
|
if (vli_is_zero(r, ndigits) || vli_cmp(r, curve->n, ndigits) >= 0 ||
|
|
vli_is_zero(s, ndigits) || vli_cmp(s, curve->n, ndigits) >= 0)
|
|
return -EBADMSG;
|
|
|
|
/* hash is given */
|
|
pr_devel("hash : %016llx %016llx ... %016llx\n",
|
|
hash[ndigits - 1], hash[ndigits - 2], hash[0]);
|
|
|
|
/* s1 = (s^-1) mod n */
|
|
vli_mod_inv(s1, s, curve->n, ndigits);
|
|
/* u1 = (hash * s1) mod n */
|
|
vli_mod_mult_slow(u1, hash, s1, curve->n, ndigits);
|
|
/* u2 = (r * s1) mod n */
|
|
vli_mod_mult_slow(u2, r, s1, curve->n, ndigits);
|
|
/* res = u1*G + u2 * pub_key */
|
|
ecc_point_mult_shamir(&res, u1, &curve->g, u2, &ctx->pub_key, curve);
|
|
|
|
/* res.x = res.x mod n (if res.x > order) */
|
|
if (unlikely(vli_cmp(res.x, curve->n, ndigits) == 1))
|
|
/* faster alternative for NIST p384, p256 & p192 */
|
|
vli_sub(res.x, res.x, curve->n, ndigits);
|
|
|
|
if (!vli_cmp(res.x, r, ndigits))
|
|
return 0;
|
|
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
/*
|
|
* Verify an ECDSA signature.
|
|
*/
|
|
static int ecdsa_verify(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
size_t keylen = ctx->curve->g.ndigits * sizeof(u64);
|
|
struct ecdsa_signature_ctx sig_ctx = {
|
|
.curve = ctx->curve,
|
|
};
|
|
u8 rawhash[ECC_MAX_BYTES];
|
|
u64 hash[ECC_MAX_DIGITS];
|
|
unsigned char *buffer;
|
|
ssize_t diff;
|
|
int ret;
|
|
|
|
if (unlikely(!ctx->pub_key_set))
|
|
return -EINVAL;
|
|
|
|
buffer = kmalloc(req->src_len + req->dst_len, GFP_KERNEL);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
sg_pcopy_to_buffer(req->src,
|
|
sg_nents_for_len(req->src, req->src_len + req->dst_len),
|
|
buffer, req->src_len + req->dst_len, 0);
|
|
|
|
ret = asn1_ber_decoder(&ecdsasignature_decoder, &sig_ctx,
|
|
buffer, req->src_len);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* if the hash is shorter then we will add leading zeros to fit to ndigits */
|
|
diff = keylen - req->dst_len;
|
|
if (diff >= 0) {
|
|
if (diff)
|
|
memset(rawhash, 0, diff);
|
|
memcpy(&rawhash[diff], buffer + req->src_len, req->dst_len);
|
|
} else if (diff < 0) {
|
|
/* given hash is longer, we take the left-most bytes */
|
|
memcpy(&rawhash, buffer + req->src_len, keylen);
|
|
}
|
|
|
|
ecc_swap_digits((u64 *)rawhash, hash, ctx->curve->g.ndigits);
|
|
|
|
ret = _ecdsa_verify(ctx, hash, sig_ctx.r, sig_ctx.s);
|
|
|
|
error:
|
|
kfree(buffer);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ecdsa_ecc_ctx_init(struct ecc_ctx *ctx, unsigned int curve_id)
|
|
{
|
|
ctx->curve_id = curve_id;
|
|
ctx->curve = ecc_get_curve(curve_id);
|
|
if (!ctx->curve)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void ecdsa_ecc_ctx_deinit(struct ecc_ctx *ctx)
|
|
{
|
|
ctx->pub_key_set = false;
|
|
}
|
|
|
|
static int ecdsa_ecc_ctx_reset(struct ecc_ctx *ctx)
|
|
{
|
|
unsigned int curve_id = ctx->curve_id;
|
|
int ret;
|
|
|
|
ecdsa_ecc_ctx_deinit(ctx);
|
|
ret = ecdsa_ecc_ctx_init(ctx, curve_id);
|
|
if (ret == 0)
|
|
ctx->pub_key = ECC_POINT_INIT(ctx->x, ctx->y,
|
|
ctx->curve->g.ndigits);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the public key given the raw uncompressed key data from an X509
|
|
* certificate. The key data contain the concatenated X and Y coordinates of
|
|
* the public key.
|
|
*/
|
|
static int ecdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
const unsigned char *d = key;
|
|
const u64 *digits = (const u64 *)&d[1];
|
|
unsigned int ndigits;
|
|
int ret;
|
|
|
|
ret = ecdsa_ecc_ctx_reset(ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (keylen < 1 || (((keylen - 1) >> 1) % sizeof(u64)) != 0)
|
|
return -EINVAL;
|
|
/* we only accept uncompressed format indicated by '4' */
|
|
if (d[0] != 4)
|
|
return -EINVAL;
|
|
|
|
keylen--;
|
|
ndigits = (keylen >> 1) / sizeof(u64);
|
|
if (ndigits != ctx->curve->g.ndigits)
|
|
return -EINVAL;
|
|
|
|
ecc_swap_digits(digits, ctx->pub_key.x, ndigits);
|
|
ecc_swap_digits(&digits[ndigits], ctx->pub_key.y, ndigits);
|
|
ret = ecc_is_pubkey_valid_full(ctx->curve, &ctx->pub_key);
|
|
|
|
ctx->pub_key_set = ret == 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ecdsa_exit_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
ecdsa_ecc_ctx_deinit(ctx);
|
|
}
|
|
|
|
static unsigned int ecdsa_max_size(struct crypto_akcipher *tfm)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
return ctx->pub_key.ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
|
|
}
|
|
|
|
static int ecdsa_nist_p384_init_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P384);
|
|
}
|
|
|
|
static struct akcipher_alg ecdsa_nist_p384 = {
|
|
.verify = ecdsa_verify,
|
|
.set_pub_key = ecdsa_set_pub_key,
|
|
.max_size = ecdsa_max_size,
|
|
.init = ecdsa_nist_p384_init_tfm,
|
|
.exit = ecdsa_exit_tfm,
|
|
.base = {
|
|
.cra_name = "ecdsa-nist-p384",
|
|
.cra_driver_name = "ecdsa-nist-p384-generic",
|
|
.cra_priority = 100,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ctxsize = sizeof(struct ecc_ctx),
|
|
},
|
|
};
|
|
|
|
static int ecdsa_nist_p256_init_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P256);
|
|
}
|
|
|
|
static struct akcipher_alg ecdsa_nist_p256 = {
|
|
.verify = ecdsa_verify,
|
|
.set_pub_key = ecdsa_set_pub_key,
|
|
.max_size = ecdsa_max_size,
|
|
.init = ecdsa_nist_p256_init_tfm,
|
|
.exit = ecdsa_exit_tfm,
|
|
.base = {
|
|
.cra_name = "ecdsa-nist-p256",
|
|
.cra_driver_name = "ecdsa-nist-p256-generic",
|
|
.cra_priority = 100,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ctxsize = sizeof(struct ecc_ctx),
|
|
},
|
|
};
|
|
|
|
static int ecdsa_nist_p192_init_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P192);
|
|
}
|
|
|
|
static struct akcipher_alg ecdsa_nist_p192 = {
|
|
.verify = ecdsa_verify,
|
|
.set_pub_key = ecdsa_set_pub_key,
|
|
.max_size = ecdsa_max_size,
|
|
.init = ecdsa_nist_p192_init_tfm,
|
|
.exit = ecdsa_exit_tfm,
|
|
.base = {
|
|
.cra_name = "ecdsa-nist-p192",
|
|
.cra_driver_name = "ecdsa-nist-p192-generic",
|
|
.cra_priority = 100,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ctxsize = sizeof(struct ecc_ctx),
|
|
},
|
|
};
|
|
static bool ecdsa_nist_p192_registered;
|
|
|
|
static int ecdsa_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* NIST p192 may not be available in FIPS mode */
|
|
ret = crypto_register_akcipher(&ecdsa_nist_p192);
|
|
ecdsa_nist_p192_registered = ret == 0;
|
|
|
|
ret = crypto_register_akcipher(&ecdsa_nist_p256);
|
|
if (ret)
|
|
goto nist_p256_error;
|
|
|
|
ret = crypto_register_akcipher(&ecdsa_nist_p384);
|
|
if (ret)
|
|
goto nist_p384_error;
|
|
|
|
return 0;
|
|
|
|
nist_p384_error:
|
|
crypto_unregister_akcipher(&ecdsa_nist_p256);
|
|
|
|
nist_p256_error:
|
|
if (ecdsa_nist_p192_registered)
|
|
crypto_unregister_akcipher(&ecdsa_nist_p192);
|
|
return ret;
|
|
}
|
|
|
|
static void ecdsa_exit(void)
|
|
{
|
|
if (ecdsa_nist_p192_registered)
|
|
crypto_unregister_akcipher(&ecdsa_nist_p192);
|
|
crypto_unregister_akcipher(&ecdsa_nist_p256);
|
|
crypto_unregister_akcipher(&ecdsa_nist_p384);
|
|
}
|
|
|
|
subsys_initcall(ecdsa_init);
|
|
module_exit(ecdsa_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Stefan Berger <stefanb@linux.ibm.com>");
|
|
MODULE_DESCRIPTION("ECDSA generic algorithm");
|
|
MODULE_ALIAS_CRYPTO("ecdsa-generic");
|